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de thèse de doctorat.
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Introduction

The Brownian sphere is a model for random surfaces with the topology of the two-dimensional

sphere, chosen “uniformly at random”. It appears as the scaling limit of a large class of random

planar maps, all with the common feature that the faces of such maps disappear in the scaling limit.

Despite its appearance as such limit, which gives us a way to construct it, we can also construct

the Brownian sphere as a purely continuum object by using canonical stochastic processes (namely,

Brownian excursions and Gaussian processes) that will rule its geometric properties. This gives a

suitable framework to study many of its topological properties and observables.

Geodesics in the Brownian sphere are central in its geometric study. From its construction, one

can see that the distances towards a typical point can always be traveled using a geodesic, so that

in a sense, to understand geodesics means to understand distances in the Brownian sphere. They

also provide information about how atypical points can be connected, and appear naturally in the

discrete setting and in the scaling limit proofs. In this direction, a large amount of works have been

released, giving us, at this point, a very complete understanding of geodesics in the Brownian sphere.

In this document, we present a survey on the Brownian sphere, including its main properties and

some proofs (Chapter 1), and a review of the proof of the formula for the Hausdorff dimension of

the so-called geodesic m-stars, that are points from which m disjoint geodesics emerge (Chapter 3).

The lower bound of such Hausdorff dimension is due to Le Gall [7], where first and second moment

estimates for an approximated version of the geodesic stars, along with standard potential theory

techniques, give the desired result. The upper bound is due to Miller and Qian [15], where fine

estimates for the exponent of the probability of geodesics towards a point near a typical point give

the desired bound. A “warm-up” chapter on the Hausdorff dimension is included, where we review

the main definitions and the proof of the formula for the Hausdorff dimension of the Brownian cone

points. In Chapter 4, we introduce the stable gasket and carpet, a variant of the Brownian sphere

that appears as the scaling limit of random planar maps with “large” faces. Finally, we sketch some

ideas to compute the Hausdorff dimension of geodesic stars in this new object.
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Notation index

Sets

� N = {0, 1, 2, . . . }.

� R+ = [0,∞).

� For a metric space (E, d) and A ⊆ E, diam(A) = sup{d(x, y) : x, y ∈ A} = diameter of A.

Measure theory and probability

� #A = counting measure of A.

� a.s. = almost surely.

� a.e. = almost everywhere.

� ϕ∗µ = µ ◦ ϕ−1 = pushforward measure (of µ by ϕ).

Real trees

� σ(g) = sup{s > 0 : g(s) ̸= 0} = lifetime of g.

� dg = pseudo-distance associated to g (1.1).

� T (g) = [0, σ(g)]/{dg = 0} real tree associated to g.

� pg = canonical projection from [0, σ(g)] to T (g).

� ρg = pg(0) root of T (g).

� Volg = volume measure on T (g).

� dGHP = Gromov-Hausdorff-Prokhorov distance (1.3).

� K• = equivalence classes of isometric compact pointed measure metric spaces.
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� K•• = equivalence classes of isometric compact two-pointed measure metric spaces.

� K•b = equivalence classes of isometric compact measure metric spaces with distinguished point

and boundary.

� Kbb = equivalence classes of isometric compact measure metric spaces with two distinguished

boundaries.

Brownian geometry

� ζ = lifetime function of the Brownian snake.

� Ŵ = tip function of the Brownian snake.

� W∗ = global minima of the Brownian snake (1.5).

� Sx = snake trajectories with initial value x (Definition 1.7).

� Nx = Brownian snake measure on Sx.

� N(s)
x = Nx( · |σ = s).

� N[r]
x = Nx( · |W∗ < −r).

� N{a}
x = Nx( · |W∗ = −a).

� m∞ = Brownian sphere (Definition 1.14).

� Vol = volume measure on m∞.

� B•(y)(x, r) = complement of the connected component of m∞ \B(x, r) not containing y (Defi-

nition 1.16).

� P = Brownian plane.

� Hr,z = hull of radius r and perimeter z.

� Dz = Brownian disk of perimeter z.

Other

� ≲ denotes inequality up to a positive constant that does not depend on relevant variables

(context is always important for this).

� x ≍ y means that x ≲ y and y ≲ x simultaneously.

viii



Chapter 1

Brownian sphere

The Brownian sphere is a model for geodesic metric spaces with the topology of the two-dimensional

sphere, chosen “uniformly at random”. It is a universal object in the sense that it appears as the

scaling limit of a large class of models of random planar maps with small faces, such as uniform

triangulations and quadrangulations.

In this chapter, we introduce the Brownian sphere and state its main properties, with special focus

on those that will allow us to study the set of geodesic m-stars, which are points where m disjoint

geodesics emerge. We will not comment on how the Brownian sphere appears as the scaling limit of

random planar maps, but only focus on its construction and features as a continuum object.

1.1 Construction

Let us start with a deterministic construction of real trees. After choosing an appropriate randomness

on them, and gluing its points according to a certain Gaussian process, they give raise to the Brownian

sphere.

1.1.1 Real trees

The notion of real trees allows us to extrapolate the abstract graph structure of a tree to a continuum

object, where the edges are replaced by continuum line segments (with some length). Furthermore,

from the construction it is easy to endow real trees with both a distance and volume measure.

Formally, a real tree is defined as follows.

Definition 1.1. A real tree (T , d) is a compact metric space such that for all a, b ∈ T ,

1. there is a unique isometry ϕ : [0, d(a, b)] → T such that ϕ(0) = a and ϕ(d(a, b)) = b, and

2. if q : [0, 1] → T is injective with q(0) = a and q(1) = b, then q([0, 1]) = ϕ([0, d(a, b)]).

1



Let us now construct deterministic real trees. Let g : R+ → R+ be a continuous positive function,

such that g(0) = 0 and σ(g) := sup{s > 0 : g(s) ̸= 0} ∈ (0,∞). Such a g is called an excursion and

σ(g) is its lifetime. For all s, t ∈ [0, σ(g)], define

dg(s, t) := g(s) + g(t)− 2 min
[s∧t,s∨t]

g. (1.1)

Proposition 1.2. The function dg defines a pseudo-distance in [0, σ(g)].

Proof. Write σ = σ(g). First, for all s, t ∈ [0, σ],

dg(s, t) = g(s)− min
[s∧t,s∨t]

g + g(t)− min
[s∧t,s∨t]

g ≥ g(s)− g(s) + g(t)− g(t) = 0.

For the triangle inequality, if s, t, r ∈ [0, σ] are such that s < r < t, we have that

dg(s, t) + dg(r, t)− dg(s, r) = 2

(
g(t)−min

[s,t]
g −min

[r,t]
g +min

[s,r]
g

)
≥ 2

(
g(t)−min

[r,t]
g

)
≥ 0,

where we used that [s, r] ⊆ [s, t] implies min[s,r] g ≥ min[s,t] g, so that dg(s, r) ≤ dg(s, t) + dg(r, t).

The inequality dg(r, t) ≤ dg(s, r) + dg(s, t) is obtained analogously. Similarly, we have

dg(s, r) + dg(r, t)− dg(s, t) = 2

(
g(r)−min

[s,r]
g −min

[r,t]
g +min

[s,t]
g

)
.

Note that min[s,t] g = min[s,r] g or min[s,t] g = min[r,t] g. In any case, we see that the quantity above

is positive, so that dg(s, t) ≤ dg(s, r) + dg(r, t).

Evidently, dg(s, s) = 0, but dg(s, t) = 0 does not imply s = t. Instead, note that dg(s, t) = 0 is

equivalent to g(s) = g(t) = min[s∧t,s∨t] g. If we define the relation ∼ on [0, σ(g)] by

s ∼ t if, and only if g(s) = g(t) = min
[s∧t,s∨t]

g,

then the quotient space T (g) := [0, σ(g)]/ ∼ with the distance defined by

d̃g(pg(s), pg(t)) := dg(s, t), for all s, t ∈ [0, σ(g)], (1.2)

is a compact metric space, where pg : [0, σ(g)] → T (g) is the canonical projection.1 Moreover,

(T (g), dg) is a real tree in the sense of Definition 1.1. Geometrically, this quotient space means that

we glue points of the graph of g whenever there is a positive excursion of g above them, see Figure

1.1. Define the root of T (g) by ρg := pg(0) and the volume measure on T (g), denote by Volg, as the

pushforward of the Lebesgue measure on [0, σ(g)] under pg.

In the literature, when a tree is given (in the real or pure graph sense) with a root, the function

recording the distances to the root during a clockwise exploration of it is called contour function. In

our construction, g is the contour function of (T (g), dg).

1For all s ∈ [0, σ(g)], pg(s) is the equivalence class of s for ∼.

2



Figure 1.1: In the first picture, an example of a continuous positive function g is drawn in black. In

the second picture, the dotted lines are tangent to the graph of g in the local minima. This makes

easier to see how we glue the points on the graph of g, according to the identification through the

relation ∼. In the third picture we see the representation of T (g) as a real tree.

For notational simplicity, we will never make explicit reference to the equivalence classes of ∼, and we

will simply denote d̃g by dg. The context will always make clear when we are working with elements

of [0, σ(g)] or T (g). Also, when quotienting spaces by a pseudo-distance like before, we will use the

notation T (g) = [0, σ(g)]/{dg = 0}.

The previous construction defines a map g 7→ (T (g), dg,Volg, ρg) from the set of excursions to the

space of 4-tuples (X, d, µ, x∗), where (X, d) is a compact metric space, µ is a Borel measure on X

and x∗ is a point of X, referred to as the distinguished point of X. Each such (X, d, µ, x∗) is called

compact pointed measure metric space. We can give a meaning to the continuity of this mapping by

defining a distance on the latter space. This is the so-called Gromov-Hausdorff-Prokhorov distance:

if (X, d, µ, x∗) and (Y, ρ, ν, y∗) are compact pointed measure metric spaces, then

dGHP((X, d, µ, x∗), (Y, ρ, ν, y∗)) := inf
ϕ,ϕ′,E

dH(ϕ(X), ϕ′(Y )) ∨ dP(ϕ∗µ, ϕ
′
∗ν) ∨ dE(ϕ(x∗), ϕ′(y∗)), (1.3)

where the infimum is taken over all the isometric embeddings ϕ : X → E and ϕ′ : Y → E for some

common Polish metric space (E, dE), and ϕ∗µ = µ ◦ϕ−1 denotes the pushforward measure. Here, dH

is the Hausdorff distance,

dH(A,B) := inf{ε > 0 : A ⊆ Bε and B ⊆ Aε}, for A,B ⊆ E,

3



and dP is the Prokhorov distance, that is, for all µ1 and µ2 finite Borel measures on (E, dE),

dP(µ1, µ2) := inf{ε > 0 : µ1(Aε) ≤ µ2(A) + ε and µ2(Aε) ≤ µ1(A) + ε for all A measurable},

where Aε :=
⋃

x∈AB(x, ε) is the ε-neighborhood of A.

Note, however, that dGHP((X, d, µ, x∗), (Y, ρ, ν, y∗)) = 0 does not imply that (X, d, µ, x∗) and (Y, ρ, ν, y∗)

are the same, but only isometric in the sense that there is an isometry Φ : X → Y such that

Φ(x∗) = y∗ and Φ∗µ = ν. Therefore, dGHP is only a pseudo-distance on the compact pointed measure

metric spaces, and we define K• as the quotient of the latter space for the relation {dGHP = 0}. We

endow K• with the distance induced by dGHP (as in (1.2)), so that (K•, dGHP) is a Polish metric space

(see Theorem 2.3 in [2]).

In this setting, the following continuity property for real trees holds, which is key in order to add

randomness in the function g of the previous construction.

Proposition 1.3 (Proposition 3.3 in [2]). For all g : R+ → R+ and h : R+ → R+ excursions, we

have that

dGHP((T (g), dg,Volg, ρg), (T (h), dh,Volh, ρh)) ≤ 6||g − h||∞ + |σ(g)− σ(h)|.

Let us end this deterministic construction with the definition of intervals in T (g). For s, t ∈ [0, σ(g)]

such that s < t, we use the convention [t, s] := [0, s] ∪ [t, σ(g)] (and [s, t] is the usual interval).

Recall that pg : [0, σ(g)] → T (g) denotes the canonical projection. For any a, b ∈ T (g), we can find

s, t ∈ [0, σ(g)] such that pg(s) = a, pg(t) = b and [s, t] has minimal length. In this case, we define

[a, b] := pg([s, t]).

Note that [a, b] and [b, a] are different. The notation for the interval in a real trees will not change,

since the context will always make clear when we are working with elements in [0, σ(g)] or T (g).

1.1.2 Labeling a real tree

Let us now describe how can we assign (random) labels to each point in T (g) for a fixed excursion g,

in such a way that the stochastic process that is seen when exploring a branch is a Brownian motion.

It turns out that the function

mg(s, t) := min
[s∧t,s∨t]

g, (1.4)

defined for all s, t ∈ [0, σ(g)], which appears in the definition of dg (1.1), has all the properties of a

covariance function.

4



Proposition 1.4. The function mg(·, ·) is symmetric and positive-definite, that is, for all n ∈ N,
s1, . . . , sn ∈ [0, σ(g)] and λ1, . . . , λn ∈ R, we have

n∑
i=1

n∑
j=1

λiλjmg(si, sj) ≥ 0.

Consequently, there exists a centered Gaussian process Z = (Zt)t∈[0,σ(g)] with covariance mg(·, ·). In

particular, for all s, t ∈ [0, σ(g)] we have that

E[(Zs − Zt)
2] = dg(s, t).

Proof. Let t ≥ 0. Define the relation ∼ on {i ∈ {1, . . . , n} : g(si) ≥ t} as

i ∼ j ⇐⇒ mg(si, sj) ≥ t.

It is easy to verify that ∼ defines an equivalence relation on {i ∈ {1, . . . , n} : g(si) ≥ t}. Then,
n∑

i=1

n∑
j=1

λiλj1{t≤mg(si,sj)} =
∑
C

(∑
i∈C

λ2i

)
≥ 0.

where the sum is over the equivalence classes C of ∼. Integrating on t yields the first statement.

By Kolmogorov’s extension theorem, there exists a centered Gaussian process Z = (Zt)t∈[0,σ(g)] such

that for all s, t ∈ [0, σ(g)], we have E[ZsZt] = mg(s, t). In particular, a direct computation gives

E[|Zs − Zt|2] = E[(Zs)
2] + E[(Zt)

2]− 2E[ZsZt] = g(s) + g(t)− 2 min
[s∧t,s∨t]

g = dg(s, t).

Remark 1.5. If g is β-Hölder continuous, then the associated process Z satisfies

E[|Zs − Zt|2] = g(s) + g(t)− 2 min
[s∧t,s∨t]

g ≲ |s− t|β.

More generally, using that (Zs − Zt)dg(s, t)
−1/2 is normally distributed with mean 0 and variance 1,

we have that for all integers p ≥ 1,

E[|Zs − Zt|2p] = C(p)dg(s, t)
p ≲ |s− t|βp,

where C(p) is the p-th moment of a Normal random variable with mean 0 and variance 1. By Kol-

mogorov’s continuity theorem, Z has a continuous modification with (βp−1)/(2p)-Hölder continuous

sample paths with full probability, for all p ≥ 1. Passing to the limit p → ∞, we conclude that for

all ε ∈ (0, β/2), Z has (β/2− ε)-Hölder continuous sample paths with full probability.

Note that we can see Z as a process indexed by T (g). In fact, the condition dg(s, t) = 0 is equivalent

to Zs = Zt thanks to the last statement in the previous proposition. Using this, we introduce the

labels on T (g) as follows.

Definition 1.6. For each a ∈ T (g), denote ℓa := Zs, where s ∈ [0, σ(g)] is any number such that

pg(s) = a. The number ℓa is called label of a.
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1.1.3 Snake trajectories

In this section, we introduce the formalism of the snake trajectories, which gives a suitable encoding

of the Brownian sphere. Roughly speaking, the pairs of the form (g, Z) constructed in the previ-

ous section can be coded using a path-valued stochastic process, whose observables determine the

geometric properties of the Brownian sphere. However, we stay at the deterministic level for the

moment, the randomness will be added in the next section.

Let W be the space of all continuous functions of the form w : [0, ζ] → R with 0 ≤ ζ <∞. For each

such w, ζ = ζ(w) is called lifetime of w and ŵ := w(ζ) is called the tip of w. For each x ∈ R, let
Wx := {w ∈ W : w(0) = x}. Define dW for all w,w′ ∈ W by

dW(w,w′) := sup
s≥0

|w(s ∧ ζ(w))− w′(s ∧ ζ(w′))|+ |ζ(w)− ζ(w′)|.

Then, dW defines a distance on W , and furthermore (W , dW) is a Polish metric space. We are ready

to formally define the snake trajectories.

Definition 1.7. Let x ∈ R. A snake trajectory with initial point x is a mapping ω = (ωs)s≥0

from [0,∞) to Wx such that the two following properties hold:

� ω0 = x is the constant function, and σ(ω) := sup{s ≥ 0 : ωs ̸= x} is finite.

� Snake property: For all s, t ≥ 0 such that s ≤ t, ωs(r) = ωt(r) for all r ∈ [0,min[s,t] ζ(ω·)].

For each x ∈ R, we denote Sx the set of snake trajectories with initial point x and S :=
⋃

x∈R Sx.

There is an obvious abuse of notation when defining σ(ω), since we used the same notation for σ(g).

This will be justified a few lines later. Define for all ω, ω′ ∈ S,

dS(ω, ω
′) := sup

s≥0
dW(ωs, ω

′
s) + |σ(ω)− σ(ω′)|.

It can be verified that dS is a distance on S, and that (S, dS) is a Polish metric space.

The terminology snake is justified by the fact that these function-valued mappings can be visualized

as functions continuously growing and being erased from the tip, starting and ending in a fixed point.

See Figure 1.2. Let us now establish the bijection between snake trajectories and pairs as constructed

in the previous section. To do so, we introduce the tree-like paths.

Definition 1.8. A tree-like path is a pair (g, f) where g : R+ → R+ and f : R+ → R are

continuous functions satisfying:

� g(0) = 0 and σ(g) ∈ (0,∞) (that is, g is an excursion).

� For all s, t ∈ [0, σ(g)], dg(s, t) = 0 implies f(s) = f(t).
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For each x ∈ R, we denote Tx := {(g, f) : f(0) = x} and T :=
⋃

x∈R Tx.

In the definition of tree-like paths, the function f has the role of the process Z of the previous section.

Define dT for all (g, f), (g′, f ′) ∈ T by

dT((g, f), (g
′, f ′)) := sup

s≥0
(|g(s)− g′(s)|+ |f(s)− f ′(s)|) + |σ(g)− σ(g′)|.

