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Abstract A quantitative study of the robustness properties of the ¢; and the
Huber M-estimator on finite samples is presented. The focus is on the linear
model involving a fixed design matrix and additive errors restricted to the
dependent variables consisting of noise and sparse outliers. We derive sharp
error bounds for the ¢; estimator in terms of the leverage constants of a design
matrix introduced here. A similar analysis is performed for Huber’s estimator
usign an equivalent problem formulation of independent interest. Our analy-
sis considers outliers of arbitrary magnitude, and we recover breakdown point
results as particular cases when outliers diverge. A Montecarlo simulation il-
lustrates the ideas previously developed.
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1 Introduction

In this paper we address the problem of estimating a vector f € RP from a set
of n measurements (n > p),

y=Xf+4, (1)

where y € R"” is the vector of measurements or observations, X is an n x p real
matrix, whose rows are realizations of the explicative variables, and § € R"
is an error term. For simplicity we suppose that the matrix X has full rank.
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This problem has special interest in many fields, including linear regression
and signal recovery.

In classical linear regression, a vector of responses or dependent variables
y € R™ is given along with the same number of explanatory variables or
carriers x1,...,z, € RP. We assume that the random variables x4, ..., z,, and
y are related through a linear model, which implies the existence of a vector
f € RP such that

where (J;)1<i<n are 1.i.d. random variables with zero mean and finite variance.
The objective in linear regression is to estimate f. The Least Squares Estimator
(LSE) of f is defined as the solution to

n
min Sor?
geRP reR? 24

s.t r=y—Xg,

(3)

where r denotes the vector of residuals. Under the usual assumption that the
errors 0; are Gaussian, the LSE is the best linear unbiased estimator of f (Shao
2003). However, the LSE is very sensitive to deviations from normality, even
moderate ones. As the hypothesis of normality is often violated in practice,
there is a great interest in developing statistical procedures that are robust
face to different error distributions.

In robust regression, model (2) is enlarged by considering that errors come
from contaminated distributions (Tukey 1960) in a neighbourhood of an as-
sumed distribution F

F.={(1-¢)F +eG:Geg}, (4)

where F' is usually the normal distribution, G is a family of contaminating
distribution, supposed to model outliers, and 0 < € < 1 represents the fraction
of contamination. The ability of an estimation method to give reasonable re-
sults under model (4) is measured by the Regression Breakdown Point (RBP),
defined in the fixed design context as the minimum fraction of the components
of § that must diverge in an arbitrary way in order to take the estimator out of
any bound (see, e.g. He et al 1990; Giloni and Padberg 2004). For example, the
LSE has an asymptotic RBP of 0%, since a single divergent observation can
completely mislead the fit, independently of the sample size. The M-estimators
(Huber 1973, 1981) aim to perform robust and computationally efficient esti-
mation. They are a generalization of (3), defined as a solution to

min znjl p(ri/T)

gERP rER [T
s.t r=y—Xg,

()

for some differentiable pair function p : R — Ry which is non-decreasing in R
and a scale of residuals 7 > 0. The scale 7 is supposed to be known, and can be
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taken as one without loss of generality. The first order optimality conditions
of problem (5) yields
i=1

where w; := p'(r;) acts as a weight of the influence of each observation on the
fit. Hence, if the function p is additionally convex the observations with large
residuals have a higher weight, which implies that the M-estimator is sensitive
to outliers in this case. In the opposite case, if the function p has non-increasing
derivative, we face a nonconvex optimization problem, which are beyond the
capabilities of the state-of-the-art of global optimization methods, even for
problems of modest size.

The border case is the 1 estimator, also called Least Absolute Deviations,
which is defined as a solution to

n
min > ril

geRP,reR™ iy (7)
s.t r=y— Xg.

