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Robustness of `1-Norm Estimation: From Folklore
to Fact

Salvador A. Flores

Abstract—The advantages of using `1-norm rather than `2-
norm in terms of robustness for signal processing and other data
analysis procedures are largely recognized across the scientific
literature. However, from the robust statistics viewpoint, at least
that based in the concept of breakdown point, `1-norm regression
has no better resistance to outliers than least squares, and it is
believed that it degrades in higher dimension. We explain this
seeming contradiction between theory and practice by the differ-
ent contamination models used to assess robustness to outliers.
After a brief review of the existing notions of robustness, we
adopt a model where carriers are not subject to contamination,
and only the response variable can be contaminated with outliers.
We prove two new positive results concerning breakdown point
robustness of `1-norm regression under this model. First, we
show that `1-norm regression can have a positive breakdown
point in any dimension, and this is rather common. We elaborate
further in a second result, showing that random designs with unit
normal rows yield to a high breakdown point, around 30% for
moderate dimension growing asymptotically to 50%, with very
large probability. These results provide a theoretical support to
the practical success of `1-norm based procedures and are, at the
same time, consistent with statistical robust regression theory.

Index Terms—Robust regression, Outliers, `1 norm minimiza-
tion, Breakdown point

I. INTRODUCTION

DESPITE the formidable body of works providing em-
pirical evidence on the robustness properties of `1-

norm regression, such as Least Absolute Deviations (LAD) or
Huber’s regression, its resistance to outlying observations has
taken a long time to be firmly established, and some aspects
remain unclear or misunderstood. The practitioner looking for
theoretical results supporting the robustness of `1-norm based
methods will find very few positive results, and a look into
the robust regression literature leaves the impression that the
only way to perform outlier-robust data analysis is by using
the computationally intensive robust estimators. The reasons
for this are manifold. The lack of a closed-form solution to
the estimation problem and the non-differentiability of the `1-
norm complicated for a long time both the computation of
the estimator and the analysis of its statistical properties, in
particular, those related to breakdown in non-trivial scenarios.
In addition, the introduction of high-breakdown point estima-
tors and the development of its associated theory could have
discouraged the study of robustness properties of classical M-
estimators, often presented without distinction as examples of
non-robust estimators.

The advent of interior point methods has made the com-
putation of the `1 regression estimator not only feasible, but
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even faster than Least Squares (LS) for very large datasets
[1]. Also, several results [2]–[8] have shed light into its fine
robustness properties. A widespread measure of robustness to
outliers is the Finite-sample Breakdown Point (FBP), which
is the minimum fraction of data that, if replaced by arbitrary
contamination, can drive the estimation out of any bound. It
is well known that if contamination by high-leverage outliers
is allowed in the explanatory variables, the FBP of the LS and
LAD estimators is 0% [9], [10] . Nonetheless, the robustness
of `1 norm estimators in most practical situations, where the
presence of high-leverage outliers is not the main concern,
such as signal and image basis or sensor arrays, is not equally
simple to depict.
The characterization of the FBP for `1 regression is difficult,
of combinatorial nature [2], [3], and depends on the design of
the explicative variables, also called carriers. For this reason,
attempts to obtain general conclusions on its FBP have not
been conclusive. Moreover, a wrong interpretation of results in
[11], stating that random designs from spherical distributions
have a breakdown point decreasing as a function of the
dimension of the carriers, led [3] to conclude that the FBP of
LAD regression is at most 25%, which is the maximum FBP
for univariate regression. On the other hand, [12] showed that
for two-way contingency tables, LAD attains the maximum
possible FBP among regression equivariant estimators, and
[13] obtained theoretical bounds in the range 16%− 20% for
the number of outliers identifiable by LAD estimation in a
source localization problem, and showed numerically that the
number of outliers that can be identified for particular config-
urations yielding well equilibrated designs is often higher.

The question whether a high FBP, close to 50%, is attainable
at all by `1 norm regression is open. Subsidiary questions such
as the dependence of the FBP on the dimension and which
designs can attain such a high FBP are open as well.