Then (again), dT is a distance on T, and (T, dT) is a Polish metric space. The following result

formalizes the coding of tree-like paths by snake trajectories (and viceversa) that we anticipated. In

fact, the metric spaces (S, dS) and (T, dT) are homeomorphic.

Proposition 1.9 (Proposition 8 in [1]). For each ω ∈ S, define ∆(ω) = (g, f), where g(s) = ζ(ωs)

and f(s) = ω̂s for all s ≥ 0. Then, ∆ defines an homeomorphism from (S, dS) to (T, dT).

Let us prove the bijection part of the previous proposition. For the full proof, see Theorem 2.1 in

[14]. Given a snake trajectory ω = (ωs)s≥0, the function g : R+ → R+ defined by g(s) = ζ(ωs)

is positive continuous with g(0) = 0 and σ(g) = σ(ω) ∈ (0,∞). On the other hand, suppose that

0 ≤ s ≤ t and dg(s, t) = 0. Then, min[s,t] ζ(ω·) = ζ(ωs) = ζ(ωt), and by the snake property with

r = min[s,t] ζ(ω·) we have f(s) = ω̂s = ωs(r) = ωt(r) = ω̂t = f(t). This justifies that ∆ is well-defined

as a mapping from S to T. Conversely, let (g, f) ∈ T. For each s ∈ [0, σ(g)], define the continuous

function ωs : [0, g(s)] → R by ωs(t) = f(sup{r ≤ s : g(r) = t}) for all t ∈ [0, g(s)]. The mapping

ω = (ωs)s≥0 constructed this way is a snake trajectory with initial point f(0). Moreover, it holds

that σ(ω) = σ(g), ζ(ωs) = g(s) and ω̂s = f(s) for all s ∈ [0, σ]. In this case, we say that g is the

lifetime function and f is the tip function of ω.

Figure 1.2: Representation of a snake trajectory and its lifetime function. It is possible to infer the

shape of the tip function on [0, σ(ω)], which we left as an exercise for the reader.

If ∆(ω) = (ζ, Ŵ ), we will denote ζ(ω) = (ζs(ω))s≥0 where ζs(ω) := ζ(ωs), and Ws(ω) := ωs for all

s ∈ [0, σ(ω)]. In fact, the Brownian sphere will be obtained by putting an appropriate randomness

on Sx for fixed x ∈ R, so that ζ and Ŵ become random continuous functions.
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Additionally, for future reference we introduce

W∗(ω) := min{Ŵs(ω) : s ∈ [0, σ(ω)]} = min{ℓa(ω) : a ∈ T (ζ)}. (1.5)

We will also drop the notation Z and keep Ŵ when referring to the tip function or the labels

(ℓa)a∈T (ζ) of Definition 1.6. In particular, we will write ℓa(ω) = Ŵs(ω), where s ∈ [0, σ(ω)] is such

that pζ(s) = a.

1.1.4 Definition of the Brownian sphere

The Brownian sphere is defined as a quotient space of T (g) when g is a Brownian excursion, with

a metric induced by the labels found in Proposition 1.4 and Definition 1.6. Formally, let n+ be the

Itô measure of (positive) Brownian excursions, normalized in such a way that for all ε > 0,

n+

(
sup
t≥0

e(t) > ε

)
=

1

2ε
.

Recall that there exists a family of measures (n
(s)
+ : s ≥ 0), such that for all measurable subset A in

the space of excursions2 we have

n+(A) =

∫ ∞

0

n
(s)
+ (A)√
2πs3

ds. (1.6)

The measure n
(s)
+ is naturally interpreted as n+( · |σ = s).

Definition 1.10. Let x ∈ R. We define the Brownian snake measure Nx on the space of snake

trajectories Sx to be such that

(i) the lifetime function ζ = (ζs)s≥0 is a Brownian excursion with distribution n+, and

(ii) conditionally on ζ, the tip function Ŵ = (Ŵs)s≥0 is a Gaussian process with mean x and

covariance mζ(·, ·) (recall the definition given in (1.4)).

The random snake ω obtained from the random tree-like path (ζ, Ŵ ) is called Brownian snake.

Similarly, for each s ≥ 0 we denote N(s)
x for the Brownian snake measure when ζ is sampled from

n
(s)
+ . An immediate consequence of the previous definition is the following continuity property.

Proposition 1.11. Let ω be a Brownian snake and (ζ, Ŵ ) be the associated tree-like path. Then,

for all ε ∈ (0, 1/4), Ŵ has a modification with (1/4 − ε)-Hölder continuous sample paths with full

probability.

Proof. Follows from the the analog computation done in Remark 1.5 conditioning on ζ and the fact

that for all ε ∈ (0, 1/2), ζ has (1/2− ε)-Hölder continuous sample paths with full probability.

2The space of excursions is endowed with the σ-algebra generated by the projections e 7→ e(t), for each t ≥ 0.
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There is a special point on T (ζ) that will play a fundamental role in the study of the Brownian

sphere, where the global minima of the labels recorded by the Brownian snake is attained. The

surprising and highly non-trivial fact is that such point is unique. We refer to the original reference

for the proof of the following result.

Proposition 1.12 (Proposition 2.5 in [13]). Nx-a.e. there exists a unique s∗ ∈ (0, σ(ζ)) such that

Ŵs∗ = W∗ (recall (1.5)). We denote a∗ := pζ(s∗).

Let ω be a Brownian snake and (ζ, Ŵ ) be the associated tree-like path. We aim to obtain a metric

structure in T (ζ), for which we will use the labeling of this tree induced by Ŵ as in Definition 1.6.

For all a, b ∈ T (ζ) define

D◦(a, b) := ℓa + ℓb − 2max

{
min
[a,b]

ℓ,min
[b,a]

ℓ

}
. (1.7)

It is clear that D◦ is a positive symmetric function. However, D◦ does not satisfy the triangle

inequality. To fix this problem, let D : T (ζ) × T (ζ) → R+ be the largest symmetric function

satisfying the triangle inequality that is bounded above by D◦, that is,

D(a, b) = inf

{
k−1∑
k=0

D◦(ai, ai+1) : k ≥ 1, a0, . . . , ak ∈ T (ζ), and a0 = a, ak = b

}
.

In the next proposition we record some important properties of D◦ and D. In particular, the function

D satisfies the properties that we require.

Proposition 1.13.

� For all a, b ∈ T (ζ), we have D◦(a, b) ≥ |ℓa − ℓb|.

� For all a, b ∈ T (ζ), we have D(a, b) = 0 if, and only if D◦(a, b) = 0.

� The function D defines a pseudo-distance in T (ζ).

The first assertion comes from D◦(a, b) ≥ ℓa + ℓb − 2max{ℓa, ℓb} = |ℓa − ℓb|. The third assertion is

straightforward from the definition of D. However, the left to right implication in the second point

is very difficult and we refer to Theorem 3.4 in [10] for a proof.

Thanks to the third point of Proposition 1.13, we are almost ready to define the Brownian sphere.

Define m∞ := m∞(ω) := T (ζ)/{D = 0}, and endow it with the distance induced by D, still denoted

by D. Let Π : T (ζ) → m∞ be the canonical projection. The volume measure on m∞, denoted Vol,

is defined as the pushforward of the volume measure on T (ζ) under Π. Define the root of m∞ as

x0 := Π(ρζ), and x∗ = Π(a∗).
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Additionally, let K•• be the space of compact two-pointed measure metric spaces, that is, the equiv-

alence classes for {dGHP = 0} of 5-tuples of the form (X, d, µ, x, y), where (X, d) is a compact metric

space, µ is a finite Borel measure on X and x and y are two points of X, called the distinguished

points of (X, d, µ, x, y) (or simply X when there is no possible confusion). Each such (X, d, µ, x, y)

is called a compact two-pointed measure metric space. Here, dGHP stands for the natural extension

of (1.3) to the two-pointed context.

Definition 1.14. The (free) Brownian sphere is defined as the random compact two-pointed

measure metric space (m∞, D,Vol, x0, x∗) under the measure N0. More generally, the Brownian

sphere can be sampled from N(s)
0 for any s ≥ 0, and the context will make clear when this is the case.

Figure 1.3: Approximation of the Brownian sphere via triangulations of the sphere.

Simulation by Nicolas Curien taken from his website: https://www.imo.universite-paris-

saclay.fr/∼nicolas.curien/simulation.html.

Note from (1.7) that D◦(a, a∗) = ℓa− ℓa∗ for all a ∈ T (ζ), so we deduce that D(x0, x∗) = −W∗. This

relation is very useful since it will allow us to condition on the distance between x0 and x∗, thanks

to the following proposition. We refer to Section VI in [9] for a proof.

Proposition 1.15. For x, y ∈ R such that y < x, we have

Nx(W∗ ≤ y) =
3

2(y − x)2
.

Using this, we define the probability measure N[r]
0 := N0(·|W∗ < −r) for r > 0. As a consequence of

the previous observations, the Brownian sphere sampled from N[r]
0 will satisfy D(x0, x∗) > r.

A very useful way to visualize m∞ is through its cactus representation. It amounts to take x∗ as

reference point and draw m∞ vertically, according to the distance of each point to x∗, in such a way

that each horizontal cut of the picture represents points that are equally distant from x∗. Better than

words, Figure 1.4 is self-explanatory. The choice of putting x∗ at the bottom makes the distances to

be exactly the difference of the labels assigned by Ŵ . One should keep in mind this picture in the

next sections and chapters, specially when drawing geodesics, that will be discussed in great detail.
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Figure 1.4: Cactus representation of m∞.

1.2 Basic properties

In this section, we state and prove some geometric properties of the Brownian sphere. This includes

scaling and symmetry properties, estimates for the volume of balls, compactness properties and the

exit local time of the Brownian snake.

For all x ∈ m∞ and r > 0, we write B(x, r) for the usual open ball of center x and radius r,

B(x, r) = {y ∈ m∞ : D(x, y) < r}.

A very important subset of m∞ is the following, which regarded under the appropriate conditioning,

has the distribution of a hull, to be defined in Section 1.3.3.

Definition 1.16. Let x, y ∈ m∞ and r ∈ (0, D(x, y)). We define B•(y)(x, r) as the closure of the

complement of the connected component of the complement of B(x, r) that contains y.

Informally, B•(y)(x, r) is B(x, r) plus all the connected components of its complement except for the

one that contains y. Note that B(x, r) ⊆ B•(y)(x, r) and ∂B•(y)(x, r) ⊆ ∂B(x, r), see Figure 1.5.

1.2.1 Symmetries

Let us first introduce some invariance properties of the Brownian snake that will find their expression

in the Brownian sphere later. Namely, we discuss invariance properties of the Brownian snake under

re-rooting and scaling operations on snakes. Formally, they are defined as follows:
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Figure 1.5: The blue shaded area is B(x, r). The union of the blue and red shaded areas is B•(y)(x, r).

The purple line is ∂B•(y)(x, r). Be aware that the balls are not simply connected as drawn here, they

contain many holes. This is no taken into account in order to keep the picture simple.

� Re-rooting: Let ω ∈ S0 and r ∈ [0, σ(ω)]. Define ω[r] ∈ S0 to be such that

ζs(ω
[r]) = dζ(ω)(r, r ⊕ s) and Ŵs(ω

[r]) = Ŵr⊕s(ω)− Ŵr(ω),

where r ⊕ s = r + s if r + s ≤ σ(ω) and r ⊕ s = r + s− σ(ω) if r + s > σ(ω). By the bijection

part of Proposition 1.9, these definitions completely determine ω[r]. See Figure 1.6.

� Scaling: For λ > 0 and ω ∈ Sx, define the snake trajectory θλ(ω) ∈ Sx
√
λ by θλ(ω) = ω′, where

ω′
s(t) :=

√
λωs/λ2(t/λ), for s ≥ 0 and 0 ≤ t ≤ ζ ′s := λζs/λ2 .

Concerning the previous two operations, the following invariances hold in the Brownian snake.

Proposition 1.17. Let t, λ > 0.

1. If r ∈ [0, t], the measure N(t)
0 is invariant under the re-rooting operation ω 7→ ω[r].

2. The pushforward of Nx under θλ is λNx
√
λ.

Let us now turn to the symmetries of the Brownian sphere. The following proposition states that

the points x0 and x∗ are independent and uniformly distributed over m∞. Informally, this means

that the Brownian sphere seen from two uniformly chosen points always looks statistically the same.

Proposition 1.18 (Proposition 3 in [7]). Let F : K•• → R+ be a positive measurable function. Then,

N0(F (m∞, D,Vol, x0, x∗)) = N0

(∫∫
Vol(dx)

σ

Vol(dy)

σ
F (m∞, D,Vol, x, y)

)
.

The same identity holds if we replace N0 by N(s)
0 , for any s ≥ 0.
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Figure 1.6: In the first picture, the very same function of Figure 1.1 and a marked time r ∈ [0, σ(ω)].

In the second picture, the re-rooted lifetime function ζ(ω[r]). In the third picture we see T (ζ(ω[r]))

with its root, that can be drawn the same way as T (ζ(ω)) before the re-rooting, but only relocating

the root. Colors corresponding to the branches of T (ζ(ω)) are left to see how ζ(ω[r]) corresponds to

the counterclockwise exploration of T (ζ(ω)) starting from the new root (ρ in the picture).

Proof. By (1.6), it is enough to prove the result for N(s)
0 , with fixed s ≥ 0. By Proposition 1.17, N(s)

0

is invariant under ω 7→ ω[r] for any r ∈ [0, s]. Secondly, note that m∞ is left unchanged if we change

ω by ω[r], and that the minimal label is attained at the same point of T (ζ(ω)) and T (ζ(ω[r])). The

preceding considerations give that

N(s)
0 (F (m∞, D,Vol, x0, x∗)) = N0

(∫
Vol(dx)

s
F (m∞, D,Vol, x, x∗)

)
.

Then, an application of (an extension of) Theorem 8.1 in [8] concludes the proof.

As a corollary, the following three symmetries hold for the Brownian sphere:

• N0(F (m∞, D,Vol, x0, x∗)) = N0(F (m∞, D,Vol, x∗, x0)).

• N[r]
0 (F (m∞, D,Vol, x0, x∗)) = N[r]

0 (F (m∞, D,Vol, x∗, x0)), for any r ≥ 0.

• If F is defined on (the equivalence classes of) compact three-pointed measure metric spaces, then

N0

(∫
Vol(dx)

σ
F (m∞, D,Vol, x0, x∗, x)

)
= N0

(∫
Vol(dx)

σ

Vol(dy)

σ

Vol(dz)

σ
F (m∞, D,Vol, x, y, z)

)
.
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1.2.2 Volume of balls

The encoding by stochastic processes of the Brownian sphere allows us also to estimate the volume of

balls in this metric space. In fact, the following proposition gives a simple formula for the moments

of the ball B(x∗, r), for which the scaling and the properties of Ŵ are key.

Proposition 1.19 (Lemma 4 in [7]). Let p ≥ 1 be an integer. There exists a constant Cp such that

for all r > 0,

N0 (Vol(B(x∗, r))
p) = Cpr

4p−2.

Consequently, for every integer p ≥ 1 and η ∈ (0, 1), there exists a constant Cp,η > 0 such that for

all r ∈ (0, 1),

N[1]
0 (Vol(B(x∗, r))

p) ≤ Cp,ηr
4p−η.

Proof. By scaling, we have

N0 (Vol(B(x∗, r))
p) = N0

((∫ σ

0

1{Ŵs−W∗≤r}ds

)p)
= r4p−2N0

((∫ σ

0

1{Ŵs−W∗≤1}ds

)p)
.

We need to verify that the constant multiplying r4p−2 is finite. To this end, write

N0

((∫ σ

0

1{Ŵs−W∗≤1}ds

)p)
=

∫ ∞

0

1

2
√
2πt3

N(t)

((∫ t

0

1{Ŵs−W∗≤1}ds

)p)
dt,

and split the integral in the regions [0, 1) and [1,∞). The first part is bounded by
∫ 1

0
tp

2
√
2πt3

dt, which

is finite. For the second part, scaling and Lemma 6.1 in [8] gives that for all δ ∈ (0, 1) and t ≥ 1,

N(t)

((∫ t

0

1{Ŵs−W∗≤1}ds

)p)
= tpN(t)

((∫ 1

0

1{Ŵs−W∗≤t−1/4}ds

)p)
≲ tδ/4,

which gives a finite upper bound again. For the second assertion, by Cauchy-Schwartz we have

N[1]
0 (Vol(B(x∗, r))

p) ≤ N[1]
0 (Vol(B(x∗, r))

qp)1/q ≤
(
2

3
N0 (Vol(B(x∗, r))

qp)

)1/q

≲ r4p−2/q,

where the implicit constant depends on p and q. We conclude by taking q large so that 2/q < η.

Even more explicitly, we have an almost sure estimate for the volume of a ball with sufficiently small

radius. Note how the label process plays a role with its Hölder continuity property.

Proposition 1.20 (Lemma 2.2 in [15]). N0-a.e. the following property holds. For all η > 0, there

exists ε0 > 0 such that for all x ∈ m∞ and ε ∈ (0, ε0),

ε4+η ≤ Vol(B(x, ε)) ≤ ε4−η.
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Proof. By scaling, we can argue under N(1)
0 . The upper bound follows from the control of the moments

of the volume of balls in m∞ and Borel-Cantelli’s lemma (see Lemma 2.1 in [15]). For the lower

bound, fix η > 0 and let s ∈ [0, 1]. By Proposition 1.5, we have for all b ∈ (0, 1/4),

D(Π(pζ(s)),Π(pζ(s+ ε4+η))) ≤ Cε(4+η)(1/4−b) = Cε1+η/4−b(4+η).

for some random constant C > 0. Therefore, if b is sufficiently small, we see that there exists ε0 > 0

(random) such that for all ε ∈ (0, ε0), Π(pζ([s, s + ε4+η])) ⊆ B(Π(pζ(s)), ε) . Taking the volume

measure gives ε4+η ≤ Vol(B(Π(pζ(s)), ε)) and the result follows since s is arbitrary.

1.2.3 Compactness

In this section, we briefly state propositions concerning covering properties of the Brownian sphere.

Proposition 1.21 (Lemma 2.3 in [15]). N0-a.e. the following property holds. Let (xi)i∈N be an iid

sequence sampled from Vol(·). For all a > 0, there exists ε0 > 0 such that for all ε ∈ (0, ε0), we have

m∞ ⊆
ε−4−a⋃
i=1

B(xi, ε).