It does not fit in the framework of (5) since the function to minimize is not
differentiable. Nonetheless, it satisfies system (6) for w; equal to one if r; > 0,
equal to minus one if r; < 0, and between —1 and 1 for null residuals. Therefore,
the ¢; estimator gives a bounded weight to each observation while keeping
the estimation problem convex. The increased robustness of the ¢; estimator
with respect to the LSE comes at the cost of a lower statistical efficiency
or, equivalently, an increased asymptotic variance. Huber (1981) proposed to
choose the function p so as to minimize the maximum asymptotic variance
over the neighbourhood F; in (4), yielding to

1,.2 :
5T ifjr| <o
o = 8
pa(r) {o—|r| 12 iflr| >0 ®)

2

The value of o can be chosen to obtain a given asymptotic variance at
the normal distribution. The Huber estimate gives a bounded weight equal
to £o to large residuals and a least squares weight to smaller ones, combin-
ing in this way statistical efficiency and robustness. Besides, the functions p,
are convex and differentiable. The Huber M-estimator has been successfully
applied to numerous problems such as earthquake hypocenter location (An-
derson 1982), GPS position estimation (Chang and Guo 2005), robust face
recognition (Naseem et al 2012) and non-invasive measurement of the cerebral
blood flow by MRI (Maumet et al 2014), just to cite a few. Algorithms for
computing this estimator can be found in Huber (1981); Madsen and Nielsen
(1990); Michelot and Bougeard (1994); Chen and Pinar (1998).

The quantitative study of the robustness properties of M-estimators for
non-random carriers (also called fized design) was started by He et al (1990).
In that work, the authors introduce a finite-sample measure of performance for
regression estimators based on tail behaviour. For the ¢;-estimator as well as
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for a class of M-estimators, their tail performance measure equals the RBP; a
simple characterization of the RBP in terms of the design configuration is pro-
vided. In particular, they show that the RBP of the ¢; estimator can be positive
if the matrix X is not subject to contamination, closing a long-standing dis-
cussion about the robustness of the ¢; estimator. The same expression for the
RBP is obtained by Ellis and Morgenthaler (1992), where its role as a leverage
measure is studied as well. Giloni and Padberg (2004) obtain an alternative
characterization of the RBP using mixed-integer programming.

In the context of signal processing, the estimation problem is considered
by Candes and Tao (2005). Their work lies in the fixed design framework and
they also suppose that contamination is restricted to the dependent variable
y. Moreover, they assume that the vector § in (1) is sparse, i.e., only a small
fraction of the observations is contaminated and the rest is completely free of
errors. This hypothesis, that would horrify any statistician, permits to solve
the problem via the successful theory of sparse solutions to linear systems.
It provides sufficient conditions for exact recovery of a signal from corrupted
measurements. The sufficient condition is known as the Restricted Isometry
Property (RIP) and it is verified with high probability for random normal
matrices X when n and p go to infinity in a proper ratio. Later, in Candes
and Randall (2008), a modification of ¢; minimization for linear regression is
proposed in order to deal with outliers and noise. The sufficient conditions
for the noiseless case are adapted to this more realistic context. However, the
analysis is restricted to the particular instance when X is normal random and
has orthonormal columns.

Leaving aside the drawbacks of the RIP (c.f. Zhang 2013, Sect. 1.3), any
error analysis taking the design matrix X as a degree of freedom rather than
as part of the data of the problem is unsatisfactory, because in many appli-
cations the design is fixed and non-scalable. Think for instance in the earth-
quake hypocenter location problem to realize that the asymptotic study of the
hypocenter location estimation with infinite isotropically distributed sensing
stations is of little practical interest. Likewise, the notion of breakdown point
gives information on the behaviour of an estimator when data is replaced by
divergent observations; nonetheless, it is preferable to have a quantitative mea-
sure of the prediction error when some observations are affected by finite errors
of any magnitude that cannot be reasonably considered as noise. We aim at
filling this gap by providing non-asymptotic error bounds in finite samples for
two of the most widespread convex robust estimators.

