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Abstract

The problem of providing efficient and reliable robust regression algorithms

is considered. The impact of global optimization methods, such as stopping

conditions and clustering techniques, in the calculation of robust regression

estimators is investigated. The use of stopping conditions permits us to devise

new algorithms that perform as well as the existing algorithms in less time and

with adaptive algorithm parameters. Clustering global optimization is shown

to be a general framework encompassing many of the existing algorithms.
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1. Introduction

Robust regression methods have been introduced to cope with the need left

by classical techniques for methods that work well in the presence of contami-

nation in the data. Particular interest has been focused on estimators with a

high breakdown point as defined by Donoho and Huber (1983). Most of these

methods combine robustness with desirable statistical properties such as con-

sistency and asymptotic normality.Nonetheless, they are defined by means of

difficult global minimization problems; hence, their computation is very time
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consuming. We address the problem of the efficient computation of robust es-

timators for statistical regression based on M-scales. The principal aim of our

work is to investigate to what extent the most recent developments in the field

of optimization can help improve the existing computational methods.

Let us consider the classical linear regression model

yi = x′
iβ + εi, i = 1, ..., n,

with errors terms εi identically distributed with zero center and independent

from the covariates xi. We shall denote by y the vector with components yi, by

X the n×p matrix with ith row xi, and by r the vector of residuals r(β) = y−Xβ

with components ri = yi − x′
iβ.

Many robust estimators of the regression coefficients β ∈ R
p based on n

independent observations (yi,xi) ∈ R × R
p can be defined as:

β̂ = Argmin
β∈Rp

σ̂(r(β)), (P)

where σ̂ is a scale estimator. An important case of (P) is the S-estimator,

defined with σ̂(r) = s(r), where s : R
n → R+ is an M-estimator of scale, or

M-scale (Huber, 1981), defined implicitly through:

1

n

n∑

i=1

ρ

(
ri

s(r)

)

= b. (1)

The function ρ : R → R+ is required to satisfy the following assumptions:

1. ρ is even and twice continuously differentiable,

2. ρ(0) = 0,

3. ρ is strictly increasing on [0, c], for some 0 < c < +∞,

4. ρ is constant on [c,∞).

Any function satisfying these assumptions will be called in the sequel a “rho

function”.

The constant b is conveniently defined as

b = EΦ(ρ), (2)
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where Φ denotes the standard normal distribution, in order to obtain consistency

for the scale at the normal error model.

The S-estimator has very good robustness properties, but it lacks efficiency.

Robustness is to be understood in the sense of the breakdown point, which is the

minimum fraction of the observations that need to be shifted for the estimator

to take on arbitrary values. In fact, there is a tradeoff between robustness and

efficiency, and for a breakdown point of

50%, efficiency can be as low as 28.7% (Maronna et al., 2006, pp. 131).

MM -estimators were introduced to fill this gap. They are obtained by local

minimization of a suitable function using an S-estimator as starting point. In

this way, they can combine efficiency with a high breakdown point. See Maronna

et al. (2006, Sec. 5.5) for details. However, τ -estimators have lower bias curves,

and their computing effort is comparable to computing the S-estimator, which

is instrumental in the computation of MM -estimators.

In this paper, we shall focus on τ -estimators, introduced in Yohai and Zamar

(1988), which are defined as minimizers of the function

σ̂(β) =
s(r(β))2

nb2

n∑

i=1

ρ2

(
ri(β)

s(r(β))

)

, β ∈ R
p, (3)

where ρ2 is a rho function and b2 is adjusted to ρ2 as in (2). This choice is

motivated by the robustness and efficiency properties of this estimator. In-

deed, τ estimators have a breakdown point ǫ∗ = b/ρ1(c); hence, for an adequate

choice of the function ρ1, the maximal breakdown point of 50% can be ob-

tained. Similarly, by adjusting the function ρ2, the asymptotic efficiency at the

normal distribution can be made arbitrarily close to 1. However, computing

τ -estimators involves solving a difficult global optimization problem. Roughly

speaking, global optimization methods can be classified (Archetti and Schoen,

1984) into deterministic methods and stochastic or probabilistic methods. De-

terministic methods look for a guaranteed global optimum, while stochastic

methods settle for a point that is a global optimum within an allowed margin

or with a certain probability. More ambitious, deterministic methods are time

consuming, and their range of applicability is limited to very specific classes of
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problems, or to problems that are of small size. The interested reader should

refer to Agulló (2001) for a deterministic robust regression algorithm.

Most of the existing methods for computing robust estimators are stochastic

and, more specifically, based on random subsampling. These methods operate

by computing candidates βs based on subsamples of the observations and then

starting local minimizations from each of these candidates. Therefore, they are

also called multistart methods.

Section 2 is devoted to the local minimization aspects of computing τ -

estimators. We should stress that this is the only part of our paper that is

estimator-specific. The global part of our discussion is relevant to any objec-

tive function σ̂, provided that a way to perform local minimizations is avail-

able. Then, in Section 3, we will briefly describe clustering global optimization

methods, which is a class of multistart methods that uses clustering analysis

techniques (Törn and Žilinskas, 1989) in order to reduce the number of local

minimizations needed to find a global minimum. Section 4 discusses stopping

conditions for multistart methods. Section 5 shows how the existing methods

for robust regression fit into the framework of clustering global optimization. In

Section 6, we present a few numerical tests comparing the different methods. In

particular, the effectiveness of clustering techniques and stopping conditions is

evaluated. We finish with our conclusions in Section 7.