Proof. By scaling, we argue under N(1)
0 . Fix a > 0 and let ε0 > 0 be given by Proposition 1.21. For

each k ∈ N, let Nk := 2(k+1)(4+2a) and define the event

Ak := {For all x ∈ m∞, there exists i ∈ {1, . . . , Nk} such that xi ∈ B(x, 2−k)}.

If we show that
∑

k∈N P(Ac
k|ε0 ≥ 2−k) is finite, then the result follows by Borel-Cantelli’s lemma. To

see this, note that

P(D(xNk+1, xi) ≥ 2−(k+1) for all i ∈ {1, . . . , Nk} |Ac
k ∩ {ε0 ≥ 2−k}) ≥ 2−(k+1)(4+a),

which follows from the fact if xNk+1 lies at distance at most 2−(k+1) from some x ∈ m∞ given by

Ac
k, this implies that D(xNk+1, xi) ≥ 2−(k+1) for all i ∈ {1, . . . , Nk}, since (xi)i∈N is iid sampled from

Vol(·) and Vol(B(z, 2−(k+1))) ≥ 2−(k+1)(4+a) in this conditioning. Noting that

P(D(xNk+1, xi) ≥ 2−(k+1) for all i ∈ {1, . . . , Nk}) ≤ (1− 2−(k+1)(4+a))Nk ≤ exp(−2(k+1)a),

we have

P(Ac
k ∩ {ε0 ≥ 2−k}) ≤ 2(k+1)(4+a) exp(−2(k+1)a),

and then P(Ac
k|ε0 ≥ 2−k) ≤ 2(k+1)(4+a) exp(−2(k+1)a)(1 + o(1)), which is summable in k, proving the

claim and the result.

The following two propositions will be very useful. We refer to the original reference for the proofs.

Here, diam(m∞) := sup{D(x, y) : x, y ∈ m∞} stands for the diameter of m∞.
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Proposition 1.22 (Lemma 4.4 in [15]). N0-a.e. for all R ∈ (0, diam(m∞)), there exists r0 > 0 such

that for all r ∈ (0, r0) and z ∈ m∞, there is at most one connected component of m∞ \ B(z, r) with

diameter at least R.

Proposition 1.23 (Lemma 7.1 in [15]). N0-a.e. there exists r0 > 0 such that for all r ∈ (0, r0) and

z ∈ m∞, if Uz,r denotes the connected component of m∞ \ B(z, r) with the largest diameter, then

Vol(Uz,r) ≥ Vol(m∞)/2.

1.2.4 Exit measures and boundary length of hulls

Let x, y ∈ R with y < x, ω be a Brownian snake and (ζ, Ŵ ) be the associated tree-like path. We can

make sense of the “time spent” by ω at y through the exit local time process (Ly
t )t≥0, defined for all

t ≥ 0 as

Ly
t := lim

ε→0

1

ε2

∫ t

0

ds1{τy(Ws)=∞,Ŵs<y+ε}.

where τy(f) := inf{s ≥ 0 : f(s) = y}, with the convention inf(∅) = ∞. The process (Ly
t )t≥0 is

constant for t ≥ σ(ζ). The exit measure at y is defined as Zy := Ly
∞ = Ly

σ(ζ). Using a description of

the measure N0(·|W∗ = −u) (which we will not present here) and a decomposition of the Brownian

snake at its minimum, we can make sense of the exit measure at W∗ + r for r > 0. Explicitly,

ZW∗+r = lim
ε→0

1

ε2

∫ σ

0

ds1{τW∗+r(Ws)=∞,Ŵs<W∗+r+ε} = lim
ε→0

1

ε2
Vol(B•(x0)(x∗, r + ε)c ∩B(x∗, r)).

where the last equality holds by definition of the volume measure on m∞ as successive pushforwards

of the Lebesgue measure on [0, σ(ω)] and then on T (ζ). Thanks to the last display, it is not difficult

to interpret ZW∗+r as the boundary length of the hull B•(x∗)(x0, D(x0, x∗) − r) (recall that it only

makes sense under N0(·|W∗ < −r)).

Now, we aim to describe the law of the boundary length process associated to B•(x∗)(x0, D(x0, x∗)−r),
where r varies from 0 to D(x0, x∗). To do so, we need to introduce the so-called continuous state

branching processes.

Interlude: Stable continuous state branching processes

We aim to briefly discuss some facts concerning the so-called continuous state branching processes

(CSBP from now on) towards their application to the study of the Brownian sphere. The presentation

of this interlude is based on [5]. Let Y = (Yt)t≥0 be a strong Markov process and let (Px)x≥0 be the

family of probability measures satisfying Px(Y0 = x) = 1 for each x ≥ 0. Write Ex for the expectation

under Px. Such Y is called CSBP if it has càdlàg3 sample paths and satisfies the branching property,

that is, for all x, y ≥ 0 and θ ≥ 0, we have

3Càdlàg stands for continu à droit, limite à gauche, which means right-continuous with left-limits.
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Ex+y

[
e−θYt

]
= Ex

[
e−θYt

]
Ey

[
e−θYt

]
. (1.8)

Define the Laplace exponent of Y as ut(θ) := − log(E1[e
−θYt ]), for all t, θ ≥ 0. From (1.8) we can

derive that

Ex

[
e−θYt

]
= e−xut(θ). (1.9)

From (1.9) and the Markov property, we can derive ut+s(θ) = ut(us(θ)). This means that (ut(θ))t≥0

satisfies the semigroup property. The following theorem, for which we refer to [cite] for a proof,

states that each CSBP is related to some Lévy process.

Theorem 1.24. Suppose that ut(θ), t, θ ≥ 0, is the Laplace exponent of a CSBP. Then, t 7→ ut(θ)

is differentiable, and satisfies the ordinary differential equation

∂ut
∂t

(θ) + ψ(ut(θ)) = 0, (1.10)

with initial condition u0(θ) = θ, and for all λ ≥ 0, ψ(λ) = log(E[e−λX1 ]) where X = (Xt)t≥0 is either

a spectrally positive Lévy process or a killed subordinator (see Section 2.6.2 of [5] to see the meaning

of these objects).

Such a function ψ given in the previous theorem is called branching mechanism of the corresponding

CSBP. The following theorem goes further and states a bijection between CSBP and Lévy processes,

through the so-called Lamperti transform.

Theorem 1.25. Let ψ be any branching mechanism.

1. Suppose that X = (Xt)t≥0 is a Lévy process with no negative jumps, killed at an exponentially

distributed time with parameter q ≥ 0, such that ψ(λ) = log(E[e−λX1 ]). Define for all t ≥ 0,

Yt = Xθt∧τ−0
,

where τ−0 = inf{t > 0 : Xt < 0} and

θt = inf

{
s > 0 :

∫ s

0

du

Xu

> t

}
.

Then, for all x ≥ 0, under Px, Y = (Yt)t≥0 is a CSBP with branching mechanism ψ.

2. Conversely, suppose that Y = (Yt)t≥0 is a CSBP with branching mechanism ψ such that Y0 =

x ≥ 0. Define Xt = Yφt for all t ≥ 0, where

φt = inf

{
s > 0 :

∫ s

0

Yudu > t

}
.

Then, X = (Xt)t≥0 is a Lévy process with no negative jumps and X0 = x, stopped in the first

entry into (−∞, 0) and killed at an exponentially distributed time with some parameter q ≥ 0,

such that ψ(λ) = log(E[e−λX1 ]) for all λ ≥ 0.
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We are ready to define the stable CSBP. Let Y = (Yt)t≥0 be a CSBP and α ∈ (1, 2). Such Y is

additionally called α-stable if the branching mechanism of Y is given by ψ(λ) = cλα, for all λ ≥ 0,

where c > 0 is some constant. Note that in this case we can solve directly (1.10) to get that for all

t, θ ≥ 0,

ut(θ) = (θ1−α + c(α− 1)t)
1

1−α . (1.11)

Using the previous facts, two properties of α-stable CSBP can be derived. Namely, we have:

� Scaling: For all C > 0, the process (CYt)t≥0 has the same distribution as (YCα−1t)t≥0.

� Extinction time: Let T = inf{t ≥ 0 : Yt = 0} be the extinction time of Y . Plugin (1.11) into

(1.9) gives

Px(T > t) = 1− exp(−x(c(α− 1)t)
1

1−α ). (1.12)

End of the interlude - Reverse exploration of the Brownian sphere

We can identify the law of the boundary length corresponding to a reverse exploration from x0 to

x∗. More precisely, for r > 0 and conditioning on D(x0, x∗) > r, define Yt as the boundary length

of B•(x0)(x∗, D(x0, x∗)− t). Then, it is proven in [16] that (Yt)t≥0 has the law of a 3/2-stable CSBP.

The same holds true if we replace x0 and x∗ by typical points4.

1.2.5 Geodesics in the Brownian sphere

Geodesics are central in the study of surfaces. In particular, geodesics in the Brownian sphere are

fundamental to understand the behavior of atypical points in m∞, and they naturally appear in the

scaling limits results. Let us formally define the framework to study geodesics.

Definition 1.26. Let (E, d) be a metric space.

� Let a, b ∈ E. A path γ : [0, d(a, b)] → E such that γ(0) = a and γ(d(a, b)) = b is called

geodesic (from a to b) if d(γ(s), γ(t)) = |s− t|, for all s, t ∈ [0, d(a, b)].

� (E, d) is called a geodesic space if between any pair of points there exists a geodesic.

The fact that the Brownian sphere is a geodesic space is discussed in great detail in [4]. Let us now

heuristically construct a geodesic from x0 to x∗ in m∞. In fact, we see from D(Π(a), x∗) = ℓa − ℓa∗

that a geodesic from x0 to x∗ is obtained by following the running infimum of (ℓa)a∈T (ζ) along the

branches of T (ζ). Formally, this path is written as the function γ : [0,−W∗] → m∞ defined by

γ(t) := Π(pζ(inf{s ∈ [0, σ] : Ŵs = −t})). (1.13)

4A typical point is point that can be obtained as a sample of the volume measure. On the contrary, an atypical

point cannot arise as the sample of the volume measure.
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It is clear that γ(0) = x0 and γ(−W∗) = x∗, and the isometry property follows easily by the definition

of γ. Since the Brownian sphere has no “orientation”, an equivalent way of writing γ is

γ(t) = Π(pζ(sup{s ∈ [0, σ] : Ŵs = −t})).

These two writings will be relevant when defining another quotient space of T (ζ) called slice, see

Section 1.3.4 (in fact, they will represent two different geodesics between typical points in the slice).

It also makes sense to ask if there are more geodesics connecting x0 and x∗. The answer is given in

the following result, whose proof can be found in [8].

Proposition 1.27. The path γ defined in (1.13) is the unique geodesic between x0 and x∗.

More generally, between any pair of typical points in m∞ there is exactly one geodesic. In fact,

there are “not many” geodesics in the Brownian sphere. An illustration of this phenomenon is the

following confluence result, that states that two geodesics starting at different points in m∞ towards

x0, must coalesce near x0.

Proposition 1.28 (Corollary 7.7 in [8]). Almost surely, for all δ > 0 there exists α ∈ [0, δ] such

that the following holds. If x, y ∈ m∞ are such that D(x, x0) ≥ δ and D(y, x0) ≥ δ, and if γ1 is a

geodesic from x to x0 and γ2 is a geodesic from y to x0, then γ1(t) = γ2(t) for all t ∈ [0, α].

The following result can be seen as an extension of Proposition 1.28. It is called strong confluence

of geodesics, and describes the interaction of two different geodesics with enough duration and suffi-

ciently close as subsets of the Brownian sphere. Informally, if two geodesics are close enough, then

they coincide everywhere except in some neighborhoods of their endpoints.

Theorem 1.29 (Theorem 1.1 in [15]). N0-a.e. the following statement holds. For all u > 0, there

exists ε0 > 0 such that for all ε ∈ (0, ε0), if η1 : [0, T1] → m∞ and η2 : [0, T2] → m∞ are geodesics

with min{T1, T2} ≥ 2ε1−u and dH(η1([0, T1]), η2([0, T2])) ≤ ε, then

η1([ε
1−u, T1 − ε1−u]) ⊆ η2([0, T2]) and η2([ε

1−u, T2 − ε1−u]) ⊆ η1([0, T1]).

A further evidence of the little amount of geodesics in the Brownian sphere is the following result,

that tells us that geodesics cannot “bounce” into another. The lack of bouncing behavior reduces the

number of possible configurations of geodesics between two points. Such configurations are known

in the literature as geodesic networks.

Theorem 1.30 (Theorem 1.3 in [15]). N0-a.e. if η1 : [0, T1] → m∞ and η2 : [0, T2] → m∞ are

geodesics, then {t ∈ (0, T1) : η1(t) ∈ η2([0, T2])} and {t ∈ (0, T2) : η2(t) ∈ η1([0, T1])} are connected

sets.

However, pairs of atypical points inm∞ connected by more than one geodesic do exist. Moreover, the

following result quantifies the “amount” of such points using the Hausdorff dimension (see Section

2.1). Here, consider the fact that dimH(m∞) = 4 (see [8]), so that dimH(m∞ ×m∞) = 8.
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Theorem 1.31 (Theorem 1.6 in [15]). N0-a.e. the following holds. Let Φi be the set of pairs

(u, v) ∈ m∞ × m∞ with u ̸= v, such that u and v are connected by exactly i geodesics. If i ≥ 10,

Φi = ∅. On the contrary, Φ7, Φ8 and Φ9 are countably infinite, and the Hausdorff dimensions for

i ∈ {1, . . . , 9} are:

i 1 2 3 4 5 6 7 8 9

dimH(Φi) 8 6 4 4 2 2 0 0 0

In fact, Chapter 3 will be devoted to the computation of the Hausdorff dimension of another set

of atypical points in m∞, called geodesic m-stars. These points are such that m disjoint geodesics

emerge from them, and they are not typical since we already discussed that geodesics towards typical

points must coalesce before reaching them (one can replace x0 in Proposition 1.28 by a typical point).

1.3 Related constructions

As claimed at the beginning of this chapter, the Brownian sphere is an universal model for surfaces

with the topology of the two-dimensional sphere chosen uniformly at random. However, we can

change the topological constraint of the sphere to other planar topologies, such as the plane, half-

plane, disk, among others. The random metric spaces constructed using similar procedures to the

one used to construct the Brownian sphere give raise to a whole family of canonical models of planar

surfaces. This framework is now known as Brownian geometry. In the next sections, we briefly

describe how can we obtain some variants of the Brownian sphere.

1.3.1 Brownian plane

The Brownian plane is the plane topology version of the Brownian sphere, and it is obtained by

essentially replacing the Brownian excursion by a Bessel process in R. Formally, let (Rt)t≥0 and

(Lt)t≥0 be two independent Bessel processes started at 0. Define (Xt)t∈R by setting Xt = Rt if t ≥ 0

and Xt = Lt if t < 0. For all s, t ∈ R, define

dX(s, t) :=


Xs +Xt − 2 inf

[s∧t,s∨t]
X, if t and s have the same sign,

Xs +Xt − 2 inf
(−∞,s∧t]∪[s∨t,∞)

X, otherwise.

Analogously to Proposition 1.2, dX : R×R → R+ defines a random pseudo-distance in R. Consider
the non-compact real tree T (∞) := R/{dX = 0}, endowed with the distance induced by dX , still

denoted by dX . Now, we assign labels to T (∞) and obtain a metric structure from them. As in

Section 1.1.2 define for all s, t ∈ R
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mX(s, t) :=


inf

[s∧t,s∨t]
X, if t and s have the same sign,

inf
(−∞,s∧t]∪[s∨t,∞)

X, otherwise.

Conditionally on X, let Z = (Zt)t∈R be a centered Gaussian process with covariance mX(·, ·) (still
defines a symmetric positive-definite function). For all s, t ∈ R define

D◦
∞(s, t) := Zs + Zt − 2 min

[s∧t,s∨t]
Z,

and extend this function to T (∞) by setting for all a, b ∈ T (∞),

D◦
∞(a, b) := inf{D◦

∞(s, t) : s, t ∈ R such that pX(s) = a, pX(t) = b}.

The functionD◦
∞ : T (∞)×T (∞) → R+ is positive and symmetric, but it does not satisfy the triangle

inequality. Let D∞ be the largest pseudo-distance bounded by D◦
∞ and set P := T (∞)/{D∞ = 0}.

Endow P with the distance induced by D∞, still denoted by D∞. The Brownian plane is defined as

the random metric space (P , D∞). See Figure 1.7.

1.3.2 Brownian disk

The Brownian disk is the unit disk topology version of the Brownian plane, and it is obtained by

considering killed Brownian motions at a fixed negative level. Fix z > 0, let B = (Bt)t≥0 be a

Brownian motion and define It := inf [0,t]B. Let Y ◦ = (Y ◦
t )t≥0 be such that, conditionally on B, Y ◦

is a centered Gaussian process with covariance given for all s, t ≥ 0 by

E[Y ◦
s Y

◦
t |B] = inf

r∈[s∧t,s∨t]
(Br − Ir).

Let b = (bt)0≤t≤z be a Brownian bridge with duration z and b0 = br = 0, independent of (X, Y ◦).

Let Tz := inf{t ≥ 0 : Bt = −z} and define for all t ∈ [0, Tz],

Yt = Y ◦
t +

√
3b−Xt .

In this construction, the process (Yt)t∈[0,Tz ] represents the labels assigned to the real tree induced by

the process (Bt − It)t∈[0,z]. Using this, define for all s, t ∈ [0, Tz],

D◦
∂(s, t) := Ys + Yt − 2max

{
min

[s∧t,s∨t]
Y, min

[0,s∧t]∪[s∨t,Tz ]
Y

}
.

Let D∂ be the largest pseudo-distance bounded by D◦
∂ and set Dz := [0, Tz]/{D∂ = 0}. Endow Dz

with the distance induced by D∂, still denoted by D∂. The Brownian disk of perimeter z is defined

as the random metric space Dz := [0, Tz]/{D∂ = 0}. See Figure 1.7.
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Figure 1.7: Cactus representation of the Brownian plane and disk.

1.3.3 Hulls

Let r, z > 0 be fixed. Let N =
∑

i∈I δ(ti,ωi) be a Poisson point measure with intensity

1[0,z](t)dt⊗ N0(dω ∩ {W∗ > −r}),

where ti ∈ [0, z] and we write ζi = ζ(ωi). Let ω∗ be sampled from N0(·∩{W∗ = −r}), write ζ∗ = ζ(ω∗)

and U∗ be uniformly distributed over [0, z]. Assume that N , ω∗ and U∗ are independent. Let H be

derived from the disjoint union

[0, z] ∪

(⋃
i∈I

T (ζi)

)
∪ T (ζ∗),

by identifying 0 with z, the root of T (ζi) with ti, for each i ∈ I, and the root of T (ζ∗) with U∗.

