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Abstract. Variational problems under uniform quasiconvex constraints on the gradient are
studied. Our technique consists in approximating the original problem by a one−parameter family
of smooth unconstrained optimization problems. Existence of solutions to the problems under con-
sideration is proved as well as existence of lagrange multipliers associated to the uniform constraint;
no constraint qualification condition is required. The solution-multiplier pairs are shown to satisfy
an Euler-Lagrange equation and a complementarity property. Numerical experiments confirm the
ability of our method to accurately compute solutions and Lagrange multipliers.
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1. Introduction. Let Ω be a bounded domain in RN with N ≥ 1 and T :
Ω × Rm×N → [0,∞[ a Carathéodory function. Let s ≥ 1 and consider a functional
J : W 1,s(Ω;Rm) → R ∪ {+∞}, which is supposed to be bounded from below and
sequentially lower semicontinuous in the weak topology of W 1,s(Ω;Rm). We study a
class of constrained Dirichlet problems from the calculus of variations of the type

inf{J(v) : |T (x,∇v(x))| ≤ 1 a.e x in Ω, v = g on ∂Ω}. (1.1)

In particular, we prove existence and approximability of solutions and Lagrange mul-
tipliers associated to the uniform constraint on the gradient. We approximate the
problem by a sequence of unconstrained problems penalizing the uniform constraint
by a power term.

The model case of (1.1) is the problem of the elastoplastic torsion of a cilindrical
bar of section Ω:

min
v∈K0

1

2

∫
Ω

(|∇v(x)|2 − h(x)v(x))dx (1.2)

for K0 = {v ∈ H1
0 (Ω) | |∇v(x)| ≤ 1 a.e x ∈ Ω}. Problem (1.2) has been extensively

studied by Ting (1969); Brézis (1972); Caffarelli and Friedman (1979) and in the
numerical aspects by Glowinski et al. (1981). Brézis (1972) proves the existence and
uniqueness of a multiplier λ ∈ L∞ satisfying the system

λ ≥ 0 a.e on Ω (1.3a)
λ(1− |∇u|) = 0 a.e on Ω (1.3b)

−∆u−
N∑
i=1

∂

∂xi
(λ
∂u

∂xi
) = h in D′ (1.3c)

when the right hand side h is constant. Chiadò Piat and Percivale (1994) reconsider
the problem for a general elliptic operator and nonconstant right hand side h, ob-
taining a measure multiplier satisfying a system analogous to (1.3b)-(1.3c). Brézis
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(1972) uses the characteristics method to solve (1.3c) for λ, obtaining a semi-explicit
formula for the multiplier. Chiadò Piat and Percivale (1994) approximate the prob-
lem by a sequence of nonsmooth problems penalizing the violation of the constraint
|∇u| ≤ 1 a.e.

Whether similar results could be obtained in the framework of a general duality
theory standed as an open question for a long time. Ekeland and Temam (1976)
attempted to apply the classical duality theory to this problem with unsatisfactory
results. The question was solved positively by Daniele et al. (2007) using a new
infinite dimensional duality theory (see also Donato, 2011; Maugeri and Puglisi, 2014).
Daniele et al. (2007) show, for a class of problems including Problem (1.2), that if
the problem is solvable and the solution satisfies a constraint qualification condition,
then there exists a Lagrange multiplier λ ∈ L∞+ (Ω) satisfying (1.3b), which is indeed
the solution of a dual problem.

Concerning existence of solutions for the general Problem (1.1), we can cite the
results of Ball (1977b), showing existence of solutions in Orlicz-Sobolev spaces for
variational problems under constraints of the type F (∇v(x)) ∈ C(x) for almost every
x ∈ Ω, by assuming some convexity. Nonetheless, there is still a lack for practical
ways to compute numerical approximations of the Lagrange multipliers associated
with the uniform constraint on the gradient, and solutions in standard Sobolev spaces
for vectorial, nonconvex problems under general boundary conditions.

We address these issues by providing an approximation scheme for Problem (1.1)
by simpler problems that can be solved using existing mature numerical methods.
The original problem is approximated by a sequence of unconstrained smooth prob-
lems whose solution converges to a solution of the constrained problem. Moreover, by
analyzing the optimality conditions we identify a term which is then showed to con-
verge to a Lagrange multiplier associated to the uniform constraint on the gradient.
In this way, we recover and in many cases improve the existence results and provide
a practical approximation scheme. Our approach is illustrated through numerical
simulations.

1.1. Statement of the problem and main results. We are interested in the
minimization problem

inf{J(v) | ‖T (·,∇v)‖∞,Ω ≤ 1, v ∈ g +W 1,s
0 (Ω;Rm)}, (1.4)

where

‖T (·,∇v)‖∞,Ω = ess- sup{T (x,∇v(x)) | x ∈ Ω},

and g ∈W 1,∞(Ω;Rm) ∩ C(Ω;Rm) is a given function satisfying

J(g) < +∞ and T (x,∇g(x)) ≤ 1 for a.e. x ∈ Ω. (1.5)

Define J∞ : W 1,s(Ω;Rm)→ R ∪ {+∞} by

J∞(v) =

{
J(v) if ‖T (·,∇v)‖∞,Ω ≤ 1,
+∞ otherwise.

Then (1.4) may be rewritten as

inf
{
J∞(v) | v ∈ g +W 1,s

0 (Ω;Rm)
}
. (1.6)
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By (1.5), we have that J∞(g) < +∞.

From now on, we assume that T is quasiconvex in the sense of Morrey, i.e. for
almost for every x0 ∈ Ω and any ξ0 ∈ Rm×N

T (x0, ξ0) ≤ 1

L(D)

∫
D

T (x0, ξ0 +∇φ(x))dx, (1.7)

whereD is an arbitrary bounded domain in RN and φ is any function inW 1,∞
0 (D;Rm).

Here, L stands for the Lebesgue measure in RN . Suppose also that

α1|ξ|r ≤ T (x, ξ) ≤ β1(1 + |ξ|r) (1.8)

where 0 < α1 ≤ β1 and 1 ≤ r <∞. Concerning the functional J , in most interesting
applications it will take the integral form

J(u) =

∫
Ω

f(x, u(x),∇u(x))dx (1.9)

where f : RN ×Rm ×Rm×N is a Carathéodory integrand satisfying, for almost every
x ∈ Ω and for every (u, ξ) ∈ RN × Rm×N

ξ 7→ f(x, u, ξ) is quasiconvex (1.10a)
γ1(x) ≤ f(x, u, ξ) ≤ β2(|ξ|s + |u|t) + γ2(x) (1.10b)

where β2 ≥ 0, γ1, γ2 ∈ L1(Ω) and 1 ≤ t <∞.