2. Local Minimization Issues

As already mentioned in the introduction, we focus on the problem of finding

global minima of the function

σ̂(β) =
s(r(β))2

nb2

n∑

i=1

ρ2

(
ri(β)

s(r(β))

)

, β ∈ R
p,

where the robust scale s(r(β)) is implicitly defined by:

1

n

n∑

i=1

ρ1(ri(β)/s(r(β)) = b1.
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All the global optimization methods that we consider in this paper rely on

local minimizations, and moreover, a major part of their computing time is

spent in local minimizations. This is why fast and reliable local minimization

algorithms are crucial. When the Hessian of the objective function is available,

the most efficient local minimization algorithm is the Newton-Raphson method.

Nevertheless, due to the flat parts present in the function ρ, the Hessian of the

τ -objective function may contain large portions filled with zeros, and therefore,

it is ill-conditioned. A good alternative for computing local minima of (3) is

the Iterated Reweighted Least Squares (IRLS) algorithm (Salibian-Barrera et al.,

2008). Although it has a slower rate of convergence, in practice it has proven

to be quite efficient and stable. At each iteration, the IRLS algorithm solves a

weighted least squares problem, which is equivalent to minimizing a quadratic

local approximation of the objective function. In this section, we propose to use

inexact solutions of the weighted least squares problems at each iteration, and

we evaluate the gain in efficiency.

The IRLS step is derived from the necessary condition for optimality:

gτ (β) :=
∂σ̂

∂β
= 0.

An expression for gτ (β) has been obtained in Yohai and Zamar (1988):

gτ (β) =
−2

n
X ′W (β)r(β).

Here, W (β) denotes the diagonal matrix with entries wj(β), where

wj(β) =
ω(β)ρ′1(ej(β)) + ρ′2(ej(β))

ej(β)
, (4)

with the following notations:

ei(β) =
ri(β)

s(β)
, ω(β) =

∑n
i=1[2ρ2(ei(β)) − ρ2

′(ei(β))ei(β)]
∑n

i=1 ρ′1(ei(β))ei(β)
.

This leads to the matrix form of the optimality condition:

X ′W (β)Xβ = X ′W (β)y. (5)
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Disregarding the fact that the matrix W depends (nonlinearly) upon β, the

system of equations (5) are the normal equations associated to the Weighted

Least Squares problem with weights W . It is a fixed point equation, so the

iterative method

βk+1 = (X ′W (βk)X)−1X ′W (βk)y (6)

has been proposed to solve it in Salibian-Barrera et al. (2008). These are the

IRLS iterations.

For each iteration, IRLS constructs a quadratic approximation of the true

objective function, where the minimum of this quadratic approximation is the

subsequent iterate. The computational cost of each iteration is equivalent to the

cost of computing the weights (4) and solving the system (6). Computing the

weights (4) is costly because this requires the computation of an M-estimator

of scale. Therefore, Salibian-Barrera et al. (2008) have proposed to replace the

M-scale in (4) with an approximate value whereby the resulting iterations are

known as approximated IRLS iterations. Approximated IRLS solves the p × p

linear system (6) for each iteration, which corresponds to finding the minimum

of a quadratic local approximation of the true objective function. However,

when p is not small, the computational burden of solving a linear system for

each iteration can be non-negligible. Keeping in mind that our objective is to

solve (5), an approximate solution of the instrumental subproblem (6) should

be enough. In fact, replacing y = r(β) + Xβ and setting Bk = 2X ′W (βk)X/n

in (6), we obtain

−Bkβk+1 = −Bkβk + gτ (βk).

In this form, the IRLS resembles the so called quasi-Newton methods, whose

iterations are of the form (Nocedal and Wright, 1999) −Bkβk+1 = −Bkβk +

αkgτ (βk), for an adequate steplength αk > 0.

It has been proved (Nocedal and Wright, 1999, Subsec. 5.7.1) that for quasi-

Newton methods, a “good enough” direction suffices to keep convergence.

In order to evaluate the efficacy of this approach, we compared the com-

puting time required to perform local minimizations by solving approximately

6



(6), which will henceforth be denoted as the Iterated Inexact Reweighted Least

Squares (IIRLS), with the computing time of the approximated IRLS iterations.

In our tests, we used the LSQR algorithm (Björck, 1996) to calculate approx-

imated solutions to least squares problems. This algorithm can handle problems

with non-square matrices, and it is stable and easily available on the Matlab

environment.

In Figure 1, we show the results obtained from the IIRLS. The abbreviation

IIRLS5 (respectively IIRLS20) stands for the algorithm performing 5 (respec-

tively 20) iterations of the LSQR algorithm for each approximated IRLS iter-

ation. We denoted IARLS as the approximated IRLS algorithm introduced in

Salibian-Barrera et al. (2008) that uses approximated M-scales for computing

the weights. This is subsequently used to solve (6) using a direct method.

We plot, for different values of p from 5 to 200, the average time spent by each

algorithm over 500 local minimizations of the function (3) with different datasets

and different starting points generated as described in Section 6. In all the

cases, the IIRLS algorithm found the same local minimum as IARLS, although

it usually needed more iterations to converge. Nevertheless, the economy in time

of performing inexact iterations compensated for the increase in the number of

iterations.

We see in Figure 1 that for p = 5, there is not a great difference among

the three methods, but the difference increases with p and becomes of great

importance for p in the medium and large range. Considering the fact that the

quality of the results is exactly the same, it is worthwhile to use IIRLS for local

minimizations.