We bridge this gap by formally showing that well balanced
designs yield to very robust LAD regression, as expected, in
any dimension. We show that a fraction of about 30% of ver-
tical outliers can be tolerated in the most favorable situations
for moderate dimension, and this fraction approaches 50%
asymptotically. Designs obtained by drawing the explicative
variables uniformly on the sphere achieve this FBP with very
high probability.

In this way, we identify the precise sense in which the asser-
tion “`1 norm is more robust than ordinary least squares” is
true, and provide a formal proof of it.

A. notations
We shall use the notation N = {1, ..., n} for the index set

of all the observations. For a set of indexes M , |M | denotes its
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cardinality. For a subset M of N and p ∈ [1,+∞[, we define
‖ · ‖p,M : x 7→ (

∑
i∈M |xi|p)1/p and ‖x‖p = ‖x‖p,N . For a

vector x ∈ Rn, we denote by supp(x) its support, i.e., the
index set of nonzero components, supp(x) = {i ∈ N | xi 6=
0}. The so-called ”`0-norm” is defined as ‖ · ‖0 := | supp(·)|.

II. THE ROBUST LINEAR REGRESSION MODEL

Let us consider the archetypal linear regression model,
where each observation yi follows

yi = x>i β + δi, i = 1, ..., n (1)

for some parameter β ∈ Rp, where the xi ∈ Rp are the
corresponding vector of independent variables or carriers
and δi are random deviations from the model, assumed to
be independent identically distributed (i.i.d) with zero mean
and finite variance. M-estimators are defined as solutions, for
different loss functions ρ(·), to the minimization problem:

minimize
g∈Rp

n∑
i=1

ρ(ri(g)) (2)

where ri(g) := yi − x>i g are the components of the residuals
vector r. If the errors follow a normal distribution δi ∼
N(0, σ2), then the best linear unbiased estimator is the popular
LS estimator β̂2, defined by (2) with ρ(t) = t2/2. Huber’s
criterion, defined for a given estimate of the noise magnitude
σ > 0 as

ρH(r) =

{
1
2r

2 if |r| ≤ σ
σ|r| − 1

2σ
2 if |r| > σ

(3)

combines `1-norm and `2-norm in order to behave like LS
for Gaussian noise and like `1-norm face to outliers. Several
generalizations combining `1-norm with other estimators are
studied in detail in [14].

The robustness of M-estimators depends both on the func-
tion ρ and the type of contamination that we allow in the
model. On the extremes, we have robust estimators [10],
defined by non-convex ρ functions, which allow arbitrary
contamination both in the carriers xi and the responses yi,
from one side, and non-robust estimators, such as LS, which
can be strongly affected by any type of contamination, either
in xi or in yi, on the other side. In the middle, there is a
class of `1-norm based M-estimators which are robust face
to impulsive noise in y, but lose their robustness when there
are outliers in the x-variables. They have the great advantage
of being defined by convex (although not strictly convex) ρ
functions, making their computation affordable for large scale
data and/or for real-time estimation.

In this paper, we consider the Robust Linear Regression
Model (RLRM),

yi = x>i β + δi + ei, (4)

where δ is a dense vector with i.i.d components modeling
background noise in y, and e is a sparse vector used to model
outliers in the dependent variable y, called vertical outliers.

Our results concern this model, where impulsive noise
affects the dependent variable y and the independent variables
are under control or can be reliably measured, which is the

case for instance in signal processing applications where the
design matrix X represents a dictionary or basis, such as
Fourier or Wavelets, or models a physical configuration of
antennas or sensors. This is the scenario more often encoun-
tered in practice, and where the `1 estimator has forged its
reputation as a robust alternative to ordinary LS. Extensions
of our results to the error-in-variables model, which considers
the possibility to have dense, bounded error in the independent
variables x are possible through the robust counterparts of `1
and Huber estimators studied in [15] (see also [16]).