Define the p-power penalty functional Jp : W 1,p(Ω;Rm)→ R ∪ {+∞} by

Jp(v) = J(v) +
r

p

∫
Ω

Tv(x)p/rdx,

where p ∈ ] max(r, s),∞[ and

Tv(x) = T (x,∇v(x))

and consider the penalized problems

inf{Jp(v) | v ∈ g +W 1,p
0 (Ω;Rm)}. (1.11)

Under the above conditions, the existence of solutions up to (1.11) follows from
a standard application of the direct method of the calculus of variations (Dacorogna,
2007, Theorem 8.29). In this direction, notice that the quasiconvexity of T yields the
quasiconvexity of T p for every 1 < p <∞. Hypothesis (1.10) can be replaced by any
alternative set of hypothesis ensuring sequential lower semicontinuity of J , such as
those related to polyconvexity (Ball, 1977b,a).

Any selection of solutions to Problems (1.11) uniformly converges to a solution of
Problem (1.1), whose existence is not supposed a priori. Indeed, we have the following:

Theorem 1.1. Under the previous assumptions, we have that:
(i) For every q ≥ max{N + 1, r, s}, the net {up | p ≥ q, p → ∞} is bounded in

W 1,q(Ω;Rm) and relatively compact in Cα(Ω;Rm), for every 0 ≤ α ≤ 1−N/q.
3



(ii) If u∞ is a cluster point of {up | p→∞} in C(Ω;Rm), then u∞ is an optimal
solution to (1.4) and, moreover,

lim
p→∞

min Jp = lim
p→∞

Jp(up) = lim
p→∞

J(up) = J(u∞) = min J∞.

Remark 1. The convergence

lim
p→∞

J(up) = J(u∞) (1.12)

will have important consequences if the functional J satisfies certain conditions, as it
reinforces weak convergence of up in W 1,s(Ω;Rm) to strong convergence.

The method of power penalties was applied by Attouch and Cominetti (1999)
to problems with L∞ constraints |u| ≤ 1 a.e. They also announced the results of
Theorem 1.1 for scalar problems with zero boundary condition under the constraint
|∇u| ≤ 1. Ishii and Loreti (2005) address the uniform convergence as p→∞ of scalar
critical points of Jp for functionals J in the form (1.9) with f(x, u(x)) = h(x)u(x),
showing the convergence to solutions of the constrained problem in some particular
cases, such as dimension one and radial solutions. In problems with non-unique
solutions, variational solutions obtained by p-Laplacian approximation can be shown
to minimize the L∞ norm among solutions. This is notably the case in finite dimension
(Attouch and Cominetti, 1999) and in infinite dimension for J ≡ 0, where variational
solutions converge to absolute minimizers which are indeed unique by a celebrated
result of Jensen (1993).

Next we address the existence and approximation of Lagrange multipliers for the
uniform constraint on the gradient. The underlying rationale bears some resemblances
to certain methods for showing existence of Lagrange multipliers without recourse
to separation theorems, such as the Fritz John optimality conditions in nonlinear
programming (cf. Bertsekas, 1999, Sec. 3.3.5). Let us consider the Lagrange functional
L : H1(Ω)× L∞+ (Ω)→ R

L(u, λ) = J(u) +

∫
Ω

λ(Tu− 1) (1.13)

If a solution u to Problem (1.4) satisfies a constraint qualification condition, then
there exists λ ∈ L∞+ (Ω) such that (u, λ) is a saddle point of L (Daniele et al., 2007).
Let (u, λ) be a saddle point of L, and suppose that the derivative Tξ of T with respect
to its second argument exists. The minimality condition on u reads

J ′(u)[v] +

∫
Ω

λ Tξu · ∇v = 0 ∀v ∈ C∞0 (Ω).

On the other hand, the optimality conditions for the penalized problem (1.11) yields

J ′(up)[v] +

∫
Ω

(Tup)
p−1 Tξup · ∇v = 0 ∀v ∈ C∞0 (Ω).

Suppose that J ′(up)→ J ′(u) as p→∞, then

∫
Ω

(Tup)
p−1 Tξup · ∇v →

∫
Ω

λ Tξu · ∇v ∀v ∈ C∞0 (Ω)
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This formal derivation strongly suggests that cluster points of λp := (Tup)
p−1, if

any, must play the role of a Lagrange multiplier. Under very general conditions we
are able to obtain a uniform bound on the L1(Ω) norm of λp, which in general is not
enough to have a weakly−∗ convergent subsequence. Using parameterized measures
we prove the existence of a measure-valued Lagrange multiplier, which satisfies an
Euler-Lagrange equation and a complementarity property. We also prove that the
sequence of approximating multipliers converges in the bitting sense (see further Def-
inition 3.7), providing a clue for computing numerically the Lagrange multiplier in
problems exhibiting concentration phenomena. The main result is the following;

Theorem 1.2. Let T (x, ξ) = |ξ|, and g ∈ C2(Ω̄) be such that ‖∇g‖∞,Ω < 1/2.
Let u∞ be a cluster point of {up}p≥p1 for the topology of C(Ω). Suppose that f satisfies
(3.13), (3.14) and (3.23). There exists a nonnegative Radon measure multiplier µ such
that:

(i) For a nonnegative Radon measure σ, and measurable non-negative functions
λ and η,

µ = λL+ ησ

Moreover, λ ∈ L1(Ω).
(ii) The primal-dual pair (u∞, µ) satisfies the system

−div(fξ(x, u∞,∇u∞) +∇u∞µ) + fs(x, u∞,∇u∞) = 0 in D′(Ω).

λ(x) ≥ 0 L − a.e in Ω, η(x) ≥ 0 σ − a.e in Ω.

λ(x)(|∇u∞(x)| − 1) = 0 L − a.e in Ω, η(x)(|∇u∞(x)| − 1) = 0 σ − a.e in Ω.

(iii) The sequence {|∇up|p−1}p≥p1 converges to λ in the bitting sense.
Notice that combining the complementarity property and the Euler-Lagrange

equation we can formally show that u∞ solves the boundary value problem

(|∇u| − 1)(−div(fξ(·, u,∇u)) + fs(·, u,∇u)) = 0 in Ω,

|∇u| − 1 ≤ 0 in Ω,

u = g in ∂Ω.
An interesting question left open is whether u∞ is a solution of this problem in

the viscosity sense (Lions, 1982).

Then we focus on a subclass of simpler problems which includes the elastoplastic
torsion problem (1.2). We use differential equations methods to prove the conver-
gence of the approximating multipliers in L∞(Ω). We consider scalar problems of the
following form

min

J(v) :=

∫
Ω

1

2
W (|∇v|2)− φ(v) : |∇v| ≤ 1, v ∈ g +H1

0 (Ω)

 ,

where g is a real constant, Ω is a convex domain and additionally

t 7→W (t2) and φ are convex and of class C2(R) (1.14)
G(s) := W ′(s) + 2sW ′′(s) > 0, for s > 0. (1.15)

Under the previous hypothesis, we prove the following.
Theorem 1.3. Let u∞ be a cluster point of {up}p≥p1 for the topology of C(Ω).