1.1 Outline of the paper

In Section 2 we introduce the leverage constants and derive the fundamental
£y error estimate, which is useful to examine any estimation technique related
to 1 norm minimization. Then, in Section 3, we consider the following model
for the errors in (1):

d==z+e, 9)
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where z is a dense, presumably small, vector of noise and e is an arbitrary
sparse vector. We perform a detailed quantitative error analysis of the ¢,
estimator, obtaining a sharp error bound taking advantage of the ¢; error
estimate of Section 2 and the dual problem. In particular, we show that the
RBP of the ¢; estimator characterizes the critical sparsity level of outliers
in order to obtain exact recovery by #; minimization in the noiseless case.
In Section 4 we derive from (9) an alternative formulation of the Huber M-
estimation problem permiting to extend the analysis done for the ¢; estimator.
In Section 5 we show some bias curves obtained by a Montecarlo simulation
confirming the behaviour predicted by our analytical results. We conclude the
article with a summary and a discussion, presented in Section 6.

1.2 Notation and preliminaries

We shall use the notation N = {1,...,n} for the index set of all the observa-
tions. For a set of indexes M, | M| denotes its cardinality. For a vector € R™,
we denote by supp(zx) its support, i.e., the index set of nonzero components,
supp(z) = {i € N | z; # 0}. The cardinality of the support of a vector, often
called the “/g-norm” or “cardinality norm”, is denoted by ||z||o; thus

lzllo = {7 € N | ;i # 0}.

For a subset M of N and p € [1,+o0[, we define

1/p
|+ llp,pr: = (Z |ﬂ?i|p>

ieM
and
|+ Nloo,nr: 2+ Jgrelaﬁ(|xz|
Moreover, for every € R™ and p € [1,400[, we denote ||z||, = ||z|, ~ and
[#]loc = [ ]loo, n-

Let ¢: R™ — ]—00, 400] be a lower semicontinuous convex function which
is proper in the sense that dom ¢ = {m e R” | o(x) < +oo} # &. The subdif-
ferential operator of ¢ is

0¢: R" — R s {u cR" | (Vy e R™) uT(y —z)+ ¢(z) < (b(y)}
and we have (Hiriart-Urruty and Lemaréchal 1993, Theorem 2.2.1)

x € Argmin ¢(z) < 0€ Idp(x). (10)

yeR™

The proximal mapping associated with ¢ is defined by

1
prox,: R" — R": z + argmin (q{)(u) + §||u — 3:||§) . (11)
uER™
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From (10) we obtain, for every € R™ and p € R”,
p=proxgr <& x—p€Ip(p),

and, since ¢ + || - —z(|?/2 is strongly convex, prox,(z) exists and is unique for
all z € R™.
The following lemma will be useful throughout the paper.

Lemma 1 Let v € ]0,+00[ and let ¢: R" — R: x — |zl = v >y |z
Then the following hold.

(i) For every x € R", 0¢(z) = x_107| - |(z:), where

Vs if £€>0;
(VEeR) oy|-(§) = [=7,7], if £=0;
-7 Zf 5 <0.

(ii) For every x € R™, prox,, = = (prox,.(:))1<i<n, where

E§—v if &>
§+v, if £<—.

Proof The results follow from Combettes and Wajs (2005, Lemma 2.1, Lemma 2.9,
and Example 2.16). O

2 Range conditions on the design matrix

We carry out a non-asymptotic analysis of two estimation techniques which
are valid for any sample size, ergo for an arbitrary design matrix X. To this
end we introduce the leverage constants of a matrix, measuring the relative
weight of the most influencial observations on the fit.

For a n x p matrix X, define for every k € {1,...,n} the leverage constants
¢, of X as

PORREAN] > alg

IEN\M IEN\M

) — i e ENWL L ieNw
e S S I i - s SE o
IMl=k g0 jen M=k |[g].=1 e
and )
m(X) = max {k € N | cx(X) > 5}. (13)

Note that the two minima in (12) are achieved since the feasible set in both
cases is compact and the objective function is continuous.