3. Clustering Methods

This section describes a technique for solving global optimization problems,

such as (P), by incorporating clustering analysis techniques. The objective

of clustering methods in global optimization (Törn and Žilinskas, 1989) is to

identify groups of βs such that, if used as an initial point in a local minimization,
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Figure 1: Average times needed to find a solution to (5) with respect to p, using approximated

(IARLS) and inexact (IIRLS5 and IIRLS20) iterations.

every member of the same group yields the same local minimum. Thus, it

would suffice to perform only one local minimization from each of these groups

in order to locate all local minima, and the best of these minima would be a

global minimum. A schematic explanation of clustering methods is presented

in Figure 2.

It consists in repeating the following steps iteratively, which we shall describe

in detail in the rest of the section.

1. Sampling: sample candidates βs. Add them to the candidates sampled in

previous iterations.

2. Concentration and/or selection: concentrate the sampled candidates around

the minima in order to facilitate the clustering.

3. Clustering: identify groups of candidates suspected to converge towards

the same minimum.

4. Stopping condition: decide whether it is worthwhile to continue, taking
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Sampling
︷ ︸︸ ︷

Concentration−selection
︷ ︸︸ ︷

Clustering
︷ ︸︸ ︷

Stopping
︷ ︸︸ ︷

β1

β2

β3

...

βsN

→

→

→

...

→

βc
1

βc
2

βc
3

...

βc
sN

ց

ր

βc
1

βc
2

...

βc
γsN

→

→

β⋆
1

...

β⋆
2

...

β⋆
w

...

(sN,w)−−−−→
Stop

Cond

Figure 2: Schematic representation of clustering methods, at the sth iteration.

into account the outcome of the local minimizations. If so, go back to (1),

otherwise stop.

Let us describe in detail the first three steps: sampling, concentration/selection

and clustering. For clarity of the exposition, stopping conditions will be dis-

cussed separately in the next section.

3.1. Sampling

In absence of additional information, candidates are usually sampled uni-

formly in the feasible region. However, when the feasible region is unbounded,

it is not completely clear how the sampling should be done.

For the particular case of robust regression, Rousseeuw (1984) proposed a

method known as random subsampling: candidates βi, i = 1, ..., N, are con-

structed by drawing random subsamples of size h ≥ p from the data and letting

βi be the least squares fit to the ith subsample. The rationale behind this

method is that for a large enough N , at least one outlier-free subsample could
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be sampled, which should give a good candidate, hopefully in the neighborhood

of a global minimum.

3.2. Concentration and/or selection

The concentration step consists of performing some iterations of a local min-

imization procedure, usually one, starting from each candidate. In the selection

step, a prespecified fraction of the sampled candidates with lowest function value

is retained. It has been proposed (Törn and Žilinskas, 1989) to do only the con-

centration step, only the selection step or both. For robust regression, Ruppert

(1992) proposed to do selection and then concentration, while Salibian-Barrera

et al. (2008) explored the use of concentration followed by selection. The term

“concentration step” has already been used in Rousseeuw and Van Driessen

(2000) to denote a particular local minimization procedure for the LTS esti-

mator. In the sequel, we will use this term in the broader context described

previously.

3.3. Clustering

Many ways to perform clustering for global optimization have been proposed

(Törn and Žilinskas, 1989). Here, we review only Single Linkage, which is the

simplest method (Rinnooy Kan and Timmer, 1987).

Single Linkage

At each iteration s, compute the radius rs = 1√
π

(

Γ(1 + p/2) ξ ln(sN)
sN

)1/p

,

for some ξ > 0. Where Γ denotes the gamma function.

The single linkage algorithm consists in iterating the following three steps until

all points have been assigned to a cluster

1. Choose a local minimum to be used as seed.

2. Initialize the cluster with the seed.

3. Grow cluster : given a partially constructed cluster,

iterate :
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(a) find the unclustered point closest to the cluster.

(b) if this point is within distance rs from the cluster, add it to the cluster

and repeat (3a). Otherwise, go back to step (1) and start the next

cluster.

The theoretical convergence properties of Single Linkage have been proved

to minimize a function over a bounded set S, supposing that the initial can-

didates have been sampled uniformly over S (and that no concentration step

has been performed). The proof proceeds by estimating the probability that a

local minimization is started from a point a at iteration s. This probability is

bounded by the probability that there exists another candidate within distance

rs with a lower function value. This is because if the ball with center a and

radius rs contains a candidate z with lower function value, then if z is assigned

to a cluster, a will be assigned to the same cluster. Moreover, if in step (1)

the local minimizations are performed by first considering the candidates with

lower function values, then we will not apply a local minimization to a before z

is assigned to a cluster.

Therefore, the choice

rs =
1√
π

(

Γ
(

1 +
p

2

)

ξVolume(S)
ln(sN)

sN

)1/p

, ξ > 0,

makes the probability of applying a local minimization to any candidate decrease

with s, for any 0 < η < 1/2, as O(s1−ηξ). See Rinnooy Kan and Timmer (1987)

for the details.

In the interest of improving the effectiveness of the clustering method, we

take into account the following facts that could be detrimental to the clustering

method:

In Kaufman and Rousseeuw (1990, Ch.5), various techniques of agglomer-

ative clustering are examined. The authors alert about the chaining effect of

single linkage, which makes the clusters stick to each other because of the forma-

tion of chains, and argue, based on theoretical analysis and practice, that some

other techniques such as complete linkage or average linkage would be better
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suited for most problems. We have incorporated this insight into our numerical

experiments, despite the fact that the previous theoretical analysis for adjusting

the radius rs at each iteration does not carry over to the case where we consider

the maximum distance to the cluster (complete linkage) or the average distance

to the cluster (average linkage). In both cases the existence of a point within

radius r with a lower function value does not ensure that a local minimization

will not be started, unless there is a relationship between r and the (unknown)

diameter of the cluster.