There exists λ ∈ L∞(Ω) such that
5



(i) The sequence {|∇up|p−2∇up}p≥p1 weakly−∗ converges to λ∇u∞, up to sub-
sequence.

(ii) The primal-dual pair (u∞, λ) satisfy the system

−div(W ′(|∇u∞|2)∇u∞)− div(λ∇u∞) = φ′(u∞) in D′. (1.16)
λ(x) ≥ 0 a.e in Ω. (1.17)

λ(x)(|∇u∞(x)| − 1) = 0 a.e in Ω (1.18)

For the elastoplastic torsion problem (1.2), Brézis (1972) proved the uniqueness
of λ ∈ L∞+ (Ω) verifying (1.16)–(1.18), therefore the whole net {|∇up|p−2}p≥p1 is con-
vergent.

1.2. Organization of the paper. Section 2 is devoted to the proofs of primal
convergence results. The proof of Theorem 1.1 is decomposed into a series of lemmas
of independent interest. In Section 3 we prove Theorems 1.2 and 1.3. The numeri-
cal aspects of our method are presented in Section 4. We present an algorithm for
computing solutions and Lagrange multipliers for Problem (1.4). Our algorithm is
validated by computing numerical approximations to solutions and Lagrange multi-
pliers of Problem (1.2), for which there exists explicit solutions on the 2D disk to
compare. We also obtain an explicit formula for the Lagrange multiplier, in this way
we are able to evaluate the algorithm at computing both solutions and multipliers.
We close the paper with a summary presented in Section 5

2. Primal convergence results. In this section we provide the proof of The-
orem 1.1. The proof is divided into a series of lemmas. For clarity of the exposition
we put r = 1, the general case being completely analogous.

Lemma 2.1 (Compactness). we have that:
(i) supp≥s

1
p‖Tup‖

p
p,Ω < +∞, where

‖Tup‖pp,Ω =

∫
Ω

T (x,∇up(x))pdx

(ii) Let p1 = max{N+1, s}. For every q > 1, {up}p≥p1 is bounded inW 1,q(Ω;Rm)
(iii) {up}p≥p1 is relatively compact in C(Ω;Rm).
(iv) For every uniform cluster point u∞ of {up}p≥p1 , we have that

u∞ ∈ g +W 1,∞
0 (Ω;Rm).

(v) If upj → u∞ in C(Ω;Rm) then upj ⇀ u∞ weakly in W 1,q(Ω;Rm) for every
q ∈ [p1,∞[.

Proof. From the optimality of up it follows that

α+
1

p
‖Tup‖pp,Ω ≤ J(g) +

1

p
‖Tg‖p∞,ΩL(Ω), (2.1)

where α = inf{J(v) | v ∈W 1,s(Ω;Rm)} ∈ R (recall that J is supposed to be bounded
from below). Using (1.5) we deduce that

sup
p≥s

1

p
‖Tup‖pp,Ω < +∞,
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hence

C1 := sup
p≥s
‖Tup‖p,Ω < +∞.

In particular,

‖∇up‖p,Ω ≤ α1C1.

On the other hand, the Poincaré inequality yields

‖u‖p,Ω ≤ C(Ω, p) (‖∇u‖p,Ω + ‖∇g‖p,Ω) + ‖g‖p,Ω,

for every u ∈ g+W 1,p
0 (Ω;Rm) and a suitable constant C(Ω, p) > 0. Combining these

estimates, and recalling that the constant C(Ω, p) may be chosen such that (Adams,
1975)

sup
p∈[N+1,∞[

C(Ω, p) < +∞,

we deduce that there exists a constant C2 > 0 such that

∀p ∈ [p1,+∞[, ‖up‖1,p,Ω = ‖up‖p,Ω + ‖∇up‖p,Ω ≤ C2,

where p1 = max{N + 1, s}. In particular, {wp := up − g}p≥p1 is bounded in
W 1,q

0 (Ω;Rm) for each q ≥ p1, hence for every q > 1 by Hölder inequality. Since
p1 > N , we deduce that {wp}p≥p1 is relatively compact in C(Ω;Rm) by the Rellich-
Kondrachov theorem (since we deal with W 1,p1

0 we do not require any regularity
condition on ∂Ω). Thus, we deduce that {up}p≥p1 is relatively compact in C(Ω;Rm).

Let u∞ be a cluster point of {up}p≥p1 in C(Ω;Rm). First, we prove that u∞ ∈
W 1,∞(Ω;Rm). By Morrey’s theorem there exists a constant C ′(Ω, p) > 0 such that

|wp(x)− wp(y)| ≤ C ′(Ω, p)||wp||1,p,Ω|x− y|1−N/p

for every x, y ∈ Ω. In fact, the constant can be chosen in such a way that

sup
p∈[q,∞[

C ′(Ω, p) < +∞

for every q > N (Adams, 1975). Therefore, we conclude that for a suitable constant
C3 > 0, |up(x) − up(y)| ≤ C3|x − y|1−N/p, for every x, y ∈ Ω and p ∈ [p1,∞[. We
deduce that

|u∞(x)− u∞(y)| ≤ C3|x− y|,

then u∞ ∈W 1,∞(Ω;Rm). Of course, u∞ = g on ∂Ω.
Next, fix q ∈]1,∞[. From our previous analysis it follows that {up}p∈[p1,∞[ is

bounded in W 1,q(Ω;Rm) and therefore relatively compact for the weak topology of
W 1,q(Ω;Rm). Consequently, if pj → ∞ is a sequence such that upj → u∞ uniformly
on Ω, then upj ⇀ u∞ weakly in W 1,q(Ω;Rm).

Lemma 2.2. If u∞ is a cluster point of {up | p → ∞} in C(Ω;Rm) then
‖Tu∞‖∞,Ω ≤ 1. Moreover, u∞ is an optimal solution to (1.6), and we have that

lim
p→∞

Jp(up) = lim
p→∞

J(up) = J(u∞) = minJ∞.
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Proof. Let upj → u∞ in C(Ω;Rm) and fix q ∈]1,∞[. By Lemma 2.1, upj ⇀ u∞
weakly inW 1,q(Ω;Rm). It follows from the weak lower semicontinuity inW 1,q(Ω;Rm)
of v 7→ ‖Tv‖q,Ω, that

‖Tu∞‖q,Ω ≤ lim inf
j→∞

‖Tupj‖q,Ω.

For every p ∈ [q,∞[, the Hölder inequality yields

‖Tup‖q,Ω ≤ ‖Tup‖p,ΩL(Ω)
1
q−

1
p .

Then, Lemma 2.1 ensures that

‖Tup‖q,Ω ≤ (pC)
1
pL(Ω)

1
q−

1
p

for some constant C > 0. Hence

‖Tu∞‖q,Ω ≤ L(Ω)
1
q

Letting q →∞, we get the desired inequality.