Lemma 2 We have ¢y =1, ¢, =0 and, for every k € {1,...,n}, cx < cp_1.
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Proof Tt is clear that ¢g = 1 and that ¢, = 0. Let k € {1,...,n}, let g €
RP\ {0}, and let M with |M| =k — 1 such that
> =iyl
o PENM
-1 = —— T -
> |z gl
iEN
Now let ip € N\ M and let M = M U {iy}. We have |M| = k and, from (12)
we obtain

S lxfgl X lelgltlwgl Xzl
iEN\M iEN\M ieN\M -
1= - - =2 Ck,
> |l gl > Ja] gl S o7 9|
iEN iEN Py
which yields the result. 0

The quantity m(X) defined above is already known to characterize, up
to a constant, the RBP of the /; and Huber’s estimators. We shall see in the
sequel that the leverage constants of a matrix provide the essential information
for describing the response of a class of estimates to groups of influential
observations (see also Ellis and Morgenthaler 1992, for a related discussion).

Many of the results in this article rely on the following fundamental ¢
error estimate, which is inspired on He et al (1990, Lemma 5.2). When there
is no place for confusion, we shall omit the dependency of the constants ¢ on
X.

Lemma 3 (¢; error estimate) Let X be a nxp real matriz, and let (cx)1<k<n
and m(X) be defined as in (12) and (13), respectively. In addition, let M C N,
and let y,b* € R™ and g*,g € RP be arbitrary. Then the following hold.

(i) Suppose that |[M| =k < m(X). Then

ly—=Xg=b"[li—lly=Xg"=b* 1 > Qex—D)IX (9—g")1—2 D> |yi—=] g"=b}].
ieEN\M

(ii) Suppose that |M| = 0. Then, for every b € R™,

ly—Xg—blli—lly—Xg*—b" |1 > | X (g—g")+b—b"[1—2 > lyi—b; =] g*.

ieN
Proof (i): Let y,b* € R™ and ¢*,g € RP. We have
||y—Xg—b*||1:Z\yi—x:g—bﬂ

ieN

=> |wi—x g =b)— (&) g—=]g)
ieN

= Y @l g—al o) — (wi—al g — b))
ieN\M

+ > My —alg" =) — (&g =z g")|
ieM
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and using the reverse triangle inequality |u — v| > [|u] — |v|| > |u] — |v| we
obtain
ly—Xg =01 >2 > |afg—a/g"| =D |z/g—2!g"] (14)
iEN\M iEN
JFZ\%*%TQ**W*Q Z lyi —x g* = b].
iEN iEN\M

It follows from (13) and (12) that ¢; > 1/2 and there exists g, # g* such that

> 2l lg—g X (g —g")

i€ N\M 1EN\M
(Vg,g" €RP) st. g#g" - > = cx,
ZN\wiT(g—g*)\ ZN\inT(gk—g*)\
i€ i€

Thus,
Yo o lalg—g =z e la]l (997

IEN\M ieN

By replacing in (14) we obtain:

ly=Xg=b*li—lly—Xg"=b*|1 = Qex—D)IX(g—g") -2 > lyi—=z] g" 0]
iEN\M

and the result holds.
(ii): The result is a direct consequence of the triangle inequality for the ¢;
norm. O

3 Characterization of the behaviour of the ¢;-estimator

In this section we study the problem of estimating by ¢; minimization the
vector f from observations of the form

y=Xf+z+e, (15)

where z is a dense vector of noise and e is an arbitrary sparse vector mod-
elling outliers. Since the least squares estimator is optimal in the absence of
outliers, we measure the reconstruction error by comparing the ¢; estimator
f1 with f,,, which is the least squares estimator in this case. More precisely,
if y, :==y —e = X[+ z is the noisy part of the data, devoid of outliers, and
z = Xg+b, with b € KerX " is the orthogonal decomposition of the noise,
the LSE on the data y, is f, = (X" X)X Ty, = f+7.