In Beyer et al. (1998), it had been pointed out that, for points sampled from

a broad set of distributions, the distance of any of this points to its nearest

neighbor becomes very close to the distance to the farthest point as the dimen-

sion increases. This essentially means that the notion of nearest neighbor loses

much of its meaning in high dimension. Later on, in Aggarwal et al. (2001),

the role played in this phenomenon by the norm used to measure distances was

devealed. It was shown that, in expectation as p → ∞, the gap goes to 0 for

the ∞-norm, tends to a constant for the Euclidean norm, and goes to ∞ for the

1-norm.

In our numerical tests in Section 6 we compare the actual impact of these

two factors on the performance of clustering.

4. A Stopping condition

A crucial issue in global optimization algorithms is the tradeoff between

solution accuracy and computing time. In practice, this dilemma is the decision

about when to stop.

When using random subsampling (Maronna et al., 2006, Sec 5.7.2), the

minimization (P) over the whole R
p is reduced to a search over a finite set

of candidates generated from subsamples. For the probability of picking one

outlier-free subsample from a sample with a fraction ε of contamination to be

greater than 1 − δ, we need to sample a number N of candidates such that:

N ≥ |log(δ)|
|log(1 − (1 − ε)p)| . (7)
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Unfortunately, this approach has some drawbacks. First, the number N in (7)

grows exponentially with p. For instance, if δ = 0.01 and ε = 0.25, we should

sample 1450 candidates for p = 20, 25786 for p = 30 and more than 80 millions

for p = 50. Furthermore, it depends on the fraction ε of contamination, which

is not known in advance.

The main disadvantage of this criterion is its rigidity; it is an a priori crite-

rion. Information about actually sampled candidates is completely disregarded.

Thus, the algorithm will continue in the same way after 10 local minimizations

as if it has found 8 local minima or only 1.

Adaptive criteria try to estimate the fraction of the search region that has

been actually explored, using the observed information about the structure of

each particular problem. Then, for a given level of accuracy, the running time of

the algorithm will depend on the problem complexity, expressed mainly through

the number of local minima that are found given a number of local minimiza-

tions.

In the sequel, we will describe an approach to this problem that uses Bayes’

theorem to incorporate information gathered during the optimization process

in order to decide when to stop. It was introduced in Boender and Rinooy

Kan (1983) and refined in Piccioni and Ramponi (1990). The framework is the

following: a sequential sample is drawn from a multinomial distribution with

an unknown number of cells and unknown cell probabilities. In our context,

each cell will be associated with one minimum of problem (P) and will be filled

with the subsamples whose candidates converge after a local minimization to

the minimum associated with this cell. The cell probabilities will be the fraction

of subsamples in the cell.

Let us consider a small illustrative example. In Figure 3, we elucidate a case

with n = 20 and p = 4 where the objective function in (P) has 4 local minima

β⋆
1 , β⋆

2 , β⋆
3 and β⋆

4 . Seven subsamples have been drawn, thus yielding by least

squares seven candidates β1, ..., β7. If local minimizations were started from

these candidates, β3 would converge towards β⋆
1 . β2 and β4 would converge to

β⋆
3 . Candidates β1, β5, β6 and β7 would converge to β⋆

4 , and the minimum β⋆
2
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β⋆
1 β⋆

2 β⋆
3 β⋆

4

β1 β2 β3 β4 β5 β6 β7

x6

x3

x16

x11

· · ·

x12

x20

x2

x14

x15

x14

x5

x20

x8

x9

x17

x14

x19

x12

x11

x16

x3

x7

x1

x16

x12

x6

x20

x8

· · ···· ··· ··· ··· ··· ···

Figure 3: An example of subsampling with n = 20 and p = 4. Seven subsamples have been

sampled among the 4845 possible subsamples, coming from three of the four cells.

would remain undiscovered. Thus, we have observed 3 cells associated with the

minima β⋆
1 , β⋆

3 and β⋆
4 , with observed frequencies of 1, 2 and 4.

In general, let β⋆
1 , β⋆

2 , ..., β⋆
k , be the local minima. Let ϑi, i = 1, ..., k, denote the

probabilities of each cell. In the Bayesian approach, the unknowns k, ϑ1, ..., ϑk

are supposed to be themselves random variables K, Θ1, ..., Θk with realizations

k, ϑ1, ..., ϑk for which a priori distributions can be specified. Given the outcome

(m1, ..., mw) of a number of local searches, Bayes theorem is used to compute

an a posteriori distribution. Following the approach of Piccioni and Ramponi

(1990), we will suppose that different minima have different function values,

σ̂(β⋆
i ) 6= σ̂(β⋆

j ) for i 6= j. In such case, the minima can be ordered according

to their function values σ̂(β⋆
1 ) < σ̂(β⋆

2 ) < ... < σ̂(β⋆
k). The same will be done

with the minima found in experiments. Hence, we can compute the statistics

Ol = MJl
, l = 1, ..., Wm, where Mi denotes the observed frequency of the ith

minimum ( M1 = 1, M2 = 0, M3 = 2 and M4 = 4 in our example), Jl the index

of the lth observed minimum (in the example J1 = 1, J2 = 3 and J3 = 4) and

Wm the number of (different) observed minima after sampling m candidates. In
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simple words, Ol is the frequency of the lth observed minimum.