Define

Σ =
∑
i∈I

σ(ζi) + σ(ζ∗).

Now we construct a pseudo-distance in H. We proceed in steps as follows:

� Labels in H: Let us define the labels (Λa)a∈H on H. For a ∈ [0, z] set Λa = 0. For a ∈ T (ζi)

with i ∈ I, define Λa = ℓa(ωi). For a ∈ T (ζ∗), define Λa = ℓa(ω∗).

� Cyclic exploration of H: Let (Es)s∈[0,Σ] be a cyclic exploration of H such that E0 = EΣ = 0

and the exploration discovers in counterclockwise order each tree T (ζi) attached to [0, z] in the

order prescribed by {ti}i∈I ∪ {U∗} (see Figure 1.8).
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� Intervals in H: For s, t ∈ [0,Σ], we let [s, t] = [s,Σ] ∪ [0, t] if t < s, otherwise it denotes the

usual interval. For each a, b ∈ H, we can find s, t ∈ [0,Σ] such that Es = a, Et = b and [s, t] is

small as possible. In this situation, we set [a, b]H := {Er : r ∈ [s, t]}.

� Distance in H: For all a, b ∈ H, set

D◦
H(a, b) := Λa + Λb − 2max

{
min

c∈[a,b]H
Λ, min

c∈[b,a]H
Λc

}
. (1.14)

The function D◦
H : H×H → R+ is positive and symmetric, but it does not satisfy the triangle

inequality. LetDH be the largest pseudo-distance bounded byD◦
H and set Hr,z := H/{DH = 0}.

Endow Hr,z with the distance induced by DH, still denoted DH.

The hull of radius r and perimeter z is defined as the random metric space (Hr,z, DH).

Figure 1.8: Representation of H and the exploration (Es)s∈[0,Σ].

Let a∗ ∈ T (ζ∗) be the unique point in H with label −r and b∗ = ΠH(a∗), where ΠH : H → Hr,z is

the canonical projection. We will define geodesics from an arbitrary point of Hr,z to b∗, for which

the heuristic is the same of Section 1.2.5. Let x ∈ Hr,z, and let a ∈ H be such that ΠH(a) = x, and

s ∈ [0,Σ] be such that Es = a.

� If s ∈ [0, s∗], define for all t ∈ [0,Λa + r],

γs(t) := ΠH

(
Einf{u≥s:ΛEu=Λa−t}

)
. (1.15)

� If s ∈ [s∗,Σ], define for all t ∈ [0,Λa + r],

γs(t) := ΠH

(
Esup{u≤s:ΛEu=Λa−t}

)
. (1.16)

In both cases, it can be verified that γs is a geodesic from x to b∗.
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1.3.4 Slices

Slices are defined in a similar way to the Brownian sphere, with the slight difference that this

metric space will have two boundaries corresponding to a “cut” of the geodesic connecting x0 with

x∗. Formally, let ω be a Brownian snake and (ζ, Ŵ ) be the associated tree-like path. For all

s, t ∈ [0, σ(ζ)], define

D̃◦(s, t) = Ŵs + Ŵt − 2 min
[s∧t,s∨t]

Ŵ , (1.17)

and extend this function to T (ζ) by setting for all a, b ∈ T (ζ),

D̃◦(a, b) := inf{D̃◦(s, t) : s, t ∈ [0, σ(ζ)] such that pζ(s) = a, pζ(t) = b}.

Let D̃ be the maximal pseudo-distance bounded above by D̃◦ and set S := S(ω) := T (ζ)/{D̃ = 0},
that we endow with the distance induced by D̃, still denoted by D̃. The slice is defined as the random

metric space (S, D̃).

Let us justify what we claimed at the beginning. Let Π̃ : T (ζ) → S be the canonical projection

and define x̃0 := Π̃(ρζ) and x̃∗ := Π̃(a∗). Recall that, under N0(·|W∗ = −h), the unique geodesic

connecting x0 and x∗ in m∞ is the path γ = (γ(r))r∈[0,h] defined by

γ(r) = Π(pζ(inf{s ∈ [0, σ(ζ)] : Ŵs = −r})) = Π(pζ(sup{s ∈ [0, σ(ζ)] : Ŵs = −r})).

However, in S we have the following result.

Lemma 1.32. For all a, b ∈ T (ζ), D̃(a, b) = 0 implies D(a, b) = 0. However, D(a, b) = 0 implies

D̃(a, b) = 0 whenever a and b do not belong to the range of γ.

Proof. Note that D̃◦(a, b) ≥ D◦(a, b), implying D̃(a, b) ≥ D(a, b) so that D̃(a, b) = 0 implies

D(a, b) = 0. On the other hand, assume that D(a, b) = 0. By Proposition 1.13, we have D◦(a, b) = 0,

so that without loss of generality we can assume

ℓa = ℓb = min
[a,b]

ℓ. (1.18)

Let s, t ∈ [0, σ] be such that pζ(s) = a, pζ(t) = b and [s, t] small as possible, with the convention

[s, t] = [0, t]∪ [s, σ] if t < s. If s ≤ t, (1.18) is equivalent to D̃(a, b) = 0. If t < s, (1.18) is equivalent

to

Ŵs = Ŵt, Ŵs = min
[s,σ]

Ŵ and Ŵt = min
[0,t]

Ŵ ,

so that a, b ∈ γ([0, h]). However, it turns out that D̃(a, b) > 0 by definition of D̃.
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The conclusion of the previous lemma is that every point in m∞ \ γ([0, h]) corresponds to a unique

point in S, and every point in γ([0, r]) corresponds to two points in S. As a consequence, if we define

γ′ = (γ′(r))r∈[0,h] and γ
′′ = (γ′′(r))r∈[0,h] by

γ′(r) := pζ(inf{s ∈ [0, σ(ζ)] : Ŵs = −r}), (1.19)

γ′′(r) := pζ(sup{s ∈ [0, σ(ζ)] : Ŵs = −r}), (1.20)

then γ′ and γ′′ are geodesics from x̃0 to x̃∗ such that γ′((0, h)) and γ′′((0, h)) are disjoint, called left

boundary and right boundary of S, respectively.

1.4 Markov property

Suppose that we have launched an exploration from x∗ to x0 by continuously following the boundaries

of the hulls B•(x0)(x∗, r), with r > 0 increasing up to D(x0, x∗). The Markov property of the

Brownian sphere states that conditionally on the boundary length, B•(x0)(x∗, r) and the closure of

its complement are independent, with B•(x0)(x∗, r) distributed as a hull and (the closure of) its

complement distributed as a Brownian disk. Let us first discuss some concepts that appear in the

statement of the Markov property.

� First, we need to introduce the intrinsic distance. If O is an open connected subset of m∞, the

intrinsic distance DO
int is defined as follows. For x, y ∈ O, DO

int(x, y) is equal to the infimum of

the lengths corresponding to the set of continuous paths staying in O connecting x and y.

� We need an extension of the spaces K• and K•• used before. We let K•b be the space of

equivalence classes for {dGHP = 0} of 5-tuples of the form (X, d, µ, x∗, F ), where (X, d) is a

compact metric space, µ is a finite Borel measure on X, x∗ is the distinguished point and F is

a fixed subset of X called distinguished boundary. Here, dGHP stands for the natural extension

of (1.3) to this context.

With these objects, the Markov property of the Brownian sphere can be stated as follows. We refer

to the original reference for a proof.

Theorem 1.33 (Theorem 8 in [7]). With N[r]
0 -probability one, D

B•(x0)(x∗,r)
int has a continuous exten-

sion to B•(x0)(x∗, r), which is a metric on B•(x0)(x∗, r). Similarly, D
m∞\B•(x0)(x∗,r)
int has a continuous

extension to m∞ \B•(x0)(x∗, r), which is a metric on m∞ \B•(x0)(x∗, r). Consider both B
•(x0)(x∗, r)

and m∞ \B•(x0)(x∗, r) as metric spaces for these extended intrinsic metrics. Then, B•(x0)(x∗, r)

equipped with the restricted volume measure on m∞, distinguished point x∗ and distinguished bound-

ary ∂B•(x0)(x∗, r) is a random variable with values in K•b, and the same holds for m∞ \B•(x0)(x∗, r).

Furthermore, for all positive measurable functions F and G defined on K•b, we have for all r, z > 0

that

N[r]
0

(
F
(
B•(x0)(x∗, r)

)
G
(
m∞ \B•(x0)(x∗, r)

) ∣∣∣ZW∗+r = z
)
= E[F (Hr,z)]E[G(Dz)].
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The following two-pointed version will be also very useful. Let Z
x∗(x0)
r be the boundary length of

B•(x0)(x∗, r) (equal to ZW∗+r) and Z
x0(x∗)
r be the boundary length of B•(x∗)(x0, r). Denote Θr,z the

distribution of the hull Hr,z and

Cx∗,x0
r := m∞ \ (B•(x0)(x∗, r) ∪B•(x∗)(x0, r)). (1.21)

Analogously to the extension from K•b to K•b, we let Kbb be the space of (equivalence classes for

{dGHP = 0} of) compact measure metric spaces with two distinguished boundaries. We refer to the

original reference for a proof of the following statement.

Theorem 1.34 (Corollary 9 in [7]). With full N0(· ∩ {D(x0, x∗) > 2r})-measure, DCx∗,x0
r

int has a

continuous extension to Cx∗,x0
r , which is a metric on this space. We equip this metric space with

the restriction of the volume measure on m∞, and the distinguished boundaries ∂B•(x0)(x∗, r) and

∂B•(x∗)(x0, r). Then, this space is a random variable with values in Kbb. Furthermore, for all positive

measurable functions F1, F2 and G defined on Kbb, we have for all r, z > 0 that

N[2r]
0

(
F1

(
B•(x0)(x∗, r)

)
F2

(
B•(x∗)(x0, r)

)
G
(
Cx∗,x0
r

))
= N[2r]

0

(
Θ

r,Z
x∗(x0)
r

(F1)Θr,Z
x0(x∗)
r

(F2)G
(
Cx∗,x0
r

))
.
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Figure 1.9: The Markov property of the Brownian sphere states that, conditionally on the length

of the red “loop” in the picture, the blue and purple shaded parts of m∞ are independent and

distributed as a hull and a Brownian disk, respectively.
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Chapter 2

Preliminaries on the Hausdorff dimension

In this chapter, we define the Hausdorff dimension of a bounded metric space and its relation with

finite measures, namely, through Frostman lemma and the energy method. Then we state and present

the proof of Evans theorem on the Hausdorff dimension of the Brownian cone points, as a warm-up

towards the next chapter concerning the Hausdorff dimension of a subset of the Brownian sphere.

The content of this chapter is completely based on [17].

2.1 Definition and main properties

We recall the main concepts used to define the Hausdorff dimension of a set. From now on, fix (E, d)

a bounded metric space, that is, sup{d(x, y) : x, y ∈ E} < ∞. The α-Hausdorff content of E is

defined as

Hα
∞(E) := inf

{∑
k∈N

diam(Ak)
α : (Ak)k∈N covering of E

}
.

Here, the quantity
∑

k∈N diam(Ak)
α is called α-value of (Ak)k∈N. Observe that if 0 ≤ α ≤ β, then

Hα
∞(E) = 0 implies Hβ

∞(E) = 0. Thus we define the Hausdorff dimension as

dimH(E) := inf{α ≥ 0 : Hα
∞(E) = 0} = sup{α ≥ 0 : Hα

∞(E) > 0} (2.1)

Additionally, for all δ ≥ 0 we introduce

Hα
δ (E) := inf

{∑
k∈N

diam(Ak)
α : (Ak)k∈N covering of E with diam(Ak) ≤ δ for all k ∈ N

}
,

and the Hausdorff measure defined by Hα(E) := limδ↘0Hα
δ (E). We can express the Hausdorff

dimension in terms of the Hausdorff measure, thanks to the following result. We refer to [17] for a

proof.
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Proposition 2.1 (Proposition 4.9 in [17]). For each α ≥ 0, Hα
∞(E) = 0 if, and only if Hα(E) = 0.

Consequently,

dimH(E) = inf{α ≥ 0 : Hα(E) = 0} = sup{α ≥ 0 : Hα(E) <∞}

= sup{α ≥ 0 : Hα(E) > 0} = sup{α ≥ 0 : Hα(E) = ∞}.

We record two simple but useful properties of the Hausdorff dimension, namely, monotonicity and

countable stability. The latter allows us to simplify the computation of the Hausdorff dimension of a

set built as a countable union, by computing the individual Hausdorff dimensions of the sets in the

union.

Proposition 2.2.

� (Monotonicity) If A,B ⊆ E are such that A ⊆ B, then dimH(A) ≤ dimH(B).

� (Countable stability) Let E1, E2, · · · ⊆ E. Then, it holds that

dimH

(⋃
k∈N

Ek

)
= sup

k∈N
dimH(Ek). (2.2)

Proof. For the monotonicity, if A ⊆ B and (Bk)k∈N is a covering of B, then (Bk)k∈N is also a covering

of A. For any α ≥ 0, this gives that Hα
∞(A) ≤

∑
k∈N diam(Bk)

α and therefore Hα
∞(A) ≤ Hα

∞(B).

From this inequality, {α ≥ 0 : Hα
∞(B) = 0} ⊆ {α ≥ 0 : Hα

∞(A) = 0} and dimH(A) ≤ dimH(B)

follows from (2.1).

For the countable stability, suppose first that both sides of (2.2) are finite. The inequality

dimH

(⋃
k∈N

Ek

)
≥ sup

k∈N
dimH(Ek)

follows by monotonicity. For the converse inequality, if (Ak
i )i∈N is a covering of Ek for each k ∈ N,

then (Ak
i )i,k∈N is a covering of

⋃
k∈NEk. If α > 0 is given, it holds that

Hα
∞

(⋃
k∈N

Ek

)
≤
∑
k∈N

∑
i∈N

diam(Ak
i )

α.

Taking infimum for each k ∈ N, over all the coverings (Ak
i )i∈N of Ek, gives

Hα
∞

(⋃
k∈N

Ek

)
≤
∑
k∈N

Hα
∞(Ek).

If α > supk∈N dimH(Ek), we see from (2.1) that all the terms in the last sum vanish, so that

Hα
∞
(⋃

k∈NEk

)
= 0 and dimH

(⋃
k∈NEk

)
≤ α. Letting α ↘ supk∈N dimH(Ek) gives (2.2). From

the proof, we can easily see how to adapt it to the cases where one side of (2.2) is infinite.
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It follows from (2.1) that to give an upper bound for the Hausdorff dimension of a set, it suffices to

find a suitable covering and compute its α-value. Now, we will present methods to give lower bounds

for the Hausdorff dimension. The first method will be the mass distribution principle, that allows

us to give a lower bound for the Hausdorff dimension by finding a measure that is dominated by the

diameter to some power.

Theorem 2.3 (Mass distribution principle, Theorem 4.19 in [17]). Let α ≥ 0. Suppose there exists

a nonzero finite measure µ on E and constants C, δ > 0 such that for all V ⊆ E closed such that

diam(V ) ≤ δ, µ(V ) ≤ C diam(V )α. Then,

Hα
δ (E) ≥

µ(E)

C
> 0.

In particular, dimH(E) ≥ α.

Proof. Let (Ek)k∈N be a covering of E such that diam(Ek) ≤ δ for all k ∈ N. Then,

0 < µ(E) ≤
∑
k∈N

µ(Ek) ≤ C
∑
k∈N

diam(Ek)
α =

∑
k∈N

diam(Ek)
α.

Taking infimum over (Ek)k∈N gives Hα
δ (E) ≥ µ(E)/C > 0 and dimH(E) ≥ α follows by Proposition

2.1.

We can state a converse of the mass distribution principle known as Frostman lemma. The metric

space taken here is Rd with any distance, say, the Euclidian distance. We refer to [17] for a proof.

Theorem 2.4 (Frostman lemma, Theorem 4.30 in [17]). If A ⊆ Rd is a closed set with Hα(A) > 0,

then there exists a probability measure µ on A and a constant C > 0 such that µ(D) ≤ C diam(D)α

for all D ⊆ A Borel measurable.

The last method to lower bound the Hausdorff dimension that we will present needs the concept of

energy of a measure. Given a nonzero finite measure µ on E, the α-energy of µ is defined as

Iα(µ) :=

∫∫
µ(dx)µ(dy)

d(x, y)α
.

Using this object, the energy method allows us to lower bound the Hausdorff dimension by finding

a measure with finite energy.

Theorem 2.5 (Energy method, Theorem 4.27 in [17]). Let α ≥ 0 and µ be a nonzero finite measure

on E. Then, for all δ > 0, (∫
d(x,y)<δ

dµ(x)dµ(y)

d(x, y)α

)−1

µ(E)2 ≤ Hα
δ (E). (2.3)

In particular, Iα(µ) <∞ implies dimH(E) ≥ α.
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Proof. Let δ > 0 and (Ak)k∈N be a pairwise disjoint covering of E. Then,∫
d(x,y)<δ

dµ(x)dµ(y)

d(x, y)α
≥
∑
k∈N

µ(Ak)
2

diam(Ak)α
.

On the other hand, by Cauchy-Schwartz inequality we have

µ(E)2 ≤

(∑
k∈N

µ(Ak)

)2

≤

(∑
k∈N

diam(Ak)
α

)(∑
k∈N

µ(Ak)
2

diam(Ak)α

)

≤

(∑
k∈N

diam(Ak)
α

)∫
d(x,y)<δ

dµ(x)dµ(y)

d(x, y)α

If ε > 0 is given and (Ak)k∈N is a pairwise disjoint covering such that diam(Ak) ≤ δ for each k ∈ N
and satisfying

∑
k∈N diam(Ak)

α ≤ Hα
δ (E) + ε, we deduce from the above computations that

µ(E)2 ≤ (Hα
δ (E) + ε)

∫
d(x,y)<δ

dµ(x)dµ(y)

d(x, y)α
.

Letting ε ↘ 0 gives (2.3). If Iα(µ) < ∞, then the left-hand side of (2.3) diverge as δ ↘ 0, so that

Hα(E) = ∞ and therefore dimH(E) ≥ α by Proposition 2.1.

2.2 Hausdorff dimension of Brownian cone points

In this section we state and sketch the proof of the result on the so-called Brownian cone points. Let

us fix some notation. For α, ξ ∈ [0, 2π), we define the cone of direction ξ and opening angle α as

C[α, ξ] := {rei(θ+ξ) : r > 0, |θ| ≤ α/2}.