The RLRM has numerous applications in signal process-
ing. [17] combines continuous wavelet transformation with
linear regression for artifact removal in electroencephalogram
signals. In localization problems, such as GPS systems, the
measured position can be considerably corrupted when the
signals are reflected by the environment, creating a multi-
path phenomenon or jamming. Much in the same vein of this
work, [13] obtained bounds on the number of outliers that a
`1-norm based method for source localization can detect. In
that case the design matrix X is related to the configuration
of the sensor network. Similarly, [18] introduces a robust `1
beamformer for estimating the direction-of-arrival in a phased
array with antenna switching. In [19], a mixed `1 − `2 norm
minimization approach is used to cope with impulsive noise
in an adaptive filter for system identification. This is extended
in [20] to sparse signal estimation via continuous mixed norm.
In image processing, [21] uses model (4) combined with
an `0 regularization in a background/foreground separation
algorithm for image segmentation.

III. MEASURING ROBUSTNESS

Before showing our results, we are going to review and
update the robustness properties of the LAD estimator β̂1,
defined through

‖y −Xβ̂1‖1 = min
g∈Rp

‖y −Xg‖1, (5)

where X denotes the design matrix, whose rows are the
carriers x1, ...,xn. All the results in this paper also apply to
Huber’s M-estimator, which is a denoised version of LAD
estimation [8], and to most of the mixed `p − `1 norm
estimation methods [14].

A. Leverage and Breakdown Point

Robustness measures can be roughly divided into finite
sample ones, such as the finite sample breakdown point or
signal-to-noise ratio (SNR), and those based on distributions,
or asymptotic. The focus of this paper is on the former ones,
since their practical use does not need to have an a-priori
on the distributions of the data or the errors, enlarging their
applicability. Also, their ease of interpretation is greater.

For a given estimator β, we define the finite sample break-
down order as :

θf (β, n) := max{|M | : β̃ is bounded for any e ∈ SM}, (6)

where β̃ denotes the estimate obtained from data contaminated
as in (4) with background noise and outliers, and SM = {u |
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supp(u) = M} is the set of arbitrary data with support on
M . The FBP mr(β, n) and the asymptotic FBP εr(β, n) of
an estimator β are defined respectively as

mr(β, n) :=
θ(β) + 1

n
and εr(β) = lim

n→∞
θ(β, n). (7)

The breakdown properties of the `1 estimator under the
RLRM have been established by [2] and [3]. The finer analysis
presented here and the extensions to Huber M-estimator can be
found in [8]. There are two aspects to consider when dealing
with outliers. Firstly, breakdown, when there are many large
outliers, and bias, when the outliers are not many enough to
trigger breakdown, they can nonetheless have a large impact
on the bias of the estimation. We are going to see that for
LAD regression these two aspects are closely related.

For a n× p matrix X , define for every k ∈ {1, . . . , n} the
leverage constants ck of X as

ck(X) = min
M⊂N
|M |=k

min
g∈Rp

‖g‖2=1

∑
i∈N\M

|x>i g|∑
i∈N
|x>i g|

(8)

and
m(X) = max

{
k ∈ N

∣∣ ck(X) >
1

2

}
. (9)

The constants ck(X) and m(X) determine the robustness
of LAD regression as follows [3], [5], [8].

Theorem 1: Let y = Xβ + δ + e and M = supp(e)
satisfying |M | = k ≤ m(X). Then the following hold for
the `1 estimator β̂1,

‖X(β̂1 − β)‖1 ≤
2

2ck − 1
‖δ‖1,N\M . (10)

When the number of outliers k exceeds m(X), the `1 estimator
may breakdown, and the bound (10) is not longer valid.

Note that Xβ̂1 represents the signal reconstructed from
noisy signal measurements contaminated with outliers, by `1-
norm regression, while Xβ is the true, noiseless, signal. From
(10) we see that in the signal reconstruction error bound the
noise is amplified by a factor (ck − 1/2)−1. Therefore, even
if there is no breakdown, outliers can deteriorate the SNR of
the reconstructed signal, specially if ck(X) is close to 1/2.