A particularly interesting quantity from the stopping criteria viewpoint is

H = J1−1, which denotes the number of undiscovered local minima with better

function value than the observed minima. Supposing a priori that the number

of cells K follows an improper uniform discrete distribution on [1,∞), and that

given K = k, the cell probabilities Θ1, ..., Θk are jointly uniformly distributed

on the k − 1 unit simplex, the following conditional probability for H can be

obtained, when m ≥ 2 and w ≤ m − 2 (Piccioni and Ramponi, 1990, Corollary

2):

P(H = h|Wm = w, Ol = ml, l=1,...,w) = (m − w − 1)
(m − 2)!(w + h − 1)!

(w − 1)!(m + h − 1)!
.

In particular, the probability that the global minimum has been already discov-

ered is

Pm,w := P(H = 0|Wm = w) =
m − w − 1

m − 1
, w ≤ m − 2. (8)

Using (8) we can readily devise a stopping condition, namely, to stop when the

probability of having found the global minimum reaches a prespecified threshold.

The probability Pm,w is undefined when w = m−1 or when w = m. However,

in practice, this only occurs during the first two or three iterations. In this case,

because we do not have evidence that the search region has been well explored,

we should keep the algorithm running.

For example, let us consider the robust regression problem (P) for the stack-

loss dataset (Maronna et al., 2006, pp. 381). The Multistart method consist of

sampling candidates βs and starting a local minimization from each of them, un-

til the probability (8) reaches a given threshold. Let us consider the thresholds

0.3, 0.6 and 0.9. The first threshold 0.3 is reached after 4 local minimizations,

which give 2 different local minima, none of which is the global one. The thresh-

old 0.6 is reached after 9 local minimizations and 3 minima, one of which is the

global minimum. Finally, the threshold 0.9 is reached after 42 local minimiza-

tions, producing 4 local minima.

Of course, since it is a random algorithm, its running is unlikely to be the
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same every time. What should be retained is that higher thresholds give more

accurate results in the sense that the search region is more exhaustively explored,

and this is done adaptively. Needless to say, a more exhaustive search will take

longer than a rougher one. In general, there is not an easy way to guess how long

will it take to solve problem (P) within a given accuracy, but one can always

impose a time limit, and the value (8) can be given as information to the user

at the end.

We would like to stress the fact that this approach works for any algorithm

based on subsampling and local searches, even if the objective is to compute

other estimators, such as LTS, or beyond the context of linear regression, such

as the location and scatter estimation problem.

Stopping conditions based on (8) can also be used for algorithms described

in Section 3 that try to foresee the result of a local minimization, and to avoid

it if it is likely to re-discover an existing minimum. In that case, in (8) m will be

the number of sampled candidates and not the number of local searches actually

carried out. The reason is that clustering methods are supposed to give the same

outcome one could have obtained by starting local searches from each candidate.

Nevertheless, the precision of the stopping condition will be subordinated to that

of the clustering method; if it alters the outcome of the algorithm, the current

a posteriori probability will be updated with wrong information.

5. A clustering global optimization point of view of robust regression

estimation

We have already mentioned that most existing methods for computing robust

regression estimators can be described as clustering methods, as described in

Section 3. In this section we shall describe them, and we will see how they

perform each of the steps discussed in Section 3.

5.1. Random Resampling

The original version of random resampling was introduced by Rousseeuw in

Rousseeuw (1984) for computing the least median of squares estimator, and it
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was further refined and adapted for S-estimators by Ruppert in Ruppert (1992).

Rousseeuw’s original version introduced the sampling technique used by most

existing algorithms, and his algorithm consisted only of sampling and choosing

the candidate with the least scale. The modification of Ruppert, illustrated in

Figure 4, included selection and local minimization applied, without clustering,

to the best candidates. The details of each step are described below.

Given parameters N , t, do once:

• Sampling: Use Rousseeuw’s random subsampling.

• Concentration-Selection: No concentration step is performed, but a selec-

tion of the t best candidates is done.

• Clustering: No clustering is performed. A local minimization is started

from each candidate until convergence.

• Stopping condition: There is no stopping criterion. The number of

sampled candidates is fixed in advance.

Selection IRLS

β1

β2

β3

...

βN

ց
t best

ր

β1

...

βt

→
...

→

β⋆
1

...

β⋆
t

Figure 4: Schematic representation of Ruppert’s version of random resampling.

5.2. Fast-S, Fast-τ

The “Fast-S” algorithm was presented in Salibian-Barrera and Yohai (2006)

for S-estimators, and it was modified to cope with τ -estimators in Salibian-

Barrera et al. (2008). This modification was called “Fast-τ”. From the global
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optimization viewpoint, it extended Random Resampling by adding a concen-

tration step. As for random resampling, we give below a schematic illustration

and a detailed description of each step. Given parameters N, k and t, iterate

the following steps:

• Sampling: Use Rousseeuw’s random resampling.

• Concentration: Apply k steps of IRLS to each candidate. Select the t

candidates with best objective function.

• Clustering: No clustering is performed.

• Stopping condition: There is no stopping condition; the number of sam-

pled candidates is fixed in advance.

IRLS Selection IRLS

β1

β2

β3

...

βN

→
→
→
...

→

βk
1

βk
2

βk
3

...

βk
N

ց
t best

ր

βk
1

...

βk
t

→
...

→

β⋆
1

...

β⋆
t

Figure 5: Schematic representation of the Fast-S and Fast-τ methods.

5.3. Fast-τ with stopping condition.

As previously observed, the considered algorithms for computing robust re-

gression estimators are all particular instances of the general clustering proce-

dure depicted in Figure 2.

The first one, random resampling, consists only of sampling and selection,

Fast-τ adds a concentration step. Unlike clustering, the addition of an adequate

stopping condition does not add computational work. For this reason, we intro-

duce here a modification of Fast-τ for including stopping criteria, without doing
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clustering. It simply executes Fast-τ iteratively, and at the end of each iteration,

it adds the (eventually new) minima found on the list of minima encountered in

previous iterations, and evaluates a stopping condition. In our case, we require

the probability PsN,w defined by (8) to exceed a given threshold θ.