Let v ∈ g +W 1,∞(Ω;Rm) with ‖Tv‖∞,Ω ≤ 1. By optimality of up we have that

J(up) ≤ Jp(up) ≤ Jp(v) = J(v) +
1

p
‖Tv‖pp,Ω.

Since ‖Tv‖∞,Ω ≤ 1, we have that

lim sup
p→∞

J(up) ≤ lim sup
p→∞

Jp(up) ≤ lim sup
p→∞

Jp(v) = J(v).

As v is arbitrary, we obtain that

lim sup
p→∞

J(up) ≤ lim sup
p→∞

Jp(up) ≤ inf J∞.

Now, let upj → u∞ in C(Ω;Rm). By the weak lower semicontinuity of J , we have
that

J(u∞) ≤ lim inf
j→∞

J(upj ),

and due to the previous lemmas, we know that J(u∞) = J∞(u∞). This proves the
optimality of u∞ and moreover

lim
j→∞

Jpj (upj ) = lim
j→∞

J(upj ) = minJ∞.

Finally, note that, up to a subsequence, the same is valid for an arbitrary sequence
{pk}k∈N with pk →∞. This fact together with a compactness argument proves indeed
the result.

3. Dual convergence results. In this section we are concerned with the exis-
tence and approximation of Lagrange multipliers for the constrained problem (1.4).
We treat separately a class of simpler instances of the problem which can be tackled by
differential equations methods, and a more general case with few additional assump-
tions with respect to Section 2. For the former class of problems, we prove a strong
existence result of Lagrange multipliers in L∞(Ω). In the more general case, we prove
the existence of a Radon measure multiplier, and show how to obtain information on
the uniformly integrable part of the multiplier.
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3.1. Regular L∞ multipliers. In this part, we consider the following instances
of (1.4)

min

J(v) :=

∫
Ω

(
1

2
W (|∇v|2)− φ(v)) : |∇v| ≤ 1, v ∈ g +H1

0 (Ω)

 . (3.1)

Let us consider the penalized problem

min

1

2

∫
Ω

W (|∇v|2) +
1

p

∫
Ω

|∇u|p −
∫
Ω

φ(v) : v ∈ g +H1
0 (Ω)

 . (3.2)

By the convexity assumptions on the functions W and φ, that problem has a
unique solution up which is a weak solution of the Euler-Lagrange equation:

−div((W ′(|∇up|2) + |∇up|p−2)∇up) = φ′(up). (3.3)

Let us define:

Ψ(x) =

|∇up|2∫
0

G(s)ds+ 2
p− 1

p
|∇up|p + 2φ(up)

Maximum principles of Payne and Philippin (1977, 1979) state that under mild
conditions the maximum of Ψ(·) is attained at a critical point of up. The application of
maximum principle techniques require to work with classical C2(Ω) solutions. Results
of Uhlenbeck (1977), Tolksdorf (1984) and Lieberman (1988) show that bounded
solutions to equations of the type (3.3) are C1,α(Ω)-regular, provided that hypothesis
(1.15) holds. Higher regularity can be obtained by a bootstrap argument at points
where ∇up 6= 0. However, if the function G defined in (1.15) is degenerate, i.e.
G(0) = 0, a further regularization is necessary (Kawohl, 1990). Following a classic
procedure (see eg. Evans and Gangbo, 1999; Bhattacharya et al., 1989; Sakaguchi,
1987; DiBenedetto, 1983) the term |∇up|p is regularized by (ε2 + |∇up|2)p/2 to obtain
a sequence of regular functions uεp converging to up pointwise and in W 1,p(Ω) norm
as ε→ 0. In this way degenerate problems can be handled by approximation.

Theorem 3.1. Under hypothesis (1.14)- (1.15), if Ω is convex and ∂Ω ∈ C2,
then the sequence {|∇up|p}p≥p1 is uniformly bounded in L∞(Ω).

Proof. Note that by (1.15), |∇up|p + 2φ(up) ≤ Ψ(x). By Payne and Philippin
(1979, Corollary 1), the function Ψ(x) attains its maximum at a critical point of up.
In such a point Ψ(x) = 2φ(up(x)), therefore

|∇up|p + 2φ(up) ≤ Ψ(x) ≤ max
Ω̄

Ψ(x) ≤ 2 max
Ω̄

φ(up(x)),

whence

|∇up|p ≤ 4 max
Ω̄

φ(up) < +∞

and conclude by Theorem 1.1 and the continuity of φ.
Remark 2. For a non-convex domain Ω, let κ(y) denote the mean curvature of

∂Ω at y, and define K = (n − 1) maxy∈∂Ω[−κ(y)]+. Let also Fp = maxy∈Ω̄(φ′(g) −
φ′(up)), then if φ′(g) > 0 and

lim sup
p→∞

Fp <
2φ′(g)

K
,
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Theorem 3.1 remains valid.
Corollary 3.2. Let u∞ be a cluster point of {up}p≥p1 . Then, passing if necce-

sary to a further subsequence,
(i) ∇up(x)→ ∇u∞(x) for a.e x ∈ Ω.
(ii) ∇up⇀∗ ∇u∞ in the weak−∗ topology of L∞(Ω).
(iii) There exists Λ ∈ L∞(Ω)N such that the sequence {|∇up|p−2∇up}p≥p1 con-

verges to Λ in the weak−∗ topology.
Proof. From Visintin (1984), using hypothesis (1.14) and the convergence of the

functional (1.12), up → u∞ strongly, proving assertion (i). Points (ii) and (iii) are
consequences of the Banach–Alaoglu Theorem.

We are now in position to state our existence and approximation result for both
primal and dual solutions of Problem (1.4).

Theorem 3.3. Let u be a cluster point of {up}p≥p1 in C(Ω) achieving the con-
vergences of Corollary 3.2. There exists λ ∈ L∞(Ω) such that

(i) The sequence {|∇up|p−2∇up}p≥p1 weakly−∗ converges to λ∇u.
(ii) The primal-dual pair (u, λ) satisfies the system

−div(W ′(|∇u|2)∇u)− div(λ∇u) = φ′(u) in D′. (3.4)
λ(x) ≥ 0 a.e in Ω. (3.5)

λ(x)(|∇u(x)| − 1) = 0 a.e in Ω (3.6)

Proof. We shall show that the limit field Λ in Corollary 3.2 (iii) verifies

|Λ| = Λ · ∇u a.e in Ω. (3.7)

Using u− g as test function in (3.3) we have∫
Ω

|∇up|p−2∇up∇u = −
∫
Ω

W ′(|∇up|2)∇up∇u− φ′(up)(u− g) (3.8)

Then by Corollary 3.2(iii), Corollary 3.2(i) and (1.10b)∫
Ω

Λ∇u = −
∫
Ω

W ′(|∇u|2)|∇u|2 − φ′(u)(u− g). (3.9)

The same procedure using up − g ∈W 1,p
0 (Ω)∩L∞(Ω) as test function (recall the

growth condition (1.10b)) shows that∫
Ω

|∇up|p −→ −
∫
Ω

W ′(|∇u|2)|∇u|2 − φ′(u)(u− g). (3.10)

and therefore ∫
Ω

|∇up|p −→
∫
Ω

Λ∇u. (3.11)

Then by lower semicontinuity and Hölder inequality

∫
Ω

|Λ| ≤ lim inf
p→∞

∫
Ω

|∇up|p−1 ≤ lim
p→∞

∫
Ω

|∇up|p
1−1/p

(L(Ω))1/p,

10



which combined with (3.11) yields∫
Ω

|Λ| ≤
∫
Ω

Λ · ∇u, (3.12)

and (3.7) follows using |∇u| ≤ 1 a.e (Theorem 1.1). The existence of λ ∈ L∞(Ω)
satisfying (3.5) & (3.6) follows from (3.7). Taking the limit in (3.3) using Theorem
1.1, Corollary 3.2 and the representation (3.7) gives (3.6).