Intuitively, for well equilibrated carriers the quantity ck(X)
should be proportional to (n−k)/n. In this way, the condition
k ≤ m(X) boils down to “there is no breakdown if outliers
are minority”. In order to leave aside the trivial scenario of
extreme leverage points (‖xi‖ → ∞ for some i), let us sup-
pose that carriers are normalized in such a way that ‖xi‖ = 1
for every i. In this situation, no individual observation can
exert an unduly influence on the fit. The only possibility for
ck(X) to be “oversized” is to have a group of highly correlated
carriers, indexed by M , in such a way that it is possible to find
a direction ḡ making

∑
N\M |x>i ḡ| comparable to

∑
N |x>i ḡ|.

In Figure 1 we illustrate this situation in dimension two. Plots
a) and b) show the same uniformly distributed points on the
disk and two dashed arc segments of the same length. It is
evident that the fraction of points covered in the dashed arc is
proportional to the arc length, and this is independent of the
orientation of the dashed arc. Plot c) shows a situation that can

Fig. 1. Ilustration of the rationale under which well balanced designs, a)
and b), promote robustness in LAD linear regression, while groups of aligned
carriers, in c), lead to low breakdown point.

lead to low FBP. A group of observations concentrate around
direction ḡ, gaining an increased leverage.

Note that this result specializes in a sense the upper bound
for the FBP of regression equivariant estimators given by
(n−κ(X)+1)/2, where κ(X) denotes the maximum number
of carriers lying in a (p − 1)-dimensional subspace of Rp
[4]. In the same way as the upper bound for the breakdown
point increases as predictors do not concentrate around lower
dimensional subspaces, the actual breakdown point of LAD
improves as far as predictors do not concentrate around a
narrow solid angle in Rp.

B. Other Robustness Measures

As mentioned before, there exists another approach to
measuring robustness, based on probability distributions. If
we consider that the carriers x are a random p-variate and
y a real random variable with joint distribution P on Rp+1,
then the data xi, yi can be thought of as finite samples from
a contaminated distribution (1− ε)P + εQ. In this way, it is
possible to define the Gross Error Breakdown Point (GEBP)
εG at a distribution P as the supremum over all ε ∈ [0, 1] such
that β((1−ε)P +εQ) remains bounded when the distribution
Q ranges over a predefined class Q of contaminating distri-
butions. [11] studied the GEBP of regression estimators, and
showed that for most M-estimators, including least squares, the
GEBP is εG = 0 if the contaminating distributions Q are point
masses at arbitrary points (x0, y0), independently of P . They
also showed that, if P is a spherically symmetric distribution
and Q are point masses at arbitrary points (x0, y0), then the
best GEBP that an `1-type estimator can attain behaves like
(2p)−1/2 for large p. Nothing can be deduced about the FBP
of a given estimator from these results, since in general both
quantities do not coincide, for any combination of P and Q.
Other possible exist in this category; see [22] for a discussion
on the relation of the FBP to other robustness measures in this
family.

IV. BREAKDOWN POINT OF `1 REGRESSION WITHOUT
LEVERAGE POINTS

In this section we go deeper into the study the robustness
properties of the `1 regression estimator in the RLRM of
Section II. We address the open issues on the subject, namely,
the behavior of its FBP as the dimension p varies, and how
robust is it in the most favourable scenario, when the design
has no high-leverage points.



4

Fig. 2. Evolution of the FBP of LAD regression as p grows . The upper curve
(in blue) shows the τ such that (11) holds. The second curve (in orange) and
the bottom curve (in green) show the FBP with probability 95% and 99.9%
respectively, with n = 5p.

Both questions are settled favorably to the `1 estimator. The
first result, rather theoretical, shows that in any dimension and
for any sample size, as far a n > p, there are “many” designs
where the `1 estimator has a positive FBP.