Our proposition is summarized in Figure 6. For given parameters N, k and

t, and a probability of success θ,

IRLS Selection IRLS Add New Min. Stop. Cond.

β1

β2

β3

...

βN

→
→
→
...

→

βk
1

βk
2

βk
3

...

βk
N

ց
t best

ր

βk
1

...

βk
t

→
...

→

β⋆
1

...

β⋆
t

→

β⋆
1

β⋆
2

...

β⋆
w

→
if PsN,w ≥ θ

stop

Figure 6: The proposed modification of Fast-τ including a stopping condition.

Note that under this form, the modified version of Fast-τ does not exactly

fit in the framework illustrated in Fig 2 because the selection is performed

considering only the candidates sampled in the last iteration and disregarding

the ones from previous iterations.

6. Numerical Tests

We conducted numerical experiments in order to investigate the impact of

clustering techniques and stopping criteria. As in Ruppert (1992) and Salibian-

Barrera et al. (2008), we consider simulated data contaminated with clustered

outliers, where contamination is highly concentrated around outlying values.

• (1−δ)100% of the points follow the regression model y = Xβ+ε , where the

p− 1 covariates are distributed as Np−1(0, Ip−1), xip = 1 is the intercept,

εi ∼ N(0, 1) and β = 0.
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• δ100% of the points are bad high-leverage points: the covariates now

follow a Np−1(d, 0.12Ip−1) distribution where d = (100, 0, ..., 0)t , and the

response variables yi ∼ N(100m, 0.12). In the following we will call the

parameter m the “contamination slope”.

For evaluating the stopping condition, we tested only Multistart, and we

compare it with Fast-τ using N = 50 samples. For performance evaluations, we

tested all the algorithms described in Section 5, except for Random Resampling

(Subsection 5.1). The reason for excluding Random Resampling from those

tests is that we included the Fast-τ algorithm, and the numerical tests reported

in Salibian-Barrera et al. (2008) already compared Fast-τ with Random Resam-

pling, among others, and showed that it outperforms Random Resampling.

The clustering methods were implemented by the author in Matlab and

are available upon request. In our test, it was always executed with the same

parameters: at each iteration, N = 100 candidates are sampled and added

to the sample, then a concentration step consisting of one IRLS iteration (cf.

Section 2) and a selection of the best 10% of the concentrated candidates is

performed (see Figure 2). Concerning the radius used for the clustering, as

the minimization in (P) is done over the unbounded domain R
p, we used the

formula rs = π−1/2 (Γ(1 + p/2)ξ ln(sN)/(sN))
1/p

, for a predefined ξ > 0. After

extensive experiments, we realized that the results are rather insensitive to the

choice of the parameter ξ. We set ξ = 40 in our tests. For the tests involving

the Fast-τ algorithm, we used the code available from the webpage of Matias

Salibian-Barrera. We used the parameters k = 2 and t = 5 (see Figure 5). The

number N of initial candidates changed from test to test and is indicated each

time.

Both Fast-τ and Single Linkage clustering were fitted with a stopping con-

dition. In all cases, it consisted in stopping when the probability Pm,w defined

in (8) reached a given threshold θ.

Concerning the performance in terms of computing time, for each algorithm

we saved the required time TA. Then, we computed the ratio RT = TA/TR,
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where TR is the time required by an algorithm used as reference. We usually

used Fast-τ as reference, with different parameters depending on the test. This

ratio is what we call the relative computing time. In this way, the results are

machine-independent; and easier to compare.

As it is not feasible to know certainly if the returned solution is the global

minimum, we only give the relative τ -scale with respect to a reference algorithm,

σ̂A/σ̂R, where σ̂A and σ̂R are the values of the objective (3). We call this

ratio “relative τ -scale”. Similarly to the results reported in Salibian-Barrera

and Yohai (2006) for S-estimators, for the particular type of contamination

that we are considering, often the coefficient β̂1 over the 500 samples forms

two well-separated groups: one highly concentrated around the contamination

slope, and another one more dispersed around 0, the slope of the data without

contamination, hereafter referred to as “clean slope”. In those cases, we also

show the percentage of samples for which the “slope” is around 0. Note that it

is not uncommon that minima with the contamination slope had better function

values (3) than minima around the “clean” slope, especially for those with high

proportions of outliers.

In Subsection 6.1 we evaluate the impact of the stopping condition. We

discuss in detail how it behaves when applied to Multistart with threshold values

ranging in a wide range. Our second and third test, presented in Subsection 6.2

and 6.3 , evaluate the performance of the considered algorithms in two different

kinds of situations. In 6.2, this is done for a small problem, whose complexity

varied only through the change in the dimension p. In the third test, presented

in Subsection 6.3, we compare the performance of the considered algorithms, the

parameter used to control the complexity of the problems was the contamination

slope m.

6.1. Analysis of the stopping condition

The objective of this Subsection is to scrutinize the impact of the stopping

condition presented in Section 4 on the algorithms in Section 5. The datasets

were generated as indicated at the beginning of Section 6, with n = 400 obser-

21



vations in dimension p = 15. The contamination fraction was δ = 40% forming

two groups of 20% each with contamination slopes m = 2 and m = 4. The

objective of using two groups of outliers was to increase the number of local

minima, which would better illustrate the effectiveness of the stopping condi-

tion, since the complexity of the problems heavily depends on the number of

local minima. The algorithms compared were Multistart (MS), which consist

of sampling candidates and launching a local minimization from each of them;

it is the same as the Random Resampling algorithm (cf. Section 5.1) without

selection. and Fast-τ with N = 50 samples (FT50). Multistart stopped as soon

as the probability Pm,w in (8) reached a given threshold θ. In this section, we

used the thresholds 0.3, 0.6, 0.9 and 0.95.