Theorem 1 Lety = X f+z+e and M = supp(e) satisfying |M| =k < m(X).
Consider the unique decomposition of z as z = Xg + b, where § € RP and
be KerX'", and let f, = f+g as discused above. Then the following hold for
the {1 estimator fi.
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(@) If [Blloo,naz = 0, then f1 = fo.
(ii) If Illco,nnr > 0, then

1 - ||B§N\M
X(fi—fo)l < b +—1- 16
1X(f1 = foll 2Ck_1<|| v+ = (16)

Proof Using Lemma 3(i) with b* = 0,9 = f1, and g* = f,, we obtain
ly = X fills = lly = X fullt = Qex = DIX(fr = fdli =2 Y lys— 2] ful-
iEN\M
Since, by hypothesis, y; = ] (f + g) + b; = 2] fo + b; for i € N\ M we have
(2ex = DIX (A= f)lln < 20blmm + ly = X fulls = lly = X full. (A7)

First note that since fi is a minimizer, ||y — X fi|l1 — |ly — X full1 < 0. Thus
if [|b]loo, v\ as = 0 it follows from (17), the full rank of X, and cx > 1/2 that
J1 = fn. Now suppose that ||b]|o,x\ar > 0. Problem (7) can be formulated
as a linear program; using linear programming duality we have (Giloni and
Padberg 2004, p. 1031-1032)

- X = mi — Xg| = d'y = d’ b
ly — X fillx ;gﬁg}o\ly gl =maxd y = maxd (e+),
where P* = {d € ker X T | ||d||« <1} . Thus,
ly = X filly = lly = X fulh = maxd’ (e +b) — [le + b

Hence, by using Lemma 5, we obtain

. [EeNT: _
ly = X fill = ly = X fulls < lle +blliar + m —Jle+llx
. 18113, 5\ oz
= _Hle,N\M —_—
Hb”aLN\Ai
which, altogether with (17), yields (16). O

The estimates of Theorem 1 can be easily extended to the case when the
number of outliers exceeds m(X) by taking M to be the set of indices of the
components of e with the m largest absolute values. Thus, the ¢; estimator
mitigates the effect of the largest outliers.

In the particular case when only sparse errors are present (z = 0), the
following result is a characterization of the exact recovery property (see also
Zhang 2013, for related results).

Theorem 2 Let f € RP, e € R, and set y = X f + e. Then f is the unique
solution of the problem

min [ly — Xgl[1.
geRd

for any |le|lo < k if and only if k < m(X).
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Proof First note that, in this case, f, = f. If |le]lo < m(X), by using Theo-
rem 1 with z = 0, we obtain that X (f1 — f,.) = X(f1 —f) = 0 and, since X has
full rank, we conclude that f; = f. Now let us show that for k& = ||e||o > m(X)
we can find an instance of the problem for which f, whether is not a solution,
or it is not the unique solution. Let f € R? be arbitrary. From the definiton of
¢k, there exists g € R? such that ||gx|l2 = 1 and M C N, |M| = k such that

Z |z i < Z |z gil- (18)

iEN\M =
Now define, for a > 0,

az] g, ifiEM; (19)
0, otherwise

(VZEN) 61':{
and y = X f 4+ €. Then,

[7— Xfllh=a> |z gl
€M

[T-X(f+ag)li=a > |z gl
JEN\M

Hence, it follows from (18) that |7 — X (f +agr)|l1 < |[§— X f||1, then f+ agy
is a minimizer. O

The proof of Theorem 2 shows that if & > m(X), then, for any o > 0, we
can find a vector e such that ||el|p = k and the ¢; estimator f; on the data
y = X f + ae satisfies || f1 — f|l2 = a. Combined with Theorem 1 this shows
that the RBP of the £; estimator equals m(X)+ 1, recovering results of Giloni
and Padberg (2004); Mizera and Miiller (1999).

Also, we can see from (19) that the existence of an unexpected sub-population
following a linear model with a different slope is the most troublesome scenario
for ¢ estimation.