Theorem 2: Let p and n be any natural numbers with p < n.
There exists a set Ξ of n × p matrices with Grassmanian
measure bounded below by a positive constant independent of
n and p such that for any design matrix in Ξ , the `1 regression
estimator β̂1 has breakdown order θ(β̂1, n) = k whenever

k

n
< αφ

(
n− p
n

)
for an absolute constant α > 0 independent of n and p, where
φ(t) = t/(1− log(t)).

Remark 1: The function φ is monotone and satisfies
0 < φ(t) ≤ 1 for 0 < t ≤ 1, limt→0 φ(t) = 0 and
φ(1) = 1. In particular, lim inf

n→∞,p→∞
φ((n−p)/n) > 0 whenever

lim inf
n→∞,p→∞

p/n < 1.

See [23] for a proof. This result is essentially a re-writing
in our setting of the results reported by [24]–[26] in the
compressed sensing context. See Appendix B (in supplemen-
tary materials) for more on this connection between robust
regression and compressed sensing. We do not exploit further
this connection since the results based on restricted isometry
conditions, which are necessary conditions, cannot approach
the highest FBP of 50% that we are looking for.

Theorem 2 disproves a wrong belief in robust regression
that the `1 estimator has a FBP going to 0 as p increases,
even without leverage points [3], [27] . This belief originated
in a result by [11] showing that if the rows of X are sampled
from a spherically symmetric distribution, then the best GEBP
that `1-norm M-estimators can attain behaves like (2p)−1/2 for
large p. As discussed in the previous section, the GEBP does
not coincide in general with the FBP, even for finite samples.
Furthermore, even if both definitions happened to coincide
for some particular model, that result considers contamination
with outliers both in x and y.

The next result gives a formal statement of the intuitive
arguments explained in Figure 1 to support the case for
the robustness of LAD regression for fixed designs with no
leverage points.

Theorem 3: Let the rows x1, ...,xn of the n× p matrix X
be iid from the uniform distribution on the unit sphere Sp−1.
Let 0 < τ < 1/2 be such that

τ ln(e/τ)

ln(p)
+ ταp < 1/2, (11)

where αp =
(

1+p ln(p)
p ln(p)

)
. The LAD regression estimator has

a finite sample breakdown point greater or equal than τ with
probability at least

1− pn(τ ln(e/τ)/ln(p)+ταp−1/2). (12)

The proof is provided in the supplementary materials, Ap-
pendix A. In Figure 2 we show, for each p, the greatest τ
satisfying (11). For any τ under the curve, there is a positive
probability, depending both in p and n, of having a breakdown
point at least τ for LAD regression. The curve reaches very
quickly a value around 30% and then keeps growing at a very
small rate to approach its asymptotic value of 50%.

Note that the sample size n does not play any role in deter-
mining the breakdown point (11), but only in the probability
of achieving it. The following result on the asymptotic FBP
is a direct consequence of this fact.

Corollary 1: Under the conditions of Theorem 3, asymp-
totically as n → ∞, the `1 regression estimator has a FBP
greater or equal than any τ satisfying (11), with probability
one.

V. CONCLUSION

We have presented two results substantiating the ubiquitous
evidence of the robustness of LAD regression in practical
contexts. These results are also of importance for robust re-
gression, since most robust estimators need an initial estimate
of scale, which is often provided by LAD regression. Our
detailed treatment of the issue aims to clarify the existing
results, which seem sometimes contradictory. The main con-
clusion is that LAD regression can be highly robust when
there are not high-leverage points, but is quite sensitive to
this kind of contamination. For these reasons, and taking into
account the computational advantages over robust estimation,
LAD regression is a competitive robust inference method
under controlled experimental conditions and for large data,
while high-breakdown point estimators might be preferred for
small to mid-sized datasets, if there is not certainty about the
experimental conditions. Besides its theoretical interest, our
results have an impact in each of the applications mentioned
in Section II, since they provide a lot of intuition on the factors
of the design that influence the most the resistance of LAD
regression to outliers.
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