We will consider cones of the form x+C[α, ξ], in which case x is called the tip of the cone. The dual

cone of x+ C[α, ξ] is defined as x+ C[2π − α, ξ].

Throughout this chapter, W = (W (t))t≥0 will always denote a Brownian motion, Px is the law of W

starting from x, and Ex is the expectation with respect to Px.

Definition 2.6. Let W = (W (t))t≥0 be a Brownian motion started at the origin. A point z = W (t),

for some t ∈ [0, 1], is called α-cone point if there exists ξ ∈ [0, 2π) and ε > 0 such that

W ([0, 1]) ∩B(z, ε) ⊆ z + C[α, ξ].

Informally, an α-cone point is a point z of the Brownian path for which there exists a sufficiently

small neighborhood of z, such that the restriction of the path to it is contained in some cone of

opening angle α.

The α-cone points are atypical points, since with full probability the Brownian motion does an infinite

number of windings around typical points of its trajectory. However, their existence is a non-trivial

question was completely answered by Evans in the following theorem.

32



Theorem 2.7. Almost surely, the following properties hold:

1. If α ∈ [0, π), α-cone points do not exist.

2. If α ∈ [π, 2π), α-cone points exist, and moreover,

dimH({z ∈ R2 : z is an α-cone point}) = 2− 2π

α
.

Note that cone points exist for the critical dimension α = π, but they have Hausdorff dimension

equal to 0. In the next sections, we will present the proof of Theorem 2.7 using the following scheme:

1. Approximation of the cone points: Since the α-cone points are atypical, it is better to

introduce an approximation of them to prove the result. It will be clear from the pictures why

it is the good approximation. In fact, the cone points can be easily recovered by intersecting

approximate cone points.

2. Estimates for the approximation: It is possible to compute explicit bounds for the prob-

ability of being an approximate cone point using the strong Markov property of W .

3. Upper bound: Using the estimates for the approximation, we estimate the probability that

any dyadic cube contains an approximate cone point. This yields estimates for both the

probability of the approximate cone points to be a non-empty set when α ∈ (0, π), and the

γ-value of this covering when α ∈ [π, 2π). In the latter case, this gives the upper bound for the

Hausdorff dimension as previously discussed.

4. Lower bound: We rely on an auxilliary theorem concerning the Hausdorff dimension of

random sets. Applied to the approximate cone points, this gives that the lower bound of the

Hausdorff dimension holds true with positive probability for a subset of the α-cone points,

which after Blumenthal’s law it turns out that it holds almost surely.

2.2.1 Approximation of the cone points

For all z ∈ R2, ε > 0 and δ ∈ (0, ε), define

Tδ(z) := inf{t ≥ 0 : W (t) ∈ B(z, δ)},

Sδ,ε(z) := inf{t ≥ Tδ/2(z) : W (t) /∈ B(z, ε)},

S(r)
ε (z) := inf{t ≥ r : W (t) /∈ B(z, ε)}.

Definition 2.8. Let α, ξ ∈ [0, 2π) and ε > 0. For each δ ∈ (0, ε), we call z ∈ R2 a (δ, ε)-

approximate cone point with direction ξ if

W ([0, Tδ(z)]) ⊆ z + C[α, ξ] and W ([Tδ/2(z), Sδ,ε(z)]) ⊆ z + C[α, ξ].

33



Note that a (δ, ε)-approximate α-cone point is not necessarily a point of the Brownian path. From

this definition we see that the approximation is well chosen, since an (actual) α-cone point is roughly

a (δ, ε)-approximate α-cone point for all δ > 0 and for some ε > 0 and direction ξ ∈ [0, 2π) which

is hidden in these definitions. Therefore, the estimates on the probability of being an approximate

cone point will give estimates of the actual cone points through a limit argument.

2.2.2 Estimates for the approximation

Now we estimate the probability of z to be an approximate cone point. To do so, we study separately

the trajectories in the definition of approximate cone points, thanks to the Markov property.

Lemma 2.9. For some constants depending only on α, we have that for all δ > 0 and z ∈ R2 with

0 ∈ z + C[α/2, ξ],

P0 (W ([0, Tδ(z)]) ⊆ z + C[α, ξ]) ≍
(
δ

|z|

) π
α

.

Proof. First, we derive an explicit formula for P0(W ([0, Tδ(z)]) ⊆ z + C[α, ξ]). Write z = |z|eiθ.
Apply skew-product representation (Theorem 7.26 in [17]) to the Brownian motion (z−W (t))t≥0 to

write W (t) = z −R(t)eiθ(t) for all t ≥ 0, where

� R(t) = eW1(H(t)),

� θ(t) = W2(H(t)),

� W1 and W2 are Brownian motions with W1(0) = log(|z|) and W2(0) = θ,

� H(t) = inf

{∫ u

0

exp(2W1(s))ds > t

}
.

Using this, we have H(Tδ(z)) = inf{u ≥ 0 : W1(u) ≤ log(δ)} = τlog(δ) and therefore,

{W ([0, Tδ/2(z)]) ⊆ z + C[α, ξ]} = {|W2(u) + π − ξ| ≤ α/2 for all u ∈ [0, τlog(δ)]}.

Using the independence of W1 and W2, the Laplace transform of τlog(δ) and Theorem 7.45 in [17]

(more precisely, equation (7.15)), we see that the probability of the right-hand side is equal to(
δ

|z|

) π
α

×
∞∑
n=0

4

(2n+ 1)π
sin

(
(2n+ 1)π(α/2 + ξ − π − θ)

α

)(
δ

|z|

)2n π
α

. (2.4)

For the upper bound, if |z| ≤ 2δ we can bound directly the probability using the Beurling estimate,

see [6]. If |z| ≥ 2δ, we can bound the series in (2.4) by a summable series. For the lower bound, let

κ ∈ (0, 1) be such that

∞∑
n=1

κ2n
π
α

(2n+ 1)
< sin(π/4).
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If κ|z| < δ, then the desired bound follows from Brownian scaling. If κ|z| ≥ δ, since 0 ∈ z+C[α/2, ξ],

we have |θ + π − ξ| ≤ α/4, so that the series in (2.4) is bounded below by

4

π
sin(π/4)−

∞∑
n=1

4κ2n
π
α

(2n+ 1)π
> 0.

The very same proof allows us to prove the following lemma concerning the second part of the

trajectory for an approximate cone point.

Lemma 2.10. For some constants depending only on α, we have that for all ε, δ > 0 with δ < ε and

x, z ∈ R2 with |x− z| = δ/2 and x− z ∈ C[α/2, ξ], we have

Px

(
W ([0, S(0)

ε (z)]) ⊆ z + C[α, ξ]
)
≍
(
δ

ε

) π
α

.

Now, we use lemmas 2.9 and 2.10 to upper bound the probability of a point to be an approximate

cone point.

Lemma 2.11. There exists C0 > 0 such that for all z ∈ R2,

P0(z is a (δ, ε)-approximate cone point) ≤ C0|z|−
π
α ε−

π
α δ

2π
α .

Proof. We use the strong Markov property on Tδ/2(z),

P(z is a (δ, ε)-approximate cone point)

≤ E
[
1{W ([0,Tδ(z)])⊆z+C[α,ξ]}PW (Tδ/2(z))(W ([0, S(0)

ε (z)]) ⊆ z + C[α, ξ]})
]

≤ C

(
δ

|z|

) π
α

× C

(
δ

ε

) π
α

= C2|z|−
π
α ε−

π
α δ

2π
α .

2.2.3 Upper bound

Define M(α, ξ, ε) to be the set of (δ, ε)-approximate α-cone points with direction ξ for all δ ∈ (0, ε).

By continuity of the Brownian motion, we can write

M(α, ξ, ε) = {z ∈ R2 : z = W (t) for some t > 0 and W ([0, S(t)
ε ]) ⊆ z + C[α, ξ]}.

Lemma 2.12. Almost surely, we have that

� if α ∈ (0, π), then M(α, ξ, ε) = ∅.

� if α ∈ [π, 2π), then dimH(M(α, ξ, ε)) ≤ 2− 2π/α.
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Proof. Let Cube = x0 + [0, 1]2 for some x0 ∈ R2. We will prove that M(α, ξ, ε) ∩ Cube = ∅ a.s. in

the case α ∈ (0, π) and dimH(M(α, ξ, ε) ∩ Cube) ≤ 2 − 2π/α in the case α ∈ [π, 2π). Let us start

with a geometric construction.

For each dyadic subcube D ⊆ Cube of side-length 2−k, let D∗ be a concentric circumference of radius

(1 +
√
2)2−k. Define the focal point x(D) as follows:

� If α ∈ (0, π), let x(D) be such that the two branches of x(D) + C[α, ξ] are tangent to D∗.

� If α ∈ [π, 2π), let x(D) be such that the two branches of the dual of x(D)+C[α, ξ] are tangent

to D∗.

In this setting, we can verify that

� for all k sufficiently large and D ∈ Dk, B(x, ε/2) ⊆ B(y, ε), and

� there exists constants c1, c2 > 0 depending only in α such that c1 < c2 and

y ∈ B(x, c1c22
−k) ⊆ B(y, c22

−k/2) ⊆ B(y, c22
−k) ⊆ B(x, c222

−k).

See Figure 2.1 for an illustration of the affirmations above. From these observations, we have that if

D contains a (c22
−k, ε)-approximate cone point, then

W ([0, Tc222−k(x)]) ⊆ x(D) + C[α, ξ] and W ([Tc1c22−k(x), Sc1c22−k,ε/2(x)]) ⊆ x(D) + C[α, ξ].

As in Lemma 2.11, we have that for some constant C1 > 0,

P(D contains a (c22
−k, ε)-approximate cone point) ≤ C1|x(D)|−

π
α ε−

π
α2−k 2π

α .

Moreover, for k sufficiently large and uniformly on D ∈ Dk, x(D) is far from the origin, so that

P(D contains a (c22
−k, ε)-approximate cone point) ≲ 2−k 2π

α .

where the implicit constant depends on α and ε. If α ∈ (0, π), then for all k sufficiently large,

P(M(α, ξ, ε) ∩ Cube ̸= ∅) ≤
∑
D∈Dk

D⊆Cube

P(D contains a (c22
−k, ε)-approximate cone point) ≲ 2k(2−

2π
α
),

and this quantity converge to 0 as k → ∞.

If α ∈ [π, 2π), we cover M(α, ξ, ε) with the collection of D ∈ Dk such that D contains a (c22
−k, ε)-

approximate cone point, for each k ≥ 0. For γ > 2− 2π/α, we have

E

[∑
D∈Dk

1{D contains a (c22−k, ε)-approximate cone point} diam(D)γ

]
≲ 2k(2−

2π
α
−γ),

and this quantity converge to 0 as k → ∞. Therefore, dimH(M(α, ξ, ε) ∩ Cube) ≤ γ almost surely,

and we conclude taking the limit γ ↘ 2− 2π/α.
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Figure 2.1: Nested balls around x(D) and a point in D. A Brownian trajectory is drawn in the event

where D contains a (c22
−k, ε)-approximate cone point.

We are now ready to prove the upper bound of Theorem 2.7.

Proof of the upper bound in Theorem 2.7. Let z ∈ R2 be an α-cone point and u > 0, and let t ∈ (0, 1)

be such that z = B(t). Then, there exists rational numbers q, ξ, ε > 0 such that

B([q, t]) ⊆ B(t) + C[α + u, ξ] and B([t, S(t)
ε (x)]) ⊆ B(t) + C[α + u, ξ].

If α ∈ [0, π), we can pick u > 0 such that α + u < π and we already shown in Lemma 2.12 that

these points do not exist, so there are no α-cone points. If α ∈ [π, 2π), by the previous argument we

have covered the set of α-cone points with a countable union of (δ, ε)-approximate cone points. By

the countable stability of the Hausdorff dimension and Lemma 2.12, it follows that the Hausdorff

dimension of the α-cone points is at most 2− 2π/(α + u). We conclude by taking the limit u↘ 0.

2.2.4 Lower bound

The proof of the lower bound requires an auxilliary theorem regarding the Hausdorff dimension

of a certain type of random set, often called limsup fractal, that is constructed as follows. Let

{Z(I) : I ∈ D} be a collection of random variables with values in {0, 1} and let

A :=
⋂
k≥1

⋃
D∈Dk
Z(I)=1

I. (2.5)

We have the following theorem regarding the Hausdorff dimension of A.

37



Theorem 2.13. Suppose that there exists γ > 0 such that the following conditions hold:

1. For all I, J ∈ D, I ⊆ J and Z(I) = 1 imply Z(J) = 1.

2. For all I ∈ D, E[Z(I)] ≍ diam(I)γ.

3. For all k ∈ N and I, J ∈ Dk with d(I, J) > 0, E[Z(I)Z(J)] ≲ diam(I)2γd(I, J)−γ.

Then, for all λ > γ and Λ ⊆ Cube with Hλ(Λ) > 0, there exists p > 0 such that

P(dimH(A ∩ Λ) ≥ λ− γ) ≥ p.

Proof. We fix λ > γ and Λ ⊆ Cube with Hλ(Λ) > 0. We will show that for some p > 0, the prob-

ability that there exists a probability measure µ with finite β-energy for all β ∈ (0, λ−γ) is at least p.

By Theorem 2.4, there exists a probability measure ν supported on Λ such that ν(D) ≲ diam(D)λ.

For each n ∈ N, let An :=
⋃

D∈Dn
Z(I)=1

I and define the measure

µn(B) = 2γnν(B ∩ An).

We will do a first and second moment estimate, as well as the estimate for the β-energy of µn.

First moment estimate. Observe that P(Z(I) = 1) = E[Z(I)] and diam(I) = d1/22−n for each I ∈ Dn

and n ∈ N. Then, for all n ∈ N we have

E[µn(An)] = 2γn
∑
I∈Dn

ν(I)P(Z(I) = 1) ≳ 2γn
∑
I∈Dn

ν(I) diam(I)γ ≳ 2γn
∑
I∈Dn

ν(I)2−nγ ≳ 1.

Second moment estimate. For all n ∈ N, we have

E[µn(An)
2] = 22nγ

∑
I,J∈Dn

E[Z(I)Z(J)]ν(I)ν(J).

Now we separate the sum in the pairs I, J ∈ Dn such that d(I, J) = 0 and d(I, J) > 0. Using

Z(J) ≤ 1 and the property of ν, the first sum can be bounded as

22nγ
∑

I,J∈Dn

d(I,J)=0

E[Z(I)Z(J)]ν(I)ν(J) ≲ 22nγ2−nλ
∑

I,J∈Dn

d(I,J)=0

E[Z(I)]ν(I) ≲ 2n(γ−λ) ≲ 1,

since γ − λ < 0. For the second sum, we use the hypothesis to bound this term as

22nγ
∑

I,J∈Dn

d(I,J)>0

E[Z(I)Z(J)]ν(I)ν(J) ≲
∑

I,J∈Dn

d(I,J)>0

d(I, J)−γν(I)ν(J) ≲
∫∫

|x− y|−γν(dx)ν(dy),
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where we used that for I, J ∈ Dn such that d(I, J) > 0, |x− y| ≲ d(I, J) for all x ∈ I and y ∈ J . To

bound the last integral, note that for all r > 0,∫
B(x,r)

|x− y|−γν(dy) =

∫ ∞

0

ν({y ∈ B(x, r) : |x− y|−γ > s})ds

≲
∫ ∞

r−γ

ν(B(x, s−1/γ))ds+

∫ r−γ

0

ν(B(x, r))ds

≲
∫ ∞

r−γ

s−λ/γds+ rλ−γ ≲ rλ−γ.

Therefore, ∫∫
|x− y|−γν(dx)ν(dy) ≤

∫∫
B(x,1)

|x− y|−γν(dy)ν(dx) ≲ 1.

Energy estimate. For all n ∈ N, we have

E[Iβ(µn)] = 22nγ
∑

I,J∈Dn

E[Z(I)Z(J)]
∫∫

I×J

|x− y|−βν(dx)ν(dy).

Again, we separate the sum in the pairs I, J such that d(I, J) = 0 and d(I, J) > 0. For the first

sum, we have

22nγ
∑

I,J∈Dn

d(I,J)=0

E[Z(I)Z(J)]
∫∫

I×J

|x− y|−βν(dx)ν(dy) ≲ 2nγ
∑

I,J∈Dn

d(I,J)=0

∫
I

∫
J

|x− y|−βν(dy)ν(dx).

Just as shown before, we have that∫
I

∫
J

|x− y|−βν(dy)ν(dx) ≲ 2−n(λ−β)ν(I),

so that the first sum is bounded up to positive constants by 2n(γ−λ+β)) which is less than 1 since

γ − λ+ β < 0. For the second sum,

22nγ
∑

I,J∈Dn

d(I,J)>0

E[Z(I)Z(J)]
∫∫

I×J

|x− y|−βν(dx)ν(dy) ≲
∑

I,J∈Dn

d(I,J)=0

d(I, J)−γ

∫
I

∫
J

|x− y|−βν(dx)ν(dy).

Using that for I, J ∈ Dn such that d(I, J) > 0 we have d(I, J)−γ ≲ |x− y|−γ for all x ∈ I and y ∈ J ,

we can bound the previous term by∫∫
|x− y|−(γ+β)ν(dx)ν(dy).

Since γ + β < λ, this integral is finite.

As a result of the previous estimates, we see that there exists constants c1, c2, c3 > 0 such that for all

n ∈ N, E[µn(An)] ≥ c1, E[µn(An)
2] ≤ c2 and E[Iβ(µn)] ≤ c3. By Paley-Zigmund inequality, we have

P(µn(An) ≥ c1/2) ≥ P(µn(An) ≥ E[µn(An)]/2) ≥
1

4

E[µn(An)]
2

E[µn(An)2]
≥ c21

4c2
.
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Define p := c21/(8c2). Combining with the β-energy estimate and using Markov’s inequality, we can

find ℓ = ℓ(β, p) > 0 sufficiently large so that

P(Iβ(µn) ≥ ℓ) ≤ E[Iβ(µn)]

ℓ
≤ c3

ℓ
≤ p.

This gives that for all n ∈ N, P(Iβ(µn) ≤ ℓ and µn(An) ≥ c1) ≥ p, and therefore

P(lim sup{Iβ(µn) ≤ ℓ and µn(An) ≥ c1/2}) ≥ p.

In the event lim sup{Iβ(µn) ≤ ℓ and µn(An) ≥ c1} we can pick a subsequence of µn converging to

some µ. Such µ is supported by A, satisfies µ(Cube) ≥ c1/2 and has finite β-energy, concluding the

proof.