4 Error bounds for Huber M-estimator face to sparse outliers and
noise

In this section, we study the performance of Huber’s M-estimator at model
(15). The derivation of error bounds for Huber’s estimator relies on an al-
ternative formulation of the minimization problem, the ¢; error estimate and
duality theory.
Let 0 > 0, let y € R™, and let X be a n X p real matrix with full rank.
Consider the problem
minimize ollslli + 511blI3
(g,b,8) ERP XR™ xR™

(20)
st y=Xg+b+s,
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where g, b and s are optimization variables estimating f, the dense error term
z and the sparse errors e, respectively, and ¢ is an estimate of the magnitude
of the noise.

Isolating b from the linear constraint brings up the following equivalent
problem:

1
inimi b) = —Xg-—b Z 1|2 21
minimize, Y(g,b) :==olly — Xg — b1 + 2H I35 (21)

which can be set in the M-estimator form (5) with
cr e p(r) = inf ollr— bl + = b2
piri p(r) = if ofr 1+ S lbll-

The function p above equals the Huber’s criterion (8) for any r € R™ (Michelot
and Bougeard 1994). The alternative formulation (20) of Huber’s estimation
problem based on the error model (15) provides an interpretation of the esti-
mator on finite samples.

Problem (21) can be studied using the ¢; error estimate and duality, as
we did in Section 3 for the ¢; estimator. To this end we need to study the
optimality conditions and the dual problem. This is done in the following
Lemma.

Lemma 4 The following hold.
(i) (§,b) is a solution to (21) if and only if X b =0 and

7, ifyi—x!g>0;
Vie{l,...,n}) bij=Rvyi—29, ifyi—2]g€|-0,0; (22)
-0, ifyi —x)§ < —o.
In particular |b]|os < 0.
(ii) A dual of (21) is
1
o T, L2
7= max uiy = gllul (23)

where P* = {u € ker X " | |Juljoc <1} and

i b) = .
(g7b)rélﬂgxw¢(g ) =7

Proof Note that 1(g,b) can be equivalently written as

P(g,0) = olly =[x 1.](§) [ + %II [0 2] () 3 (24)

where I,, denotes the identity matrix of size n x n and 0, the zero matrix of
size p X p.
(i): Since the function ¥ (g, b) is convex, a necessary and sufficient conditions

for a solution (g, b) to Problem (21) is

0 € 9Y(y,b). (25)
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Hence, by using (Hiriart-Urruty and Lemaréchal 1993, Theorem 4.2.1) in (24),
(25) is equivalent to

(@)~ [5 ] ool Iy - xg-B)+(3).

Therefore, there exists u € da|| - ||;(y — X§ — b) such that
XTy =0,
b=u

beda -y - Xg-b),
XTb=0.

or, equivalently,

Hence y— X§—b = ProXy ., (¥ —Xg), and the result follows from Lemma 1(ii).
(ii): Problem (21) is equivalent to (20) and, applying Lagrangian duality,
the dual is

1
ma min slly - b2 4o (v— Xag—b—s
UER}ZE(%I),S)ERdenXRnU” ”1 2” H2 (y g )

or, equivalently,

1 .
max (uTy—F( min §Hb||§—uTb) +(§I€1ﬁ3 ollsli—u's) —;nG%};:gT(XTu)). (26)

ueRP beR"

The optimality conditions associated to the convex optimization problem

: 1 2 T
min o ||bfz —u'b

yields b = u, hence minyecgn~ 5||b[|3 —u"b = —1||u||3. The second minimization

2
problem can be written as

- TN~ —o0, if [Jullec > 03
min o|s|;1 —u SZZmlna\sﬂ—uisi: .
sER™ =1 s;€R 0, if ||u||oo <o.