Remark 3. Theorem 3.3 generalizes a result by Evans and Gangbo (1999).
The results of Theorem 3.3 can be slightly extended, for instance, to convex

domains with piecewise smooth border or with small deviations from convexity. How-
ever, any condition promoting concentrations on the gradients such as interior corners
is to be excluded. We have not reasons to doubt that the results of this section re-
main valid for smooth explicit dependencies of the functionsW,φ and g on the variable
x. However, the proof of this results for more general problems would require new,
substantially different techniques. Though, such problems are covered by the theory
developed in the following section. In this regard, notice that the regularity results
discussed above apply to a class of problems much wider than those covered by The-
orem 3.3.

3.2. Generalized multipliers. In this part we prove the more general dual
convergence result. We attempt to keep the hypothesis a close as possible to those of
the primal analysis. Hereafter, we take the following hypothesis on the integrand f

f(x, ·, ·) is differentiable for almost all x ∈ Ω. (3.13)
〈fs(x, s, ξ), s〉 ≤ Γ(1 + |s|t) (3.14)

for some constant Γ ∈ R and 1 ≤ t ≤ ∞. Also, we suppose the differentibility of T
for almost all ξ, and a 'relative coercivity' hypothesis on the derivative:

γT (x, ξ) ≤ 〈Tξ(x, ξ), ξ〉 a.e x ∈ Ω. (3.15)

for some γ > 0.
Remark 4. Note that the quasiconvexity and the controlled growth hypothesis

(1.10b) implies the controlled growth of the derivative (Marcellini, 1985, pp. 6–7)

|fξ(x, s, ξ)| ≤ Γ(1 + |ξ|s−1) (3.16)

similarly, the quasiconvexity of T and the growth condition (1.8) implies

|Tξ(x, ξ)| ≤ Γ̃(1 + |ξ|r−1) ≤ Γ(1 + T (x, ξ)). (3.17)

The first result is an uniform bound on the L1 norm of the candidates to multiplier.
Proposition 3.4. Consider problem (1.6) and any asociated sequence {up} ob-

tained by the penalization process described in section 2. Let the general hypothesis
stated in Section 1 be in force. Then, under hypothesis (3.14) and (3.15), there exists
a constant C independent of p such that∫

Ω

(Tup)
pdx ≤ C, (3.18)
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provided that ‖∇g‖∞,Ω < γ
2Γ , where γ and Γ are the constants of (3.15) and (3.17)

respectively.
Remark 5. If T (x, ξ) = |ξ|r we can take γ = Γ = r.
Proof. From the optimality of up we obtain :∫

Ω

fs(x, up,∇up)vdx+

∫
Ω

〈fξ(x, up,∇up),∇v〉dx+

∫
Ω

(Tup)
p−1〈Tξup,∇v〉dx = 0

(3.19)
for all v ∈W 1,p

0 (Ω). Hence using (3.19) we obtain, by choosing v = up − g∫
Ω

〈fs(x, up,∇up), up − g〉dx+

∫
Ω

〈fξ(x, up,∇up),∇(up − g)〉dx

+

∫
Ω

(Tup)
p−1〈Tξup,∇(up − g)〉dx = 0 (3.20)

the coercivity condition (3.15) imply∫
Ω

(Tup)
pdx ≤ 1

γ

∫
Ω

(Tup)
p−1〈∇ξTup,∇up〉dx

and combining the growth conditions (3.14) and (3.16) we have∫
Ω

|〈fs(x, up,∇up), up − g〉|dx+ |〈fξ(x, up,∇up),∇(up − g)〉|dx ≤ C(‖up‖, g)

from Lemma 2.1 we know that the constant appearing in the previous equation
can be chosen to be independent of p, and we will note it simply by C. Using (3.17)
we summarize (3.20) as

∫
Ω

(Tup)
pdx ≤ 1

γ

C +

∫
Ω

(Tup)
p−1〈Tξup,∇g〉dx


≤ 1

γ

C + Γ‖∇g‖∞,Ω
∫
Ω

(Tup)
p + (Tup)

p−1dx


from the classical inequality aνb1−ν ≤ νa+ (1− ν)b, valid for a, b ≥ 0, 0 ≤ ν ≤ 1, we
get

(Tup)
p−1 ≤ 1

p

(
p− 1

p

)p−1

+ (Tup)
p (3.21)

then∫
Ω

(Tup)
pdx ≤ 1

γ

C + Γ‖∇g‖∞,Ω
L(Ω)

p− 1

(
1− 1

p

)p
+ 2Γ‖∇g‖∞,Ω

∫
Ω

(Tup)
pdx


and the result follows.
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Until now we are essentially under the same hypothesis of Section 2. At this point
it is necessary to restrict the class of problems we deal with. In particular, we need
to reinforce the convergence results already proved. The following definition plays a
role in this regard.

Definition 3.5 (Evans and Gariepy (1987)). Let L : RN×m → R be a given
function, L is called uniformly strictly quasiconvex if∫

D

(L(ξ) + τ |∇φ|s) ≤
∫
D

L(ξ +∇φ) (3.22)

for some positive constant τ > 0 and all open D ⊂ RN , ξ ∈ RN×m, φ ∈W 1,s(D,Rm).
See Evans (1986) for examples of non convex functions satisfying (3.22).

Corollary 3.6. Under assumptions (3.13), (3.14), if up ⇀ u∞ weakly in
W 1,s(Ω) and

f(x, u∞(x), ·) is uniformly strictly quasiconvex a.e x ∈ Ω, (3.23)

then up → u∞ strongly in W 1,s(Ω).
Proof. see Evans and Gariepy (1987); Sychev (1998).
The main result of this part is the existence of a Lagrange multiplier in the space

of Radon measures. Despite the lack of regularity of the multiplier, we are able to
extract useful information about it from the primal solutions that we can actually
compute, in the sense given by the following definition.

Definition 3.7. The sequence {fp} converges in the bitting sense if there exists a
sequence of non-increasing measurable sets Ek with L(Ek)→ 0, a subsequence {pj}j∈N
and f̄ ∈ L1(Ω) such that for every fixed k, fpj converges weakly to f̄ in L1(Ω \Ek).

