PUBLICATIONS

    (2020)

  1. L. Bălilescu, C. Conca, T. Ghosh, J. San Martín, M. Vanninathan, Bloch wave spectral analysis in the class of generalized Hashin-Shtrikman micro-structures, to be submitted (2020).

  2. L. Bălilescu, J. San Martín, J.-F. Scheid, Convergence of the Lagrange-Galerkin method for the equations modelling of fish-like swimming, to be submitted (2020).

  3. (2019)

  4. L. Bălilescu, A. Ghosh, T. Ghosh, H-convergence and homogenization of the non-local elliptic operators in both perforated and non-perforated domains, Zeitschrift fur Angewandte Mathematik und Physik (2019) 70:171, DOI 10.1007/S00033-019-1213-0. PDF-file.

  5. L. Bălilescu, Bloch waves homogenization and analysis of fluid-structure interactions, Habilitation thesis in Mathematics, March 2019, University of Piteşti, Romania.

  6. (2018)

  7. L. Bălilescu, C. Conca, T. Ghosh, J. San Martín, M. Vanninathan, Dispersion tensor and its unique minimizer in Hashin-Shtrikman micro-structure, Archive for Rational Mechanics and Analysis, 230, No. 2 (2018), pp. 665-770, DOI 10.1007/s00205-018-1255-z. PDF-file

  8. (2017)

  9. L. Bălilescu, J. San Martín, T. Takahashi, Fluid-structure interaction system with Coulomb's law, SIAM Journal of Mathematical Analysis 49, No. 6, pp. 4625-4657 (2017) DOI 10.1137/16M1099947. PDF-file

  10. L. Bălilescu, J. San Martín, T. Takahashi, On the Navier-Stokes equation with Coulomb friction law boundary condition, Zeitschrift fur Angewandte Mathematik und Physik 68, Art. 3 (2017), pp. 1-25, DOI 10.1007/s00033-016-0744-x. PDF-file

  11. (2013)

  12. J. San Martín, J.-F. Scheid, L. Smaranda, The Lagrange-Galerkin method in fluid-structure interaction problems, Boundary Value Problems 2013:246, pp. 1-15 (2013), DOI: 10.1186/1687-2770-2013-246. PDF-file

  13. (2012)

  14. J. San Martín, J.-F. Scheid, L. Smaranda, A modified Lagrange-Galerkin method for a fluid-rigid system with discontinuous density, Numerische Mathematik 122, No. 2, pp. 341-382,  (2012), DOI: 10.1007/s00211-012-0460-1 2012. PDF-file

  15. C. Conca, J. San Martín, L. Smaranda, M. Vanninathan, Burnett coefficients and laminates, Applicable Analysis, 91, Issue 6, pp. 1155-1176, DOI:10.1080/ 00036811.2011.625017, 2012. PDF-file

  16. (2011)

  17. J. San Martín, J.-F. Scheid, L. Smaranda, Convergence of a Discretization Scheme Based on the Characteristics Method for a Fluid–Rigid System”, Integral Methods in Science and Engineering, Computational and Analytic Aspects, pp.339-448, Springer, 2011, DOI: 10.1007/978-0-8176-8238-5_31. PDF-file

  18. C. Conca, J. San Martín, L. Smaranda, M. Vanninathan, Higher Order Macro Coeciffents in Periodic Homogenization, Journal of Physics: Conference Series, Vol. 319, 012020, DOI:10.1088/1742-6596/319/1/0120202011. PDF-file

  19. (2010)

  20. L. Smaranda, Undele Bloch in teoria omogenizarii (in romanian), Publishing House of the Romanian Academy, 2010, ISBN 978-973-27-1955-8.

  21. J. San Martín, J.-F. Scheid, L. Smaranda, A time discretization scheme of a characteristics method for a fluid-rigid system with discontinuous density, Comptes Rendus Mathématique 348, No. 15-16 (2010), pp. 935-939, DOI 10.1016/j.crma.2010.07.004. PDF-file

  22. J. San Martín, L. Smaranda, Asymptotics for eigenvalues of the Laplacian in higher dimensional periodically perforated domains, Zeitschrift fur Angewandte Mathematik und Physik 61, No. 3 (2010), pp. 401-424, DOI 10.1007/s00033-009-0036-9. PDF-file

  23. C. Conca, J. San Martín, L. Smaranda, M. Vanninathan, On Burnett coefficients in periodic media with two-phases, Integral Methods in Science and Engineering, Volume 1: Analytic Methods, DOI 10.1007/978-0-8176-4899-2_13, Birkhauser-Boston (2010), pp. 123-133. PDF-file

  24. (2009)

  25. C. Conca, J. San Martín, L. Smaranda, M. Vanninathan, Optimal bounds on Burnett coefficients in one dimensional periodic media, Mathematical Models and Methods in Applied Sciences 19, No. 9 (2009), pp. 1743-1764, Doi: 10.1142/S0218202509003930. PDF-file

  26. D. Dupuy, R. Orive, L. Smaranda, Bloch waves homogenization of a Dirichlet problem in a periodically perforated domain, Asymptotic Analysis 61, No. 3-4 (2009), pp. 229-250. PDF-file.

  27. J. San Martín, L. Smaranda, T. Takahashi, Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time, Journal of Computational and Applied Mathematics 230, Issue 2 (2009), pp. 521-545. PDF-file

  28. (2008)

  29. C. Conca, J. San Martín, L. Smaranda, M. Vanninathan, On Burnett coefficients in periodic media in low contrast regime, Journal of Mathematical Physics 49 (2008), pp. 053514(23). PDF-file

  30. (2007)

  31. J. Ortega, J. San Martín, L. Smaranda, On the homogenization of a non-homogeneous Neumann problem via Bloch wave method, Zeitschrift fur Angewandte Mathematik und Physik 58, No. 6 (2007), pp. 969-993. PDF-file

  32. J. Ortega, J. San Martín, L. Smaranda, Bloch wave homogenization in a medium perforated by critical holes, Comptes Rendus Mecanique 335, No. 2 (2007), pp. 75-80. PDF-file

  33. J. San Martín, L. Smaranda, On Bloch waves homogenization in periodically perforated media, Proceedings of the 6th Congress of Romanian Mathematicians, Publishing House of the Romanian Academy, vol. 1 (2007), pp. 533-544.

  34. (2006)

  35. L. Smaranda, Bloch-Fourier method in homogenization and convergence analysis of the ALE method (in spanish), Ph.D. thesis, University of Chile, Chile.    

  36. L. Bălilescu (Smaranda), Applications on homogenization theory (in romanian), Ph.D. thesis, University of Piteşti, Romania.