We will use the previous theorem with a family {Z(I) : I ∈ D} related to the Brownian cone points

defined as follows. Let Cube = x0 + [0, 1]2 ⊆ C[α/2, 0] and R > 2 sufficiently large such that

Cube ⊆ B(0, R/2). For all k ∈ N, define

rk = R−
k∑

j=1

2−j.

Note that rk ↘ R− 1 > R/2. For each k ∈ N and I ∈ Dk, denote by z the center of I and define

Z(I) :=

1, if z is a (2−k, rk)-approximate cone point with ξ = π,

0, otherwise.

Lemma 2.14. The family {Z(I) : I ∈ D} satisfies the hypothesis of Theorem 2.13 with γ = 2π/α.

We refer to lemmas 10.46 and 10.47 in [17] for the proof. We are now ready to prove the lower bound

in Theorem 2.7.

Proof of the upper bound in Theorem 2.7. We will find a subset of the α-cone points with Hausdorff

dimension larger that 2−2π/α. The limsup fractal A obtained by (2.5) with the family {Z(I) : I ∈ D}
defined above satisfies by continuity of the Brownian motion,

A ⊆ Ã := {W (t) : W ([0, t]) ⊆ W (t) + C[α, ξ] and W ([t, S
(t)
R/2(W (t)]) ⊆ W (t) + C[α, ξ]}.

By Theorem 2.13, dimH(Ã) ≥ 2− 2π/α with positive probability. Let δ, r > 0. Define the sequence

of stopping times (τ
(δ)
k )k∈N by τ

(δ)
0 = 0, and

τ
(δ)
k+1 := S

(τ
(δ)
k )

δr (B(τ
(δ)
k )), for all k ∈ N.

Define η = R/(2r) For all δ > 0 and k ∈ N, define

A
(δ)
k := {B(t) : τ

(δ)
k ≤ t < τ

(δ)
k+1 and W ([τ

(δ)
k , S(t)

ηr (W (t))]) ⊆ W (t) + C[α, ξ]}.
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Then, we have

Ã ⊆
⋃
k∈N

A
(δ)
k

Let β < 2−2π/α. By the Markov property, the events {dimH(A
(δ)
k ) ≥ β} have all the same probability

p(δ), which is strictly positive since otherwise it contradicts the lower bound of the dimension of Ã.

In particular, with probability at least p(δ) it holds that

dimH({W (t) : 0 ≤ t < S
(0)
δr (0) and W ([0, S(t)

ηr (W (t))]) ⊆ W (t) + C[α, ξ]}) ≥ β.

By scaling, this event does not depend on r > 0 and neither p(δ). Therefore, by Kolmogorov’s 0-1

law we have p(δ) = 1 and by taking β ↗ 2− 2π/α we have almost surely that

dimH({W (t) : 0 ≤ t < S
(0)
δ (0) and W ([0, S(t)

η (B(t))]) ⊆ W (t) + C[α, ξ]}) ≥ 2− 2π

α
.

Finally, for each ε ∈ (0, 1), we can find δ, η > 0 such that S
(0)
δ (0) < 1 and S

(t)
η (W (t)) for all t ∈ [0, 1]

with probability 1− ε. It follows that with probability at least 1− ε,

dimH({W (t) : 0 ≤ t < 1 and W ([0, 1]) ⊆ W (t) + C[α, ξ]}) ≥ 2− 2π

α
,

so that if we take ε ↘ 0, the previous event holds almost surely. Such set is contained in the set of

α-cone points, concluding the proof.
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Chapter 3

Hausdorff dimension of geodesic stars

In this chapter, we present the techniques applied to the Brownian sphere in order to study the so-

called geodesic m-stars, specifically its Hausdorff dimension. The lower bound technique will be the

one developed by Le Gall in [7], based on first and second moment estimates for an approximation

of the geodesic m-stars. The upper bound technique will be the one developed by Miller and Qian

in [15], based on the direct computation of the Hausdorff measure of the geodesic m-stars, for which

fine estimates on the probability of the existence of m-stars are required.

Let us formally define what is a (geodesic) m-star in a metric space.

Definition 3.1. Let (E, d) be a metric space. A point x ∈ E is called (geodesic) m-star if m

disjoint (except at x) geodesics emerge from x.

In the Brownian sphere, the existence of m-stars for m ∈ {1, 2} is clear from the fact that it is a

geodesic space and that any point lying in a geodesic is a 2-star. The existence of 3-stars can be seen

from the fact that two different geodesics from typical points towards x0 coalesce before reaching

x0 (recall Proposition 1.28), and the point where they coalesce is a 3-star. The existence of 4-stars

has not been established explicitly before, but we will see that this set has Hausdorff dimension 1,

implying its existence. The existence of 5-stars remains unknown, but according to the theorem that

we will present, their Hausdorff dimension is 0 in any case.

The theorem that we are referring to, which is the main result of this chapter, is the following.

Theorem 3.2 (Le Gall, Miller & Qian). For all integers m ≥ 1, let Gm be the set of geodesic m-stars

of the Brownian sphere.

� If m ∈ {1, 2, 3, 4, 5}, dimH(Gm) = 5−m a.s.

� If m ≥ 6, the set Gm is a.s. empty.
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3.1 Lower bound

The lower bound for dimH(Gm) in Theorem 3.2 is the consequence of first and second moment

estimates for measures supported in an approximation of the geodesic stars. To prove these estimates,

the main tool is a spatial Markov property of the Brownian sphere, identifying the law of a hull and

its complement, conditionally on the boundary. Then, standard techniques as the ones described for

the lower bound of the Brownian cone points can be implemented to conclude the result. From now

on, we present the proof of the following result.

Theorem 3.3. If m ∈ {1, 2, 3, 4}, dimH(Gm) ≥ 5−m a.s.

Note that G1 = m∞ since the Brownian sphere is a geodesic space. Considering that dimH(m∞) = 4

(see [8]), Theorem 3.3 holds trivially in the case m = 1. Therefore, we will exclude m = 1 from the

proof of the lower bound for convenience.

3.1.1 First moment estimate

In this section, we state and present the main ingredients of the first moment estimate proved by Le

Gall in [7]. The proofs strongly depend on the symmetries, the spatial Markov property, the slices

defined in Section 1.3.4, and the explicit formulas for the moments of the volume of balls and exit

measures in the Brownian sphere. However, due to its technicalities, we refer to the original reference

for the full proofs.

Slices in hulls

We start with some lemmas relating hulls and slices defined in sections 1.3.3 and 1.3.4, respectively.

These results are the toolbox for the first moment estimate, see Proposition 3.9. Specifically, these

lemmas collect information about hulls containing an approximated geodesic star, and this informa-

tion is enough to obtain a first moment estimate, after an application of the Markov property.

We start with the following result, that can be deduced from the fact that γ′ and γ′′ are, except at

their endpoints, disjoint curves, as claimed in Section (1.3.4). In particular, the sequence (δk)k∈N

appearing here will be used to argue that a sequence of measures supported on the approximated

geodesic stars converge weakly to a measure on actual geodesic stars, see Proposition 3.12.

Lemma 3.4 (Lemma 10 in [7]). Let ε ∈ (0, 1/4). There exists a deterministic sequence (δk)k∈N such

that for all h ∈ [1− ε, 1], the probability under N0(·|W∗ = −h) of the event where

inf
s,t∈[1−2−k,1−2−k−3]

D̃(γ′(s), γ′′(t)) ≥ δk, for all k ≥ 1 such that 2−k−4 > ε,

is at least 9/10.
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Now, we implement the machinery of the slices to obtain fine estimates on the distances between

disjoint geodesics towards a geodesic star. For z, ε > 0 and m ∈ {1, 2, 3}, let us consider the event

where at least m snakes in the hull H1,z (recall its definition from Section 1.3.3) have a global minima

strictly below of −1 + ε, namely,

Em
ε := {#{i ∈ I : W∗(ωi) < −1 + ε} ≥ m}. (3.1)

By construction of the hull, P(Em
ε ) is the probability of a Poisson random variable to be larger than

m, with parameter given by∫
[0,z]×{ω∈S0:W∗(ω)<−1+ε}

dt⊗ N0(dω ∩ {W∗ > −1}) = zN0(−1 < W∗ < −1 + ε) =
3z

2
((1− ε)−2 − 1),

where we used Proposition 1.15 for the distribution of W∗. Let us now argue in the event Em
ε . Let

i1, . . . , im ∈ I be the indices such that W∗(ωi) < −1 + ε and recall the notation ζi = ζ(ωi). Set

Rj := ΠH(T (ζij)), for j ∈ {1, . . . ,m}, and R0 := ΠH(T (ζ∗)).

If there are more than m such indices, we keep those giving the smallest values of ti. For each

j ∈ {1, . . . ,m}, let Sj be the slice obtained from T (ζij), and let S0 be the slice obtained from T (ζ∗),

as in the Section 1.3.4. Let us see that Rj is identified with Sj for j ∈ {1, . . . ,m}. Note that this is

false for j = 0, as we shall comment.

Lemma 3.5. For all a, b ∈ T (ζi1), DH(a, b) = 0 if, and only if D̃(a, b) = 0. Here, D̃ stands for the

distance in the slice S1.

Proof. Let a, b ∈ T (ζi1) and suppose that D̃(a, b) = 0. Then, there exists s, t ∈ [0, σ(ωi1)] such that

s ≤ t, pζi1 (s) = a, pζi1 (t) = b and

Ŵs(ωi1) = Ŵt(ωi1) = min
r∈[s,t]

Ŵr(ωi1). (3.2)

If [u1, u1+σ(ωi1)] ⊆ [0,Σ] is the interval where the cyclic exploration (Er)r∈[0,Σ] of H explores T (ζi1),

then [a, b]H ⊆ {Eu1+r : s ≤ r ≤ t} since [a, b]H is defined s and t as before with the requirement that

[s, t] is as small as possible. Therefore, minr∈[s,t] Ŵr(ωi1) ≤ minc∈[a,b]H Λc so that (3.2) is equivalent

to

Λa = Λb = min
c∈[a,b]H

Λc, (3.3)

which means DH(a, b) = 0. On the other hand, suppose DH(a, b) = 0 and assume without loss

of generality that (3.3) holds. Note that this is possible only if [a, b]H ⊆ T (ζi1), since otherwise

b∗ ∈ [a, b]H and (3.3) falls down. Again, since [a, b]H is defined with the requirement that the

corresponding interval in [0,Σ] is the smallest possible, we have that

min
c∈[a,b]H

Λc = max

{
min
r∈[s,t]

Ŵr(ωi1) : s, t ∈ [0, σ(ωi1)] such that pζi1 (s) = a, pζi1 (t) = b

}
,

so that for the optimal choice of s and t, we see that (3.3) holds.
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The conclusion of Lemma 3.5 is that R1 is identified as a set with S1, since the equivalence relation

used to define them identify the same points. This result remains true for any j ∈ {2, . . . ,m}.
Moreover, note that for all a, b ∈ T (ζi1),

DH(a, b) ≤ D̃(a, b), (3.4)

which can be seen by definition, recall (1.14) and (1.17). Since (R1, DH) and (S1, D̃) are compact

metric spaces, (3.4) implies that they are homeomorphic.

Consider the geodesics γ′ and γ′′ defined in (1.19) and (1.20), respectively, corresponding to S1.

Defining Γ′ := γ′([0, 1]) and Γ′′ := γ′′([0, 1]), we see that Γ′ ∪ Γ′′ is identified with the topological

boundary of R1. In fact, a point in a ∈ T (ζi1) is identified with a point in H \ T (ζi1) if, and only

if a ∈ Γ′ ∪ Γ′′. Using this fact, we will further denote Γ′ = ∂ℓR1 and Γ′′ = ∂rR1, and call them

left and right boundaries of R1, respectively. The sets ∂ℓRj and ∂rRj are defined analogously for

j ∈ {2, . . . ,m}. Finally, define Int(R1) = R1 \ (Γ′ ∪ Γ′′).

The next lemma states that the length of any continuous path that crosses R1 from Γ′ to Γ′′ and

coincides with γ′ and γ′′ the rest of the times, is the same for DH and D̃. We refer to the original

reference for a proof.

Lemma 3.6 (Lemma 11 in [7]). Let ϕ = (ϕ(t))0≤t≤1 be a continuous path in R1 satisfying:

(H) There exists u, v ∈ [0, 1] such that u ≤ v, ϕ([0, u]) ⊆ ∂ℓR1, ϕ((u, v)) ⊆ Int(R1) and ϕ([v, 1]) ⊆
∂rR1.

Then, the length of ϕ with respect to DH coincides with its length with respect to D̃.

Now, we combine lemmas 3.4, 3.5 and 3.6 to bound the probability of the event where any path

satisfying (H) for a specific choice of u and v depending on k ∈ N, has length at least δk.

Lemma 3.7 (Lemmas 12 and 13 in [7]). Let ε ∈ (0, 1/4) and j ∈ {0, . . . ,m}. The following event,

denoted Dm,j
ε , holds with probability at least 9/10 under P(·|Em

ε ). For every integer k ≥ 1 such that

2−k−4 > ε, for every continuous path (ϕ(t))0≤t≤1 in Rj such that ϕ(0) ∈ γ′([1− 2−k, 1− 2−k−3]) and

ϕ(1) ∈ γ′′([1− 2−k, 1− 2−k−3]), the length of ϕ (with respect to DH) is at least δk.

Proof. The case j = 0 is more delicate and we will justify it later. For j ∈ {1, . . . ,m}, this is a direct

application of Lemma 3.6. Indeed, if ϕ is a path like in the statement of the lemma, then extend ϕ

to a path ϕ̃ by gluing to ϕ(0) the range set γ′([0, t1]) where γ
′(t1) = ϕ(0), and analogously glue to

ϕ(1) the range set γ′′([t2, 1]) where γ
′′(t2) = ϕ(1). Then ϕ̃ satisfies (H) and the length of this path

is bounded below by D̃(ϕ(0), ϕ(1)) ≥ δk. Since the length of ϕ̃ for DH and D̃ coincide, the result

follows by Lemma 3.6.
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For j = 0, we cannot apply Lemma 3.6 directly. In fact, by confluence of geodesics towards a typical

point in the Brownian sphere, in S0 the range sets γ′([u, v]) and γ′′([u, v]) are disjoint if, and only if

0 ≤ u ≤ v < µ0, where µ0 := sup{−W∗(ωi) : i ∈ I} (note that µ0 ∈ [1 − ε, 1)). This is the reason

why R0 and S0 are not identified. However, let us introduce slight modifications to the previous

lemmas in order to make the statement valid for j = 0. Namely:

� In Lemma 3.4, suppose that δk < 2−k−5 for all k ∈ N.

� In Lemma 3.6, add to (H) the restriction DH(ϕ(t), b∗) > ε for all t ∈ [0, 1].

Both assumptions do not alter the validity of the cases j ∈ {1, . . . ,m}. However, by adding these

assumptions, we are considering paths that do not visit {x ∈ R0 : DH(x, x∗) ≤ ε} and the proof in

this case is analogous to the cases j ∈ {1, . . . ,m}.

The last ingredient of the first moment estimate is the following lemma.

Lemma 3.8. For all ε ∈ (0, 1/4) and z > 0, define Am
ε as the event where there exists m+1 geodesics

η0, . . . , ηm from the boundary of H1,z to b∗, such that the sets ηj([0, 1 − ε]) for j ∈ {0, . . . ,m} are

disjoint, and moreover

DH(ηi(t), ηj(t)) ≥ δk,

for all i, j ∈ {0, . . . ,m} with i < j, for all t ∈ [1 − 2−k−1, 1 − 2−k−2] and for all k ≥ 1 such that

2−k−4 > ε. Then, there exists a constant c > 0 such that P(Am
ε ) ≥ cεm.

Proof. Recall the event Em
ε defined in (3.1). We have P(Em

ε ) ≳ εm by construction, so that if we

verify P(Am
ε |Em

ε ) ≥ c′ for some constant c′ > 0, the claim follows. For each j ∈ {0, . . . ,m} set

Bm,j
ε := Em

ε ∩Dm,j
ε (recall that Dm,j

ε was defined in Lemma 3.7) and Bm
ε :=

⋂m
j=1B

m,j
ε . We have that

P((Bm,j
ε )c|Em

ε ) ≤ 1/10, so that P(Bm
ε |Em

ε ) ≥ 1/2. It remains to show that Bm
ε ⊆ Am

ε . To do so, set

s′j := inf{s ∈ [0,Σ] : Es = tij}, s′′j := sup{s ∈ [0,Σ] : Es = tij}, j ∈ {1, . . . ,m},

s′0 := inf{s ∈ [0,Σ] : Es = U∗}, s′′0 := sup{s ∈ [0,Σ] : Es = U∗},

and consider the geodesics γs′j and γs′′j defined in (1.15) and (1.16) relative to Rj. For j ∈ {1, . . . ,m},
note that γs′j([u, v]) and γs′′j ([u, v]) are disjoint whenever 0 ≤ u ≤ v < µj := −W∗(ωij). Then,

we can see that γs′j([0, µj]) = ∂ℓRj and γs′′j ([0, µj]) = ∂rRj for all j ∈ {0, . . . ,m} (recall that

µ0 = sup{−W∗(ωi) : i ∈ I}). Assuming that Bm
ε holds, let us justify that we can take ηj = γs′j for

Am
ε to hold. In fact, by construction, the sets γs′j([0, 1− ε]) for j ∈ {0, . . . ,m} are disjoint. Since we

are assuming that Dm,j
ε holds for all j ∈ {0, . . . ,m}, for all integers k ≥ 1 such that 2−k−4 > ε, the

length of any continuous path starting from γs′j([1−2−k, 1−2−k−3]), ending in γs′′j ([1−2−k, 1−2−k−3])

and staying in Rj, is bounded below by δk. This implies that

DH(γs′i(t), γs′j(t)) ≥ δk,
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for any different i, j ∈ {0, . . . ,m}, for all t ∈ [1 − 2−k−1, 1 − 2−k−2] and for all k ≥ 1 such that

2−k−4 > ε. This comes from the fact that for any different i, j ∈ {0, . . . ,m}, a path starting from

∂ℓRi and reaching ∂ℓRj that stays away from b∗, always hits the ∂rRi or ∂rRj by planarity. Then,

Lemma 3.7 implies that the distance between these left boundaries is bounded below by δk, hence

the desired bound holds. This concludes the proof.