Now we prove, for the constraint |∇u| ≤ 1 a.e, that regular cluster points of
{up}p≥p1 satisfy a Karush Kuhn Tucker type constrained optimality system.

Theorem 3.8. Let T (x, ξ) = |ξ|, and g ∈ C2(Ω̄) be such that ‖∇g‖∞,Ω < 1/2.
Let u∞ ∈ C1(Ω) be a cluster point of {up}p≥p1 for the topology of C(Ω). Suppose
that f satisfies (3.13), (3.14) and (3.23). There exists a nonnegative Radon measure
multiplier µ such that:

(i) For a nonnegative Radon measure σ, and measurable non-negative functions
λ and η,

µ = λ∇u∞L+ η∇u∞σ (3.24)

Moreover, λ ∈ L1(Ω).
(ii) The primal-dual pair (u∞, µ) satisfies the system

−div(fξ(x, u∞,∇u∞) +∇u∞µ) + fs(x, u∞,∇u∞) = 0 in D′. (3.25)
λ(x) ≥ 0 L − a.e in Ω, η(x) ≥ 0 σ − a.e in Ω. (3.26)

λ(x)(|∇u∞(x)| − 1) = 0 L − a.e in Ω (3.27)
η(x)(|∇u∞(x)| − 1) = 0 σ − a.e in Ω (3.28)

(iii) The sequence {|∇up|p−1}p≥p1 converges to λ in the bitting sense.
Proof. Let pj →∞ be a sequence such that
- upj → u∞ uniformly on C(Ω̄).
- ∇upj (x)→ ∇u∞(x) for a.e x ∈ Ω (by Corollary 3.6).
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In the sequel we drop the index j for simplicity.
By the dominated convergence Theorem,∫

Ω

|〈fs(x, up,∇up), up − u∞〉|dx+

∫
Ω

|〈fξ(x, up,∇up),∇up −∇u∞)〉|dx

converges to 0. Therefore, testing with up − u∞ in (3.19) we conclude that

lim

∫
Ω

|∇up|p−2〈∇up,∇up −∇u∞〉dx = 0. (3.29)

Let vp = |∇up|p−2∇up. By Proposition 3.4, {vp}p≥p1 is bounded in L1(Ω), there-
fore by Alibert and Bouchitté (1997, Theorem 2.5) there exists a subsequence, not
relabeled, a nonnegative Radon measure σ and measurable families of finite measures
(νx)x∈Ω and (ν∞x )x∈Ω such that∫

Ω

(∫
|ξ|dνx(ξ)

)
<∞, (3.30)

and, for every continuous function F verifying

F (x, αξ) = αF (x, ξ) ∀α > 0 (3.31a)
|F (x, ξ)| ≤ Γ(1 + |ξ|), (3.31b)

it holds that∫
Ω

F (x, vp(x))dx→
∫
Ω

(∫
F (x, ξ)νx(dξ)

)
dx+

∫
Ω

(∫
F (x, ξ)ν∞x (dξ)

)
σ(dx).

In particular,∫
Ω

|∇up|p−1dx→
∫
Ω

(∫
|ξ|νx(dξ)

)
dx+

∫
Ω

(∫
|ξ|ν∞x (dξ)

)
σ(dx), (3.32)

∫
Ω

〈|∇up|p−2∇up,∇u∞〉dx →
∫
Ω

(∫
〈∇u∞(x), ξ〉νx(dξ)

)
dx

+

∫
Ω

(∫
〈∇u∞(x), ξ〉ν∞x (dξ)

)
σ(dx). (3.33)

Let h(x, ξ) = |ξ| − 〈∇u∞(x), ξ〉. Since |∇u∞(x)| ≤ 1 for every x ∈ Ω, this function is
non-negative for every (x, ξ) and vanishes only on the set

Z = {(x, α∇u∞(x)) : |∇u∞(x)| = 1, α > 0}.

Using (3.21) (or Hölder inequality) in (3.32), and replacing together with (3.33) in
(3.29), we obtain∫

Ω

(∫
h(x, ξ)νx(dξ)

)
dx+

∫
Ω

(∫
h(x, ξ)ν∞x (dξ)

)
σ(dx) = 0 (3.34)
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which leads to ∫
h(x, ξ)νx(dξ) = 0 L − a.e x ∈ Ω (3.35)∫
h(x, ξ)ν∞x (dξ) = 0 σ − a.e x ∈ Ω (3.36)

since both terms in the zero sum are non-negative. This entails that, for L−a.e (resp.
σ − a.e) x ∈ Ω, νx (resp. ν∞x ) is concentrated in {α∇u∞, α > 0}. Therefore, by the
disintegration theorem (Dellacherie and Meyer, 1978; Chang and Pollard, 1997) there
exist measures (ν̃x)x∈Ω on R+ such that for any continuous function F and L− a.e x
in Ω, ∫

F (x, ξ)νx(dξ) =

∫
F (x, α∇u∞)ν̃x(dα).

Let λ(x) =
∫
αν̃x(dα). Then if F satisfies (3.31a) we have∫

F (x, ξ)νx(dξ) = λ(x)F (x,∇u∞), (3.37)

and, by an analogous reasoning∫
F (x, ξ)ν∞x (dξ) = η(x)F (x,∇u∞) (3.38)

for a measurable non negative function η(x).
Now by (3.35), (3.36), (3.37) and (3.38) we obtain, usign that h satisfies (3.31a)

λ(x)|∇u∞(x)| = λ(x)|∇u∞(x)|2 and η(x)|∇u∞(x)| = η(x)|∇u∞(x)|2,

L − a.e and σ − a.e respectively, proving the complementarity property (3.27) and
(3.28). Also, notice that (3.30) along with

λ(x) = λ(x)|∇u∞(x)| for L − a.e x ∈ Ω (3.39)

implies that λ ∈ L1(Ω). Define µ according to (3.24). The Euler-Lagrange equation
(3.25) is obtained taking limits in (3.19). Both terms involving f converge by domi-
nated convergence. For the remaining term, we replace u∞ by a generic v ∈ C∞0 (Ω)
in (3.33), then use (3.37), (3.27) and (3.28). Assertion (iii) is a direct consequence of
Alibert and Bouchitté (1997, Theorem 2.9) using F (x, ξ) = |ξ|, (3.37) and (3.39).

Remark 6.
a) The decomposition (3.24) is not the canonical singular decomposition w.r.t L;

the measure σ may have a non-trivial density w.r.t. L. The Radon measure
σ captures the 'concentrating' part of the limit, and λ captures the 'uniformly
integrable' part, which explains (iii).

b) Part (iii) of the Theorem has strong implications from the computational
viewpoint. It essentially says that away from an arbitrarily small set we can
approximate the uniformly integrable part of the multiplier in the same way
as we do for L∞ multipliers.
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4. Numerical Issues. In this section we develop the numerical aspects of our
method. We focus mainly on the regular problems treated in Section 3.1, and then
explore the extensions of Section 3.2 by relaxing some of the hypothesis on the domain.