Finally, we have

+oo, ifudkerX';

gEeR? 0, ifucker X',

maxg' (X u) = {
Altogether, it follows from (26) that the dual to (21) is given by (23) and the
absence of duality gap follows from the Slater qualification condition and the
existence of multipliers (Hiriart-Urruty and Lemaréchal 1993, section 4). O

We pursue the study of the Huber estimator by showing that the additional
term b in (21), which makes the difference with respect to the ¢; estimator, im-
proves its response to noisy observations. The numerical simulations performed
in Section 5 confirm that the additional term actually plays an important role
reducing the bias induced by noise.
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Theorem 3 Let y = Xf +z+e, let M = supp(e), and suppose that |M| =
k < m(X). Consider the unique decomposition of z as z = Xg + b, where
GERP and b€ KerX . Then any solution (§,b) to (21) satisfies

) _ 15— BII3 xn s
1 X(Gg— fa)lli < Hb*bh,N\MJr_i ) (27)

2c, — 1 b BHOO,N\M
where f, = f+ g is the LSE on y, = X f + z.
Proof From Lemma 3(i) and (21) we deduce

$(§,0) = (fn,0) > 0(2ck = DX (G — fa)l1 — 200y — X fu — bl 301

Hence, it follows from f,, = f + g that, for every i € {1,...,n}, y; — ] f, =
e; +b; and, thus, ¥(f,,b) = olle +b—bl|; + ||b]|3/2. Therefore, since e; = 0 for
any i € N\ M,

e =D)[IX (9= fa)lx < 201b=bll1, 511 =0 lle+b=bll1+4(,b) = 5 [BlI3- (28)

From Lemma 4(ii), the dual problem to (21) is

1
T = 2
Jmax u (e+ b) 5 [Jull2

and 1(g,b) = max u' (e + b) — %|lu||3. Therefore

ueoP
$(3,5) — SI1Bl12 = max uT (e +B) — = [[ull? — =[]
’ 2 N2 ™= eope g 1712 o lIFII2
. 1 R

= b—0) — —|lu—0bl3
max (e +5—8) — 5 lu— b3
< max u' (e+b—0b)
uEo P*

Hence, it follows from Lemma 5 that

g 16— b

R o
¥(g,b) — §||b\|§ <olle+b—0bllinm+ 13,5\

15— Bll oo, 3 a1

which, combined with (28), yields
(2cr — DX (G = fa)llr < 200 = blls,xar — lle +b—blls + [le +b—bll1,a

— (R RN
Hb_b”oo,N\M ok

= b 5||1,N\M + [[b— B”%,N\M

16— Blloo, 1

as claimed. 0
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5 Numerical Illustrations

In this Section we report on a Monte Carlo study intended to illustrate the
results of this paper. The experimental setup is the following. The matrix X is
generated randomly with independent entries drawn from a standard normal
distribution. Its size is n x p = 512 x 128. The vector of data is generated
according to

y=Xf+z+e,

with f = 0 and z standard normal, for different types and levels of contami-
nation.

We estimate f by three different methods: LSE, ¢;, and Huber’s with
o = 1/X3(.95). The size of the support of e ranges from 1 to (n —p —1)/2,
which means that the maximum fraction of contamination is close to 40%. We
consider three types of sparse contamination. In the first and second types,
each non-zero component of e is drawn i.i.d. from a Normal (light-tailed) and
Laplace (heavy-tailed) distribution with mean 0 and standard deviation 5,
respectively. The last type of sparse error is considered to be very large and
adversarial, inspired from the proof of Theorem 2. For generating the adver-
sarial contamination we first create the vector € = X1, where 1, is the vector
of ones of size p x 1. Then the sparse errors are obtained by selecting some
components of € randomly and by multiplying them by 50.

For each type of contamination, for every k € {1,...,(n —p — 1)/2}, we
repeat 1000 times the following:

1) Choose randomly a subset M of N of size k.

2) Construct the sparse vector e by filling the entries indexed by M with the
corresponding type of large errors.

3) Generate z with independent N (0, 1) entries.

4) Set y = z + e and estimate f = 0 by LSE, ¢;, and Huber’s methods.