Proof of the first moment estimate

We are ready to state and present the proof of the first moment estimate. To do so, fix m ∈ {1, 2, 3}
and consider the following objects:

� For x, y ∈ m∞, r > 0 and ε ∈ (0, r), define G
(m)
ε,r (x, y) as the event where there exists m + 1

geodesics η0, η1, . . . , ηm such that for all j ∈ {0, . . . ,m}, ηj(0) ∈ ∂B•(y)(x, r), ηj(r) = x and the

range sets ηj([0, r − ε]) for j ∈ {0, . . . ,m} are disjoint.

� Consider the sequence (δk)k∈N of Lemma 3.4. Define G̃
(m)
ε,r (x, y) as G

(m)
ε,r (x, y) with the additional

condition that the geodesics η0, . . . , ηm must satisfy

D(ηi(t), ηj(t)) ≥ δk,

for all t ∈ [1− 2−k−1, 1− 2−k−2], k ≥ 1 with 2−k−4 > ε, and all distinct i, j ∈ {0, . . . ,m}.

� Define F
(m)
ε,r (x, y) = 1

G
(m)
ε,r (x,y)

and F̃
(m)
ε,r (x, y) = 1

G̃
(m)
ε,r (x,y)

.

The first bulllet point defines what we referred to as approximated geodesics stars.

Proposition 3.9 (Proposition 14 in [7]). There exists a constant c > 0 such that for all ε ∈ (0, 1/4),

we have

N0

(∫
Vol(dx)

σ
1{D(x,x∗)<2}F̃

(m)
ε,1 (x, x∗)

)
≥ cεm. (3.5)

Proof. By Proposition 1.18, the left-hand side of (3.5) can be written as

N0

(
1{D(x0,x∗)<2}F̃

(m)
ε,1 (x∗, x0)

)
=

3

2
N[1]

0

(
1{D(x∗,x0)<2}F̃

(m)
ε,1 (x∗, x0)

)
.

The indicator 1{D(x∗,x0)<2} is a function of m∞ \B•(x0)(x∗, 1) and F̃
(m)
ε,1 (x∗, x0) is a function of

B•(x0)(x∗, 1). By Theorem 1.33, we have that

N[1]
0

(
1{D(x∗,x0)<2}F̃

(m)
ε,1 (x∗, x0)

)
= N[1]

0

(
θ(ZW∗+1)N[1]

0

(
F̃

(m)
ε,1 (x∗, x0)

∣∣∣ZW∗+1

))
,

where θ(z) is the probability for a free pointed Brownian disk that the distance from the distin-

guished point to the boundary is less than 1, which is bounded below by a positive constant. Since,

B•(x0)(x∗, 1) is distributed as a hull of radius 1 and diameter z under N0(·|ZW∗+1 = z), we find that

N[1]
0

(
F̃

(m)
ε,1 (x∗, x0)

∣∣∣ZW∗+1

)
≳ εm by Lemma 3.8. This completes the proof.
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3.1.2 Second moment estimate

In this section, we state and present the main ingredients of the second moment estimate proved by

Le Gall in [7]. Propositions 3.10 and 3.11 will give both the second moment estimate and the energy

estimate (in the language of Theorem 2.13) during the construction of a measure supported on Gm.

We keep the notations introduced in the previous section, namely, the functions F
(m)
ε,r (x, y).

Proposition 3.10 (Lemma 15 in [7]). Let δ ∈ (0, 1). There exists a constant C(δ) > 0 such that for

all ε ∈ (0, 1/8) and every integer k ≥ 1 such that 2−k > 2ε,

N0

(
1

σ

∫∫
Vol(dx)Vol(dy)1{D(x,y)∈[2−k+2,2−k+3]}F

(m)
ε,1 (x, x∗)F

(m)
ε,1 (y, x∗)

)
≤ C(δ)2

−k(4−m−δ)ε2m.

Sketch of proof. This proof is quite technical and we will briefly present only the arguments concern-

ing the application of symmetries and the spatial Markov property of the Brownian sphere. Let us

proceed in steps.

Step 1: Rewriting the left-hand side. Write Γε,k(x∗, x, y) = 1{D(x,y)∈[2−k+2,2−k+3]}Fε,1(x, x∗)Fε,1(y, x∗).

Using Proposition 1.18, we can write the left-hand side as

N0

(
σ

∫∫
Vol(dx)

σ

Vol(dy)

σ
Γε,k(x∗, x, y)

)
= N0

(∫
Vol(dz)Γε,k(z, x∗, x0)

)
= A1

ε,k + A2
ε,k,

where A1
ε,k is obtained by restricting the integral to Cx∗,x0

2−k , which was introduced in (1.21).

Step 2.1: First estimates of A1
ε,k. Observe that

Γε,k(z, x∗, x0) = 1{D(x∗,x0)∈[2−k+2,2−k+3]}Fε,1(x∗, z)Fε,1(x0, z).

By definition, we have

Fε,1(x∗, z) ≤ Fε,2−k(x∗, z)F2−k+4,1(x∗, z),

Fε,1(x0, z) ≤ Fε,2−k(x0, z).

Next, observe that z /∈ B•(x0)(x∗, 2
−k) implies that z and x0 are in the same connected component of

B(x∗, 2
−k)c. Similarly, z /∈ B•(x∗)(x0, 2

−k) implies that z and x∗ are in the same connected component

of B(x0, 2
−k)c. Therefore, if z /∈ B•(x0)(x∗, 2

−k) ∩B•(x∗)(x0, 2
−k), it holds that

B•(z)(x∗, 2
−k) = B•(x0)(x∗, 2

−k) and B•(z)(x0, 2
−k) = B•(x∗)(x0, 2

−k).

Combining with the previous bounds, we obtain

1{D(x∗,x0)>2−k}Fε,2−k(x∗, z) ≤ Fε,2−k(x∗, x0),

1{D(x∗,x0)>2−k}Fε,2−k(x0, z) ≤ Fε,2−k(x0, x∗).
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It follows that A1
ε,k is bounded by

N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]}Fε,2−k(x∗, x0)Fε,2−k(x0, x∗)

∫
Cx∗,x0
2−k

Vol(dx)F2−k+4,1(x∗, z)

)
Step 2.2: First use of Markov property. Observe that Fε,2−k(x∗, x0) is a function of B•(x0)(x∗, 2

−k)

and Fε,2−k(x0, x∗) is the same function applied to B•(x∗)(x0, 2
−k). On the other hand, the quantity

1{D(x∗,x0)∈[2−k+2,2−k+3]}

∫
Cx∗,x0
2−k

Vol(dz)F2−k+4,1(x∗, z),

is a function of Cx∗,x0

2−k (for the precise argument, see [7]). An application of Theorem 1.34 gives that

the previous display is equal to

N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]}φε,k(Z

x∗(x0)

2−k )φε,k(Z
x0(x∗)

2−k )

∫
Cx∗,x0
2−k

Vol(dz)F2−k+4,1(x∗, z)

)
,

where φε,k(z) is the probability under the distribution of the hull H2−k,z that there exists m + 1

geodesics starting at the boundary of H2−k,z ending at z, disjoint up to the time when they are at

distance ε from z. Using the symmetries of m∞ again, this can be written as

N0

(
F2−k+4,1(x∗, x0)

∫
Vol(dz)1{x0∈Cx∗,z

2−k }1{D(x∗,z)∈[2−k+2,2−k+3]}φε,k(Z
x∗(z)

2−k )φε,k(Z
z(x∗)

2−k )

)
.

Similar to a previous argument, x0 ∈ Cx∗,z
2−k impliesB•(z)(x∗, 2

−k) = B•(x0)(x∗, 2
−k) andB•(x∗)(z, 2−k) =

B•(x0)(z, 2−k). In particular, Z
x∗(z)

2−k = Z
x∗(x0)

2−k , so that the last display is equal to

N0

(
F2−k+4,1(x∗, x0)φε,k(Z

x∗(x0)

2−k )

∫
Vol(dz)1{x0∈Cx∗,z

2−k }1{D(x∗,z)∈[2−k+2,2−k+3]}φε,k(Z
z(x∗)

2−k )

)
.

Step 2.3: Second use of the Markov property. Observe that

φε,k(Z
x∗(x0)

2−k )

∫
Vol(dz)1{x0 /∈B•(z)(x∗,2−k)∪B•(x∗)(z,2−k)}1{D(x∗,z)∈[2−k+2,2−k+3]}φε,k(Z

z(x∗)

2−k )

is a function of B•(x0)(x∗, 2
−k+4), and F2−k+4,1(x∗, x0) is a function of m∞ \B•(x0)(x∗, 2−k+4). An

application of Theorem 1.33 gives that the last display is equal to

N[1]
0

(
N[1]

0

(
F2−k+4,1(x∗, x0)

∣∣Zx∗(x0)

2−k+4

)
φε,k(Z

x∗(x0)

2−k )

×
∫

Vol(dz)1{x0∈Cx∗,z
2−k }1{D(x∗,z)∈[2−k+2,2−k+3]}φε,k(Z

z(x∗)

2−k )
)
.

Now, using Lemma 16 in [7] gives that A1
ε,k is bounded, up to a constant depending only in m, by

N[1]
0

(
(Z

x∗(x0)

2−k+4 )
m/2φε,k(Z

x∗(x0)

2−k )

∫
Vol(dz)1{x0∈Cx∗,z

2−k }1{D(x∗,z)∈[2−k+2,2−k+3]}φε,k(Z
z(x∗)

2−k )

)
.

Step 2.4: Ingredients for the final bound. The last display can be bounded using Cauchy-Schwartz

inequality and the explicit bounds for the volume of balls in m∞ and the moments of the exit local

times. We refer to [7] for the computations. The term A2
ε,k can be bounded using similar arguments.

□
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Proposition 3.11 (Lemma 17 in [7]). Let α ∈ (0, 4−m). There exists a constant Cα > 0 such that

for all ε ∈ (0, 1/2),

N0

(
1

σ

∫∫
Vol(dx)Vol(dy)1{D(x,y)<ε}D(x, y)−αF

(m)
ε,1 (x, x∗)

)
≤ Cαε

2m.

Proof. Write Γε(x∗, x, y) = 1{D(x,y)<ε}D(x, y)−αF
(m)
ε,1 (x, x∗). Using Proposition 1.18 and conditioning

on {W∗ < −1}, we can write the left-hand side as

3

2
N[1]

0

(
F

(m)
ε,1 (x∗, x0)

∫
Vol(dz)1{D(x∗,z)<ε}D(x∗, z)

−α

)
.

Note that F
(m)
ε,1 (x∗, x0) is a function of m∞ \B•(x0)(x∗, ε) and

∫
Vol(dz)1{D(x∗,z)<ε}D(x∗, z)

−α is a

function of B•(x0)(x∗, ε). Using Theorem 1.33 we have that the last display is equal to

3

2
N[1]

0

(
N0

(
F

(m)
ε,1 (x∗, x0)

∣∣∣ZW∗+ε

)∫
Vol(dz)1{D(x∗,z)<ε}D(x∗, z)

−α

)
.

Again, Lemma 16 in [7] allows us to bound the previous term as

3

2
CmN[1]

0

(
(ZW∗+ε)

m/2

∫
Vol(dz)1{D(x∗,z)<ε}D(x∗, z)

−α

)
.

Let k(ε) be the first integer such that 2−k(ε) < ε and κ > 0 such that α− (4−m) + κ < 0. For each

k ≥ k(ε), we have

N[1]
0

(
(ZW∗+ε)

m/2

∫
Vol(dz)1{2−k≤D(x∗,z)<2−k+1}D(x∗, z)

−α

)
≤ 2kαN[1]

0

(
(ZW∗+ε)

m/2Vol(B(x∗, 2
−k+1))

)
≤ 2kαN[1]

0 ((ZW∗+ε)
m)

1/2N[1]
0

(
Vol(B(x∗, 2

−k+1))
)1/2

≤ Cm,κε
m2(α−(4−κ))k.

Summing over k ≥ k(ε) we have

N[1]
0

(
(ZW∗+ε)

m/2

∫
Vol(dz)1{D(x∗,z)<ε}D(x∗, z)

−α

)
≤ Cm,κ

∞∑
k=k(ε)

εm2(α−(4−κ))k

≤ Cm,κε
m2−mk(ε)

∞∑
k=k(ε)

2(α−(4−κ)+m)k

≤ C ′
m,κε

2m.
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3.1.3 Proof of the lower bound

Using the results of sections 3.1.1 and 3.1.2, we now present the conclusion of the proof of the lower

bound in Theorem 3.2. This is a standard scheme to prove that the Hausdorff dimension is lower

bounded, which was already illustrated in Theorem 2.13 of the previous chapter. Once the first and

second moment estimates are proved, they give us a way to construct a (random) measure supported

on the set of geodesic stars on an event with positive probability. By identification with the Brownian

plane, a scaling argument and a Blumenthal zero-one law, we can find a subset of the geodesic stars

that has Hausdorff dimension with the desired lower bound.

From now on, let us fix the following elements:

� For all ε ∈ (0, 1/32), define the measure νε on m∞ by

νε(dx) = ε−mF̃
(m)
ε,1 (x, x∗)1{D(x,x∗)<2}Vol(dx).

� Rmax := max{D(x, x∗) : x ∈ m∞}.

� Let Ñ0 be the measure with density 1
σ
with respect to N0.

� Ñ⋆
0 := Ñ0(· ∩ {Rmax ≥ 1}).

Proposition 3.12. Let δ ∈ (0, 4 − m). There exists aδ, Aδ > 0 and p0 ∈ (0, 1), such that for all

ε ∈ (0, 1/32), we have

Ñ⋆
0

(
{aδ ≤ ⟨νε, 1⟩ ≤ Aδ} ∩

{∫∫
νε(dx)νε(dy)D(x, y)−(4−m−δ) ≤ Aδ

})
≥ p0. (3.6)

Consequently, with Ñ⋆
0-measure at least p0, there exists a measure ν0 supported in Gm+1 with finite

(4−m− δ)-energy. In particular, dimH(Gm+1) ≥ 4−m with Ñ⋆
0-measure at least p0.

Proof. We will proceed as in the proof of Theorem 2.13. Fix δ ∈ (0, 4−m).

First moment estimate. By Proposition 3.9, for some constant c > 0 we have directly that

Ñ⋆
0(⟨νε, 1⟩) ≥ c. (3.7)

Energy estimate. Note that∫∫
νε(dx)νε(dy)D(x, y)−(4−m−δ)

≤ ε−2m

∫∫
Vol(dx)Vol(dy)1{D(x,y)<4}F

(m)
ε,1 (x, x∗)F

(m)
ε,1 (y, x∗)D(x, y)−(4−m−δ),

where we used that D(x, x∗) < 2 and D(y, x∗) < 2 imply D(x, y) < 4, and F̃
(m)
ε,1 ≤ F

(m)
ε,1 . Let

k(ε) be the greatest integer such that 2−k > 2ε. We split the integral above according to the cases
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{2−k(ε)+2 ≤ D(x, y) < 4} and {D(x, y) < 2−k(ε)+2}. For the first part, we have by Proposition 3.10

that

Ñ⋆
0

(
ε−2m

∫∫
Vol(dx)Vol(dy)1{2−k(ε)+2≤D(x,y)<4}F

(m)
ε,1 (x, x∗)F

(m)
ε,1 (y, x∗)D(x, y)−(4−m−δ)

)
=

k(ε)∑
k=1

Ñ⋆
0

(
ε−2m

∫∫
Vol(dx)Vol(dy)1{2−k+2≤D(x,y)<2−k+3}F

(m)
ε,1 (x, x∗)F

(m)
ε,1 (y, x∗)D(x, y)−(4−m−δ)

)

≤
k(ε)∑
k=1

2−(−k+2)(4−m−δ)Ñ⋆
0

(
ε−2m

∫∫
Vol(dx)Vol(dy)1{2−k+2≤D(x,y)<2−k+3}F

(m)
ε,1 (x, x∗)F

(m)
ε,1 (y, x∗)

)

≤
k(ε)∑
k=1

2(k−2)(4−m−δ)C(δ/2)2
−k(4−m−δ/2)

≤ C(δ/2)2
−2(4−m−δ)

∞∑
k=1

2−kδ/2

=: C ′
(δ).

For the second part of the integral, since 2−k(ε)+2 = 2−(k(ε)+1)+3 ≤ 16ε by definition of k(ε), the fact

that F
(m)
ε,1 ≤ F

(m)
16ε,1 and the trivial bound F

(m)
ε,1 ≤ 1, we have by Proposition 3.11 that

Ñ⋆
0

(
ε−2m

∫∫
Vol(dx)Vol(dy)1{D(x,y)<2−k(ε)+2}F

(m)
ε,1 (x, x∗)F

(m)
ε,1 (y, x∗)D(x, y)−(4−m−δ)

)
≤ Ñ⋆

0

(
ε−2m

∫∫
Vol(dx)Vol(dy)1{D(x,y)<16ε}F

(m)
16ε,1(x, x∗)D(x, y)−(4−m−δ)

)
≤ C ′′

(δ).

Joining both parts of the first integral, we have shown that

Ñ⋆
0

(∫∫
νε(dx)νε(dy)D(x, y)−(4−m−δ)

)
≤ C ′

(δ) + C ′′
(δ) =: K(δ). (3.8)

Second moment estimate. Analogously, we deduce from (3.8) that

Ñ⋆
0(⟨νε, 1⟩2) = Ñ⋆

0

(∫∫
νε(dx)νε(dy)

)
≤ 64Ñ⋆

0

(∫∫
νε(dx)νε(dy)D(x, y)−(4−m−δ)

)
≤ 64K(δ), (3.9)

where we used that D(x, y) < 4 implies D(x, y)4−m−δ ≤ 64.

The end of the argument is analogous to the conclusion of the proof of Theorem 2.13. Using Paley-

Zigmund inequality, (3.7) and (3.9) we have that

Ñ⋆
0

(
⟨νε, 1⟩ ≥

c

2Ñ0(Rmax ≥ 1)

)
≥ Ñ⋆

0

(
⟨νε, 1⟩ ≥

Ñ⋆
0(⟨νε, 1⟩)

2Ñ0(Rmax ≥ 1)

)
≥ 1

2

Ñ⋆
0(⟨νε, 1⟩)2

Ñ⋆
0(⟨νε, 1⟩2)

≥ c2

128K(δ)

.
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We take aδ := c/(2Ñ0(R
max ≥ 1)) and p0 = c2/(256K(δ)). On the other hand, using Markov’s

inequality and (3.8) we can find Aδ > 0 sufficiently large so that

Ñ⋆
0

(∫∫
νε(dx)νε(dy)D(x, y)−(4−m−δ) > Aδ

)
≤
K(δ)

Aδ

≤ p0,

and Ñ⋆
0(⟨νε, 1⟩ ≤ Aδ) ≥ p0. These estimates give (3.6).