In Table 1 we show the following:

• The number of local minima, w.

• The quantity of sampled candidates, m.

• The effective value of the probability (8) at the termination of the algo-

rithm, Pm,w.

• The percentage of samples for which the estimate given by the algorithm

had the clean slope, around 0, at the row “% Slope ”.

• The relative running time with respect to FT50, TMS/TFT50.

• The relative τ -scale with respect to FT50, σ̂MS/σ̂FT50.

All the entries, except for the clean slope, are the average over 500 simula-

tions.

By examinating the column corresponding to FT50 in Table 1 we see that,

in this example with few local minima, most of the time the effective value of (8)

is already around 0.96; if the function used to have 5 local minima, it would be

around 0.9 and it would be around 0.8 if the function had 10 local minima. The

reason is that candidates are sampled in batches; thus, if each batch is of size

N , the only attainable threshold values are of the form (N −w−1)/(N −1), for
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Table 1: Details of the execution of Multistart (MS) and Fast-τ with 50 samples (FT50).

The datasets consisted of n = 400 observations in dimension p = 15, with a fraction of

contamination of δ = 40%.

MS FT50

θ 0.3 0.6 0.9 0.95

w 1.2 1.2 1.7 2.4 2.2

m 3.19 4.69 19.08 50.24 50

Pm,w 0.47 0.66 0.9 0.95 0.96

% Slope 95.4 94.6 86.4 77.2 68.6

TMS/TFT50 0.17 0.24 0.96 2.52 1

σ̂MS/σ̂FT50 1.012 1.0116 1.0083 1.0045 1

positive integers w. Since in MS, candidates are sampled one by one, it stops as

soon as the threshold is reached so it can be combined with low threshold values.

On the contrary, algorithms that do some kind of selection need to sample in

batches; for performing local searches, only from promising candidates. In the

case of algorithms performing clustering, a harsh selection is needed in order to

well separate clusters and prevent sticking to each other, thus the use of small

batches is discouraged. As a consequence, for all of the algorithms of Section 5,

if the objective function does not have many local minima, only relatively high

threshold values will be observed in practice.

However, MS illustrates quite well how the stopping condition works, since

we see how the number of discovered local minima and the number of sam-

pled candidates increases as the threshold increases. Even if the percentage of

datasets for which the estimate had the clean slope seems to indicate the con-

trary, the accuracy of the result also improved. This can be seen by examining

the relative τ -scale. We see that MS gives worse results than FT50 for low

threshold values, but this ratio decreases for higher threshold values, showing

the better performance of MS.
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6.2. Many dimensions, many thresholds on a small problem

In our second test, we set the contamination fraction to δ = 0.2 and the

contamination slope to m = 2. For each p ∈ {5, 10, 15, 20}, we generated 500

datasets of n = 100 points. We compare four algorithms:

• Fast-τ with N = 500 candidates (FT500).

• Fast-τ with N = 250 candidates (FT250).

• Fast-τ with a stopping condition (SC), described in subsection 5.3. The

parameters are (see Figure 6) N = 100, k = 1 and t = 5.

• Single Linkage clustering as described in Subsection 3.3 (SL), with the

parameters indicated at the beginning of this Section. Motivated by the

observation at the end of Section 4, we tested Single Linkage using the l1

and the Euclidean norm. They are denoted as SL1 and SL2, respectively.

For those algorithms incorporating a stopping condition (SC and SL), the

threshold parameter θ took the values 0.95, 0.97 and 0.99. These results are

shown in Table 2 for the algorithms with stopping condition, and in table 3 for

Fast-τ with N = 250 and N = 1500 samples.

For algorithms with stopping condition, a curious situation appears, as the

algorithms performing clustering always perform worse than those without clus-

tering, but in low dimension, they find quite often a better solution than the

optimal one, in the sense that they find a non-global minimum with the clean

slope. As the dimension increases, however, their performance degrades both

in terms of objective function and in the percentage of times that they find

the clean slope. Single Linkage using the l1 norm generally had better function

values than using the Euclidean norm, but the difference is negligible. In pre-

liminary tests we also tried Complete Linkage and Average Linkage clustering,

but the results were essentially identical, so we only used Single Linkage.

Overall, the Fast-τ algorithm with stopping condition using thresholds 0.95

and 0.97 achieves a good tradeoff between computing time and quality of the
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Table 2: Quality of the solution and computing effort for SC, SL1 and SL2. The parameters

of the contamination were m = 2 and δ = 0.2. The relative time and the relative τ -scale are

with respect to FT500

% Clean Slope Relative τ -scale Relative Time

p 95% 97% 99% 95% 97% 99% 95% 97% 99%

5

SC 58 58 58.2 1 1 1 0.34 0.35 0.74

SL1 88 88 88.2 1.019 1.019 1.02 0.15 0.16 0.49

SL2 88.4 88.4 88.4 1.021 1.021 1.021 0.1 0.1 0.29

10

SC 64.4 64.4 64.6 1 1 1 0.466 0.51 1.44

SL1 78.8 78.8 85.8 1.025 1.025 1.020 0.21 0.23 0.63

SL2 78 78 85 1.024 1.024 1.021 0.12 0.13 0.33

15

SC 68.8 69.2 69.8 1.003 1.002 0.999 0.48 0.64 2.45

SL1 32.8 33 52.4 1.104 1.103 1.069 0.23 0.24 0.65

SL2 36.4 36.4 53.8 1.090 1.090 1.064 0.14 0.15 0.4

20

SC 64.8 64.8 65.2 1.016 1.014 0.998 0.51 0.72 3.46

SL1 7.6 7.8 19.8 1.193 1.192 1.149 0.25 0.26 0.62

SL2 8.4 8.4 14.8 1.206 1.206 1.192 0.18 0.18 0.40

solution, as it gives results almost as good as FT500 or even FT1500, but within

a fraction of time. By raising the threshold to 0.99, the results are similar to

those of FT1500, but with a larger computing time.