A practical application of our method leads to solving the quasilinear elliptic
equations (3.3) for large values of p. Such problems have received a good deal of
attention from the numerical analysis community since they capture the essential
complexity of nonlinear, possibly degenerate, problems. For such nonlinear problems,
the finite element method cannot be directly applied; the use of an iterative procedure
is necessary. However, for large p the convergence and stability of such an iterative
procedure is a delicate issue.

Let us consider the variational formulation for the p-Laplacian problem,

min
v∈H1

0 (Ω)

∫
Ω

(|∇v|p − hv)dx (4.1)

The finite element approximation for this problem has been studied mainly by Ciarlet
(1978); Barrett and Liu (1993); Bermejo and Infante (2000) and Huang et al. (2007),
the later focused on the behaviour of the algorithms for large p. In this context, the
steepest descent direction wS for the discretization of Problem (4.1) at a point u is
computed by solving the system∫

Ω

∇wS∇v = −
∫
Ω

|∇u|p−2〈∇u,∇v〉+

∫
Ω

hv ∀v ∈ Vh, (4.2)

where Vh stands for the finite element space under consideration. System (4.2) be-
comes very ill-conditioned for large values of p, for that reason Huang et al. (2007)
proposed to use descent directions wQ computed from the preconditioned system∫

Ω

(τ + |∇u|p−2)∇wQ∇v = −
∫
Ω

|∇u|p−2〈∇u,∇v〉+

∫
Ω

hv ∀v ∈ Vh, (4.3)

for some τ > 0 intended to handle the degeneracy when ∇u = 0. Notice that the
preconditioner term in (4.3) coincides with the approximating multiplier. The con-
vergence of a descent algorithm for the pure p-Laplacian problem using directions
wQ and exact line searches is proved in Huang et al. (2007). As a matter of fact,
note that the previous algorithm fits into the category of Quasi-Newton methods,
therefore a speedup with respect to steepest descent from linear to superlinear con-
vergence rate is expected under appropriate conditions (Nocedal and Wright, 2006).
The generalization of the previous idea to problems (3.2) is straightforward and leads
to Algorithm 1, whose convergence is proved along the lines of Huang et al. (2007,
Theorem 1).

Most of the computing time of Algorithm 1 is spent on step 2. The burden of
computing the descent direction wQ is comparable to that of computing the Newton
direction, which guarantees quadratic convergence. The degeneracy of the p-Laplacian
system at critical points have precluded the application of Newton’s method to this
problem. Moreover, for p in the medium-to-large range the term |∇u|p−2 is close to
zero not only at critical points, but also at any point such that |∇u| < 1. Nonethe-
less, for the problems under consideration the ellipticity condition (1.15) prevents the
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Algorithm 1 Preconditioned algorithm for solving Problem (3.2) on a given mesh
and for a fixed p.

Given p > 2 and an initial point up,0 ∈ Vh, choose c1, ε.
Set n := 0 and iterate:

1. Compute the multiplier λp,n = |∇up,n|p−2.
2. Find the descent direction wQn by solving∫

Ω

(W ′(|∇up,n|2) + λp,n)∇wQn∇v =

−
∫
Ω

(W ′(|∇up,n|2) + λp,n)∇up,n∇v +

∫
Ω

fv ∀v ∈ Vh (4.4)

3. Perform a line-search with sufficient decrease condition, i.e,
find αn > 0 satisfying Jp(up,n + αnw

Q
n ) ≤ Jp(up,n) + c1αnJ

′
p(up,n)[wQn ]

4. Set up,n+1 = up,n + αnw
Q
n .

5. If ‖J ′p(up,n+1)‖ ≤ ε, stop. Otherwise update n = n+ 1 and go to step 1.

Newton system from becoming singular at non-critical points. Taking advantage of
this fact we propose to use the full Newton direction wN , computed as∫

Ω

(G(|∇up,n|2) + (p− 1)|∇up,n|p−2)∇wNn ∇v =

−
∫
Ω

(W ′(|∇up,n|2) + |∇up,n|p−2)∇up,n∇v +

∫
Ω

fv ∀v ∈ Vh, (4.5)

where the function G is defined in (1.15). If the function G is such that G(0) = 0, it
can be replaced in practice by τ +G or max{G, τ} for some τ > 0 small. For G ≡ 0
we recover the p-Laplacian problem. Note that in this case (4.5) differs from (4.4) by
the term (p − 1), showing that the directions wQ are not well scaled. This explains
the fact that the unit step-length is never accepted in Algorithm 1 for p-Laplacian
(Huang et al., 2007, Figure 8), obstructing the achievement of superior convergence
rates and increasing the time spent in line searches.

Algorithm 2 Newton algorithm for solving Problem (3.2) on a given mesh and for a
fixed p.

Given p > 2 and an initial point up,0 ∈ Vh, choose c1, ε.
Set n := 0 and iterate:

1. Compute the multiplier λp,n = |∇up,n|p−2.
2. Find the descent direction wNn by solving (4.5).
3. Perform a line-search with sufficient decrease condition, i.e,

find αn > 0 satisfying Jp(up,n + αnw
N
n ) ≤ Jp(up,n) + c1αnJ

′
p(up,n)[wNn ]

4. Set up,n+1 = up,n + αnw
N
n .

5. If ‖J ′p(up,n+1)‖ ≤ ε, stop. Otherwise update n = n+ 1 and go to step 1.

Algorithms 1 and 2 can be greatly improved by using adaptive mesh refinements
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(Gago et al., 1983). Also, they can be sensitive with respect to the initial point,
particularly for large p and/or when a non-homogeneous boundary condition is given.
A possible way to get around this difficulty is to adopt a path-following strategy,
which consists in running initially the algorithm on a coarse mesh and for a low value
of p, and then increasing p and adaptively refining the mesh until reaching a target
p. Some extra mesh refinements can be eventually performed once the target p has
been achieved.

4.1. Results. We report on a numerical study conducted in order to validate our
method and evaluate the algorithms introduced in this section. We solve numerically
the elastoplastic torsion problem in a variety of domains. The problem

min

{
J(u) :=

1

2

∫
|∇u|2 −

∫
hu

∣∣∣∣ |∇u| ≤ 1 a.e in Ω
u = g on ∂Ω

}
(4.6)

is approximated by the sequence of unconstrained problems

min

{
Jp(u) :=

1

2

∫
|∇u|2 +

1

p

∫
|∇u|p −

∫
hu
∣∣∣ u = g on ∂Ω

}
(4.7)

which possess an unique regular solution. Let Vh stand for the space of continuous
functions whose restriction to any element of a regular mesh of Ω is polynomial of de-
gree 1 or 2. We implemented Algorithm 1 and Algorithm 2 with directions wQ and wN
respectively in C++ using the deal.II finite elements library (Bangerth et al., 2007),
v.8.0. The line searches were performed using a quadratic interpolation algorithm
implemented by ourselves. The adaptive refinements proceed by refining a percentage
of the cells with the highest a posteriori gradient approximation error according to
the estimator by Kelly et al. (1983) (see also Ainsworth and Oden, 1997) provided by
the deal.II library. The descent directions are computed solving the systems by the
conjugate gradient algorithm with a SSOR preconditioner.