For each percentage of outliers the bias is quantified by the mean of the quo-
tients || f — full2/l| fnll2, where f is the estimation of f obtained by each of the
three methods and f,, = (X TX)71X T2

In Figure 1 the bias for data with gaussian noise and sparse contamination
is plotted. On the left the bias is plotted for different levels of contamination
with light-tailed outliers. The LSE outperforms Huber’s estimator when the
vector of outliers is very sparse (less than 5% of contamination) and, hence,
the gaussian noise predominates. However, Huber’s estimator has a lower bias
in general. The difference of the bias between LSE and ¢; estimator decreases
as the percentage of contamination raises. In the figure on the right the bias
is plotted for different levels of contamination with heavy-tailed outliers. Both
¢1 norm based estimators perform much better than the LSE even for very low
levels of contamination. Observing the curves for the ¢; and Huber estimators
on both plots, we notice that the behaviour is similar, and consistent with (16)
and (27).

In Figure 2 we plot the bias under gaussian noise and very large adversarial
sparse errors. On the left, Huber’s estimator outperforms dramatically LSE for
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Fig. 1 Relative error ||f — fu /|| fn || for different percentage of outliers with gaussian noise.
On the left, the contamination is drawn from a N(0,5) distribution and on the right from
a Laplace (0, 5) distribution.

any level of contamination; on the right we focus on the low contamination
zone to show the better performance of the Huber’s estimator with respect to
the ¢; estimator. In addition, we appreciate a clear breakdown phenomenon
when the level of contamination exceeds the 30% approximately.

In summary, we confirm the high sensitivity of LSE with respect to the
percentage of outliers and, in special, with respect to heavy-tailed and adver-
sarial ones. In every examined case Huber’s estimator has a better performance
compared to the ¢; estimator, and the curves have similar shapes, as expected
in view of Theorem 3.

6 Conclusions

We have filled an existing gap in the literature by performing a detailed non-
asymptotic study of the robustness of estimators involving 1 norm minimiza-
tion. The importance of these estimators stems from the fact that they permit
to perform robust regression on very large datasets. The main results are the
sharp performance bounds for the ¢; and Huber estimators. Nonetheless, other
results such as the ¢ error estimate and the equivalent formulation of Huber’s
problem bear some interest by their own. The results presented in this article
are quantitative, in contrast with the qualitative (bounded/unbounded) char-
acter of results related uniquely to the notion of breakdown point, which are
particular cases of our analysis. Also, our results are valid for general data, in
contrast with previous works based on the restricted isometry property.
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Fig. 2 Plot of relative error ||f — fn ||/l fn|l, with z standard gaussian, for different fractions
of gross errors; at left, with adversarial contamination in the order of 50; at right a closeup
comparing Huber’s and ¢; on the zone of low contamination.

Appendix

Lemma 5 Let b € R", e € R"™ and let M = supp(e). Suppose that |[M| <
m(X) and ‘Hjl\]a\’}]c\/[|bi‘ > 0. Let us define P* = {d€ker X7 | ||d||loc < 1}.
1€

Then, for every o > 0,

T ’ 2
< _— .
Jnax d”(e+b) < olle+blln + leroar 16112, 3\ 2z
Proof Let
by = 0, if:e 5 and &, = +e;, ifie : (29)
b;, otherwise, 0, otherwise.
Then supp(é) = M, b+e=0b+¢, ||b+ely = ||bll1 + ||é]/1, and
max d' (e +b) = max d' (640b) < max d'é+ max d'b. (30)
deoP* deoP* deoP* d€eo P*

On one hand, it follows from Lemma 3(i) with y = €, ¢* = 0, and b* = 0
that, for every g € R?, [|é]l; < [|€ — Xg|1, hence 0 € argmin g, [|€ — Xgl1
and from the first order optimality condition 0 € X "9 - ||1(€) or, equivalently,
(3u € P*) wu'é=|é|1. Since, for every u € P* ;u'e < |le||; we hence deduce
that max,cp- u'é = ||€||;. Therefore, by considering the change of variables
u = d/o, we obtain

max d'é=o0-maxu'é=olé|;. (31)
deo P* ueP*
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On the other hand,

max d'b< max d'b=——bb=——|b|2 (32)
deo P ldlloo <o ([0 [1B]] 0o

Therefore, by replacing (31) and (32) in (30), the result follows from (29). O
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