6.3. Varying complexity for a fixed dimension

In the next test, we examine the behavior of the algorithms for a fixed

dimension, but also for various proportions of outliers and contamination slopes.

The closer the contamination slope is to the clean slope, the more difficult it

becomes to identify the clean one.

We tested FT250, FT500, FT1500, SL and SC in dimension p = 10 with

different contamination slopes. The number of observations was fixed to n =

400, and the proportion of outliers was δ = 10%, 15% and 20%. For SL and
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Table 3: Quality of the solution and computing effort for FT250 and FT1500. The parameters

of the contamination were m = 2 and δ = 0.2. The relative time and the relative τ -scale are

with respect to FT500

p % Clean Slope Relative τ -scale Relative Time

5

FT250 58.2 1.000 0.57

FT1500 58.4 1.000 2.8

10

FT250 64.8 1.000 0.62

FT1500 64.6 0.999 2.63

15

FT250 71.4 1.001 0.64

FT1500 72.2 0.998 2.57

20

FT250 65.4 1.007 0.65

FT1500 69 0.996 2.6

SC, the stopping condition uses the threshold θ = 0.95; because the preliminary

test did not show significative improvements when we raised the threshold in

these problems. Similarly to the previous test, the use of different variants

of clustering did not significantly change the results; therefore we only tested

Single Linkage clustering, with the usual Euclidean norm.

The performance was measured as in the previous test. Namely, we compare

the objective function value with respect to a reference algorithm, and we keep

the percentage of the samples from which convergence occurred to a minimum

with a slope around 0. These two quantities were the measure of quality of

the solution. We also record the time relative to the time spent by FT500, as

explained in the previous section.

The quality of the solutions obtained by Fast-τ was identical to SC; thus,

we do not include it in the tables. The results of these test are in Table 4.

As in the previous test, the algorithm with clustering has a very good run-

ning time, about 20% of the time spent by Fast-τ , and in some cases, it gives a
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Table 4: Percentage of samples where the minimum found had the clean slope, and time spent

relative to FT500. For p = 10.

δ 10% 15% 20%

Slope 1.1 1.4 1.7 2 1.1 1.4 1.7 2 1.1 1.4 1.7 2

% Clean Slope

SC 62 100 100 100 0 26.4 98 100 0 0 3.2 61.8

SL 99 100 100 100 44.2 94.6 100 100 2.8 21.4 77.4 96.4

Relative Time

SC 0.34 0.33 0.34 0.35 0.37 0.38 0.40 0.39 0.39 0.41 0.44 0.39

SL 0.18 0.21 0.20 0.20 0.22 0.17 0.20 0.21 0.24 0.21 0.19 0.14

FT250 0.57 0.59 0.59 0.60 0.60 0.59 0.59 0.61 0.61 0.62 0.61 0.57

FT1500 2.71 2.70 2.69 2.68 2.58 2.69 2.62 2.57 2.57 2.56 2.60 2.78

Relative τ -scale

SL 1.01 1 1 1 1.07 1.04 1 1 1.01 1.04 1.07 1.01

worse solution to the minimization problem (P) than algorithms without clus-

tering. Thus, it does not compute the τ -estimator, but the result it gives has

the clean slope. We do not have a clear explanation for that, and we think this

phenomenon bears closer examination; in another article. We see once again

that the stopping condition permits to find the global minimum with a high

probability in a proper computing time.

7. Conclusions and Future Work

We have investigated the effectiveness of the usage of clustering techniques

and stopping conditions for global optimization in the particular case of robust

regression. Our viewpoint is that of an user of robust regression who wants to

compute robust estimators without having to adjust parameters that depend

upon the details of the chosen algorithm.

The integration of a stopping condition is completely justified both by the
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quality of the results and by the performance in terms of computing time. Ad-

ditionally, it is very simple to implement in new and existing software. It should

be incorporated in algorithms not only for computing τ -estimators, but also in

any algorithm based on subsampling and concentrations steps.

A threshold between 0.95 and 0.97 achieves a good compromise between

efficiency and quality of the results. A higher threshold value ensures a very good

solution; at an extra cost in terms of computing time. For routine utilization,

a threshold of 0.96 or 0.97 should give good results at a competitive computing

time, which will adapt by itself to the complexity of the problem. Additionally,

it possesses a very appealing interpretation in terms of probability of finding the

global optimum, independently of the particular problem under consideration.

In their present states, the existing clustering techniques for global optimiza-

tion do not seem to fit the needs of robust estimation problems. However, as

shown in Section 5, they are a natural extension of the existing methods, and

their computing times and behavior in some difficult problems suggest that they

deserve further investigation.
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Törn, A. and Žilinskas, A., 1989. Global Optimization, Lecture Notes in Com-

put. Sci. 350, Springer-Verlag, New York.

Yohai, V. and Zamar, R.H., 1988. High breakdown-point estimates of regression

by means of the minimization of an efficient scale. Journal of the American

Statistical Association, 83(402) 406-413.

30