Denote by D the unit disk of R2, i.e D = {x ∈ R2 | x2
1 + x2

2 < 1}. When Ω = D
and h is constant, (4.6) has an explicit solution. If h ≡ 4 and g ≡ 0 the solution is
given by (Glowinski et al., 1981):

u(x) =

{
1− r if 1/2 ≤ r ≤ 1

−r2 + 3/4 if 0 ≤ r ≤ 1/2
(4.8)

where r =
√
x2 + y2. Since Ω is convex, in this case the multiplier λ is continuous

(Brézis, 1972). In fact we obtained its explicit expression, which is given by

λ(x) =

{
2r − 1 if 1/2 ≤ r ≤ 1

0 if 0 ≤ r ≤ 1/2.
(4.9)

The norm of the gradient of the computed solution and the multiplier are plot in
Figure 4.1. In Table 4.1 we show the error with respect to the explicit solutions of
the approximations computed by Algorithm 2 using the Newton directions wN and
finite elements of order 2.

The error on the primal solution is reported in the norms of the spaces L2(Ω),
H1(Ω) and in the norm of W 1,∞

0 (Ω), understood as the L∞(Ω) norm error of the
gradients of the solution. The error on the dual variable is reported in the norms of
L1(Ω) and L∞(Ω). For each p in {100, 200, 300, 400, 500} we include the results on
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Table 4.1
Error of up and λp with respect to the respective primal and dual analytical solutions of the

limit problem given in (4.8) and (4.9) in various norms, computed by Algorithm 2 with directions
wN and finite elements of order 2.

Mesh info Primal error Dual error
p #cells #dofs L2 H1 W 1,∞

0 L1 L∞

100
79712 353761 4.988e-03 1.705e-02 3.366e-02 2.543e-02 3.528e-02
202688 898897 4.988e-03 1.705e-02 3.366e-02 2.542e-02 3.499e-02
324344 1433817 4.988e-03 1.705e-02 3.366e-02 2.542e-02 3.493e-02

200
80264 354145 2.507e-03 8.808e-03 1.957e-02 1.272e-02 2.050e-02
205244 921313 2.507e-03 8.808e-03 1.957e-02 1.270e-02 2.012e-02
328466 1480297 2.507e-03 8.808e-03 1.957e-02 1.270e-02 2.003e-02

300
80024 344289 1.675e-03 5.956e-03 1.416e-02 8.623e-03 3.496e-02
203924 890625 1.674e-03 5.955e-03 1.414e-02 8.492e-03 1.463e-02
326264 1403777 1.674e-03 5.956e-03 1.414e-02 8.489e-03 1.445e-02

400
79940 352017 1.257e-03 4.504e-03 1.122e-02 6.413e-03 3.916e-02
205244 928009 1.257e-03 4.504e-03 1.120e-02 6.367e-03 2.703e-02
328484 1504625 1.257e-03 4.504e-03 1.120e-02 6.361e-03 2.188e-02

500
80036 354385 1.006e-03 3.624e-03 9.364e-03 5.170e-03 4.738e-02
205412 931689 1.006e-03 3.623e-03 9.330e-03 5.108e-03 2.808e-02
328700 1509097 1.006e-03 3.623e-03 9.319e-03 5.100e-03 2.381e-02

Fig. 4.1. Plot of the norm of the gradient |∇up| and the multiplier λp = |∇up|p−2 on a circle.

three adaptively refined meshes. For p in the range of a few hundreds the approxima-
tion of the primal solution is already satisfactory. Moreover, the error decreases each
time p is increased or the mesh is refined, the former effect being more pronounced.
The L1 approximation error for the multiplier exhibits a similar behaviour, improving
mostly with the increase of the penalty parameter. On the contrary, the L∞ error is
more sensitive with respect to the mesh, and can even worsen if p increases too much.

For comparison we plot in Figure 4.2 the approximation error for both primal
and dual solution using Algorithm 2 and finite elements of order 1 and 2. For the
comparison to make sense the error is plot in terms of the number of degrees of
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Fig. 4.2. Comparison of error evolution in terms of degrees of freedom for finite elements or
order 1 (P1) and order 2 (P2). At the left, error on u in H1 and W 1,∞

0 norms; at the right error
on λ in L1 and L∞ norm.
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freedom, since using higher order finite elements increases the size of the linear systems
to solve. There is an advantage in computing primal solutions using order 2 elements,
which achieve a lower approximation error for any given number of degrees of freedom.
The evidence supporting the use of order 2 elements is much stronger looking at the
error at computing the multiplier, which is quite sensitive with respect to the quality
of the approximation of the gradients. The better approximation achieved using order
2 elements results in an increased stability of the method.

We solve the problem in different domains to confirm our intuition about the
extensibility of Theorem 3.3 to more general situations. In Figures 4.3 and 4.4 we
show the solutions of Problem 4.6 in a rectangle and a domain with an interior corner,
respectively. The primal solution is well approximated in all the considered domains,
which is consistent with the results of Section 2.

We also plot the approximate multipliers. It is seen that in the rectangle, a convex
domain with piecewise smooth border, we are still able to compute satisfactorily
both the solution and the multiplier. The gradients are uniformly bounded, and the
multiplier belongs to L∞(Ω).

In the piecewise smooth nonconvex domain, even if the are able to compute the
solution with a good accuracy, it is not enough to have the multiplier uniformly
bounded. The difficulty relies on the concentration effect occuring near the interior
corners. However, the plot with a truncated scale shows that away from the concen-
trations we compute the right multiplier, as anticipated by the bitting convergence
result of Theorem 3.8.

5. Summary. We have presented a complete study of an approximation scheme
for solving variational problems under uniform constraints on the gradient. We prove
the existence of solutions and Lagrange multipliers under very general assumptions,
and existence of Lagrange multipliers in L∞ without requiring constraint qualifica-
tion conditions. The numerical study confirms the applicability of our method. Also,
our analysis shed some light on certain algorithms for computing solutions for the
p-Laplacian. To the best of our knowledge, this is the first time that Lagrange mul-
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Fig. 4.3. Plot of the norm of the gradient |∇up| and the multiplier λp = |∇up|p−2 on a rectangle.

Fig. 4.4. Plot of the norm of the gradient |∇up| and the multiplier λp = |∇up|p−2 on a domain
with an interior corner. The scale in the plot of the multiplier is truncated.

tipliers are computed for the considered class of problems.
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