For the conclusion, let (εn)n∈N be a decreasing sequence in (0, 1/32) converging to zero. By (3.6)

applied to each n, we have that

Ñ⋆
0

(
{aδ ≤ ⟨νεn , 1⟩ ≤ Aδ} ∩

{∫∫
νεn(dx)νεn(dy)D(x, y)−(4−m−δ) ≤ Aδ

}
infinitely often

)
≥ p0.

In the latter event, there exists a (random) subsequence of (νεn)n∈N that converges weakly to a mea-

sure ν0 with finite (4 − m − δ)-energy. We will abuse of notation by still denoting (νεn)n∈N such

subsequence.

Let us prove that ν0 is supported on Gm+1. Let x ∈ m∞ belonging to the topological support of ν0

and V an open neighborhood of x. Then, νεn(V ) > 0 for all n sufficiently large, which implies by

definition of νε that for all n sufficiently large there exists y ∈ V such that F̃
(m)
εn,1(y, x∗) = 1. This

means that there are sequences (xn)n∈N and (ε′n)n∈N such that for all n ∈ N, there exists geodesics

η
(n)
0 , . . . , η

(n)
m ending at xn and such that for all i, j ∈ {0, . . . ,m},

D(η
(n)
i (t), η

(n)
j (t)) ≥ δk, (3.10)

for all t ∈ [1− 2−k−1, 1− 2−k−2], for all k ≥ 1 such that 2−k−4 > ε′n. Up to extracting subsequences,

we can assume that for all j ∈ {1, . . . ,m}, η(n)j (t) → η
(0)
j (t) uniformly in t ∈ [0, 1], where η

(0)
0 , . . . , η

(0)
m

are geodesics ending at x such that the sets {η(0)j (t) : t ∈ [3/4, 1]} are disjoint because of (3.10).

This means that x ∈ Gm+1, concluding that ν0 is supported on Gm+1. Theorem 2.5 gives that

dimH(Gm+1) ≥ 4−m− δ with Ñ⋆
0-measure at least p0.

For all a > 0, let N{a}
0 = N0(·|W∗ = −a). The final step is to justify that the event dimH(Gm+1) ≥

4−m− δ has full N{a}
0 -probability. To do so, we use an isometric identification with the Brownian

plane and a zero-one law that holds for this structure.

Lemma 3.13 (Lemma 18 in [7]). On the same probability space, we can construct both a Brownian

plane P and a Brownian sphere sampled from N{1}
0 , in such a way that, for all ε ∈ (0, 1), there exists

an event Eε where the following holds: If xP is the distinguished point of P and B•(xP , 1− ε) is the

complement of the unbounded connected component of the complement of B(xP , 1 − ε) in P, then

Int(B•(x0)(x∗, 1 − ε)) equipped with its intrinsic distance is isometric to Int(B(xP , 1 − ε)) equipped

with its intrinsic distance.
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The set of geodesic (m+1)-stars that lie in Int(B•(x0)(x∗, 1−ε)) has dimension at least 4−m−δ with
positive probability. By Lemma 3.13, the set of geodesic (m+1)-stars, denoted Gm+1(P), that lie in

Int(B•(xP , 1− ε)) has dimension at least 4−m− δ with (the same) positive probability. By scaling,

for all a > 0 we have that with positive probability dimH(Gm+1(P) ∩ Int(B•(xP , a))) ≥ 4 −m − δ,

and therefore, with positive probability it holds that⋂
a>0

{dimH(Gm+1(P) ∩ Int(B•(xP , a))) ≥ 4−m− δ} .

Such event belongs to an asymptotic σ-field for the Brownian plane. By a Kolmogorov zero-one law,

we conclude that dimH(Gm+1(P)∩ Int(B•(xP , a))) ≥ 4−m−δ almost surely. Taking δ ↘ 0, we have

dimH(Gm+1(P) ∩ Int(B•(xP , a))) ≥ 4 −m almost surely. Using a coupling of the Brownian sphere

and the Brownian plane, gives that the same holds for the Brownian sphere, concluding the lower

bound.

3.2 Upper bound

In this section, we present the proof of the upper bound for the Hausdorff dimension of the geodesic

stars as done by Miller and Qian in [15]. To do so, we cover the set of geodesic stars with a set of

balls using Proposition 1.21. In order to estimate the Hausdorff measure of this covering, we need

the probability for a given ball to actually intersect the set of geodesic stars. This information comes

from a very non-trivial construction concerning geodesics towards a point in the neighborhood of a

given typical point. After applying this result, the upper bound is proved easily.

3.2.1 Exponent for disjoint geodesics towards a point

The upper bound in Theorem 3.2 is the consequence of an estimate for the probability of the event

where there are m geodesics starting from the boundary of a hull towards a point near a typical

point. From now on, x and y will denote typical points of m∞. We will present the proof of the

following result:

Proposition 3.14. Let r, ρ > 0 and b0 ∈ (0, 1). Conditionally on D(x, y) > r, let Ys be the boundary

length of B•(y)(x,D(x, y)− s) for all s ≥ r, and define

τ0 := inf{s ≥ r : Ys = ρ}.

Define E(ε,m, r, ρ) to be the event where τ0 <∞ and there exists z ∈ B(x, ε) for which there are m

geodesics starting at ∂B•(y)(x,D(x, y) − τ0) and disjoint except at their endpoint equal to z. Then,

for all ρ ∈ (ε2b0 , ε−2b0),

N0(E(ε,m, r, ρ)|D(x, y) > r) = O((ερ−1/2)m−1+o(1)).
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The proof of the previous proposition is quite technical and we aim to describe the main construc-

tions and estimates that yield the result. The basic idea is to identify the geodesics of the event

E(ε,m, r, ρ) with geodesics towards a typical point using strong confluence (recall Proposition 1.29).

By succeeding at that, the boundary lengths between geodesics evolve as independent 3/2-stable

CSBP, for which explicit estimates yield the result. However, this identification cannot be done

always, so we need to introduce bad behaved layers where this identification is not possible. The key

fact about these bad layers is that, outside an event with negligible probability, there is a constant

number of them.

From now on, let m ∈ N, r > 0, ε, b0 ∈ (0, 1) and ρ ∈ (ε2b0 , ε−2b0). Fix a realization of the Brownian

sphere lying in the event E(ε,m, r, ρ), that we will call E for simplicity. Consider the following

objects:

� Let b1 ∈ (0, 1), which will tend to 1 at the end of the proof.

� Let a ∈ (0, (1− b1)/6) and ak := a(k + 2)/(k + 1) for each k ∈ N.

� For each k ≥ 1, define τk := inf{s ≥ τk−1 : Ys = Yτk−1
/2}, where τ0 is defined in the statement

of Proposition 3.14. Note that Yτk = 2−kρ for all k ≥ 1 such that τk <∞.

� k0 := inf{k ∈ N : 2−kρ ≤ ε2b1}.

� For each t ≥ 0, Lt := ∂B•(y)(x,D(x, y)− t).

Assume that we can select z ∈ B(x, ε) andm geodesics η1, . . . , ηm starting respectively at z1, . . . , zm ∈
∂B•(y)(x,D(x, y)− τ0) in a measurable way (see [15]). Using this, we introduce further objects:

� For each j ∈ {1, . . . ,m} and t ≥ 0, ut,j is the closest point to z in ηj ∩ Lt. Analogously, vt,j is

the furthest point to z in ηj ∩ Lt.

Note that since η1, . . . , ηm are geodesics, vt,j (resp. ut,j) is the first (resp. last) point of contact

between ηj and Lt, for each j ∈ {1, . . . ,m} and t ≥ 0.

Construction of bad layers

In this section we define the bad and good layers, which will play a fundamental role in the proof.

Definition 3.15. For each β > 0, k ∈ {1, . . . , k0} is called a β-fat layer if

τk − τk−1 ≥ ε−β2−(k−1)/2ρ1/2.

Informally, a fat layer is such that the time it takes for the boundary length to drop by a factor of 2

is too long. Note that if 0 < β1 < β2, then any β2-fat layer is a β1-fat layer (provided that ε ∈ (0, 1),

which is the case here).
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Definition 3.16. A layer k ∈ {1, . . . , k0} is called crossing layer if there exists j ∈ {1, . . . ,m}
such that the clockwise and counterclockwise boundary length between uτk,j and vτk,j is larger than

ε2ak2−kρ.

Informally, a crossing layer is such that there is some geodesic among η1, . . . , ηm such that the first

and last points of contact with the layer are too far apart.

We need further objects to define the last type of bad layer, for which we will proceed inductively.

� For each j ∈ {1, . . . ,m}, let w0
j be a point sampled uniformly from the boundary interval

centered at zj of length 2ε2a0ρ on ∂B•(y)(x,D(x, y)− τ0).

� For each j ∈ {1, . . . ,m}, let γ0j be the geodesic joining w0
j with x.

� For each j ∈ {1, . . . ,m} and t ≥ 0, let e0t,j be the intersection point of γ0j with Lt (the

intersection is a unique point in this case).

Now, we will define points wℓ
1, . . . , w

ℓ
m for ℓ in a certain subset of {1, . . . , k0} as follows:

1. If k = 1 is not a fat and crossing layer, then we have two possibilities:

� For all j ∈ {1, . . . ,m}, vτ1,j = e0τ1,j, in which case we set w1
j = e0τ1,j.

� Otherwise, k = 1 is called a non-merging layer.

2. If k = 1 is a fat, crossing or non-merging layer, let ℓ ≥ k+1 = 2 be the first layer that is not fat

and not crossing. For each j ∈ {1, . . . ,m}, do the following construction: Let w1, . . . , wN ∈ Lτℓ

be a minimal collection such that the intervals with centers e0τℓ,j, w1, . . . , wN and boundary

length ε2aℓ2−ℓρ cover the set

{w ∈ Lτℓ : D(w,w0
j ) ≤ τℓ − τ0 + εa0ρ1/2}.

Set wℓ
j as one of the points e

0
τℓ,j
, w1, . . . , wN that has boundary length distance at most ε2aℓ2−ℓρ

to vτℓ,j.

3. Proceed inductively applying 1 or 2 to the next layer of the last layer ℓ for which the points

wℓ
1, . . . , w

ℓ
m were successfully defined, by taking into account new geodesics γℓ1, . . . , γ

ℓ
m joining

wℓ
1, . . . , w

ℓ
m to x, respectively. For each j ∈ {1, . . . ,m}, eℓt,j is the intersection point of γℓj with

Lt. If ℓ + 1 lies in the case 2 and ℓ′ ≥ ℓ + 2 is the first layer that is not fat and crossing, the

set to be covered for each j ∈ {1, . . . ,m} is

{w ∈ Lτℓ′
: D(w,wℓ

j) ≤ τℓ′ − τℓ + εaℓ2−ℓ/2ρ1/2}.

We formalize the definition of non-merging layers using the construction above as follows.
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Definition 3.17. If ℓ ∈ {1, . . . , k0} is a layer for which the points wℓ
1, . . . , w

ℓ
m were successfully

defined, then ℓ + 1 is a non-merging layer if it is not fat, not crossing and there is some j ∈
{1, . . . ,m} such that eℓτℓ+1,j

̸= vτℓ,j.

The fat, crossing and non-merging layers are called bad layers, while the rest are called good layers.

Informally, a non-merging layer is a layer where the geodesics towards x coming from the marked

points of the last good layer do not merge with the geodesics towards z.

Estimates for bad layers

Now we estimate the probability of observing each kind of bad layer. These estimates will ensure

that outside and event with negligible probability, the number of each kind of bad layer is of constant

order, something that will be crucial for the conclusion of the proof. Let us start with the fat layers.

Lemma 3.18. For each β > 0 and k ∈ {1, . . . , k0} we have

P(k is a β-fat layer) = O(ε2β).

Proof. Let k ∈ {1, . . . , k0}. Conditionally on τk−1 <∞, the process (2k−1ρ−1Yt)t≥τk−1
starts at 1 and

has the same distribution as (Y2−(k−1)/2ρ1/2t)t≥τk−1
by scaling for a 3/2-stable CSBP. If T is extinction

time of a 3/2-stable CSBP started at 1, the probability of survival until time t > 0 is O(t−2) by

(1.12). By the Markov property, we have

P(k is a β-fat layer) = P(2−(k−1)/2ρ1/2(τk − τk−1) ≥ ε−β) = P(T > ε−β) = O(ε2β).

Using the previous lemma, we can easily estimate the probability of observing a set of fat layers. To

do so, let K0 ∈ N and H = {h1, . . . , hK0} be such that 1 ≤ h1 < · · · < hK0 ≤ k0. For β > 0, define

the events

F (β,H) := {h1, . . . , hK0 are β-fat layers and the rest are not}, (3.11)

F (β, ∅) := {There are no β-fat layers}.

Now we use Lemma 3.18 to estimate the probability of F (β,H).

Proposition 3.19. For β > 0 and H as above, we have

P(F (β,H)) = O(ε2β|H|).

Proof. Direct from the Markov property of the 3/2-stable CSBP and Lemma 3.18.

Now we estimate the probability of observing a crossing layer, as well as a set of crossing layers.
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Lemma 3.20. For each k ∈ {1, . . . , k0}, we have

P(k is a crossing layer) = O(ε
4
3
(1−b1−6a)+o(1)).

Proof. The event of being a crossing layer implies that there is some j ∈ {1, . . . ,m} such that the

boundary length distance between uτk,j and vτk,j is at least ε
2ak2−kρ. However, note that

ε ≥ D(x, z) ≥ |D(uτk,j, z)−D(uτk,j, x)| = |D(uτk,j, z)− (D(x, y)− τk)|,

and analogously, |D(vτk,j, z) − (D(x, y) − τk)| ≤ ε. Therefore, as uτk,j and vτk,j belong to the same

geodesic, we have

D(uτk,j, vτk,j) = |D(uτk,j, z)−D(vτk,j, z)| ≤ 2ε.

Rescaling the distance in B•(y)(x,D(x, y)− τk−1) \ B•(y)(x,D(x, y)− τk+1) by 2(k−1)/2ρ−1/2, Lemma

6.2 of [15] implies that

P(k is a crossing layer) = O((ε2(k−1)/2ρ−1/2)4/3ε−4ak+o(1)).

We conclude by noting that 2−(k−1)ρ ≥ ε2b1 and ak ≤ 2a.

Let K1 ∈ N and I = {i1, . . . , iK1} be such that 1 ≤ i1 < · · · < iK1 ≤ k0. Define the event

C(I) := {i1, . . . , iK2 are crossing layers and the rest are not}.

Proposition 3.21. For I as above we have

P(E ∩ C(I)) = O(ε
2
3
(1−b1−6a)|I|+o(1)).

Proof. Given I ⊆ {1, . . . , k0}, there are at least |I|/2 layers which are all odd or even. In any of

these cases, the conditional independence between the metric bands and Lemma 3.20 imply that the

probability of having such quantity of crossing layers is O(ε
4
3
(1−b1−6a)· |I|

2
+o(1)), which is the desired

estimate.

Now we will prove that we can restrict the required statement of the proof to cases where there are

at most a constant number of fat and crossing layers. We start with the analysis for the fat layers.

From now on, we fix β0 := (1 + b0)(m− 1)/2.

Proposition 3.22. For all ρ ∈ (ε2b0 , ε−2b0), we have

P(F (β0, ∅)c) = O((ερ−1/2)m−1+o(1))

Proof. Note that k0 = O(εo(1)). Then,

P(F (β0, ∅)c) ≤
k0∑
k=1

P(k is a β0-fat layer) = O(ε2β0+o(1)) = O(ε(1+b0)(m−1)+o(1)).

We conclude by noting that εb0 < ρ−1/2.
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For N ∈ N and β > 0, define F(β,N) :=
⋃

|H|>N F (β,H).

Proposition 3.23. Let β ∈ (0, β0] and N0 := ⌈m(1 + b0)/(2β)⌉. Then, for all ρ ∈ (ε2b0 , ε−2b0) we

have

P(F(β,N0)) = O((ερ−1/2)m−1+o(1)).

Proof. By union bound,

P(F(β,N0)) ≤
∑

|H|>N0

P(F (β,H)) ≤
k0∑

n=N0+1

kn0O(ε
2βn).

Using that k0 = O(εo(1)) and the definition of N0, we have that

k0∑
n=N0+1

ε(2β+o(1))n = ε(2β+o(1))(N0+1) · 1− ε(2β+o(1))(k0+N0)

1− ε2β+o(1)
= O(ε(1+b0)(m−1)+o(1)),

and we conclude as in the previous proposition.

Observe that the two previous propositions allows us to consider an event smaller than E, simplifying

the proof of Proposition 3.14. In fact, for β ∈ (0, β0] and N0 as defined previously, we have that

P(E) = P(E ∩ F(β,N0)
c ∩ F (β0, ∅)) + P(E ∩ (F(β,N0) ∪ F (β0, ∅)c))

= P(E ∩ F(β,N0)
c ∩ F (β0, ∅)) +O((ερ−1/2)m−1+o(1)).

Note that by definition (3.11), for all H with |H| > N0 we have

F(β,N0)
c ⊆ F (β,H)c =

⋃
F (β, (H \H1) ∪H2),

where the union is taken over all H1 ⊆ H, H2 ⊆ {1, . . . , k0} \ H such that H1 ̸= ∅, H2 ̸= ∅ and

|(H \H1)∪H2| ≤ N0. Note that the number of choices for a set H ′ ⊆ {1, . . . , k0} such that |H ′| ≤ N0

is at most
∑N0

k=0 k
n
0 = εo(1). Plugging this in the probability computed before, we see that to prove

Proposition 3.14 it suffices to prove that for all H with |H| ≤ N0 and β ∈ (0, β0], we have

P(E ∩ F (β,H) ∩ F (β0, ∅)) = O((ερ−1/2)m−1+o(1)). (3.12)

We can do an analogous argument to bound the amount of crossing layers, considering the following

proposition. Define C(I) :=
⋃

|I|>N1
C(I).

Proposition 3.24. Let N1 := ⌈3
2
m(1 + b0)/(1− b1 − 6a)⌉. Then, for all ρ ∈ (ε2b0 , ε−2b0) we have

P(E ∩ C(I)) = O((ερ−1/2)m−1+o(1)).

60



Proof. By union bound,

P(E ∩ C(I)) ≤
k0∑

|I|>N1

P(E ∩ C(I)) ≤
k0∑

n=N1+1

O(ε(
2
3
(1−b1−6a)+o(1))n)

= O(ε
2
3
(1−b1−6a)N1+o(1)) = O(ε(1+b0)(m−1)+o(1)).

Arguing the same way as for the fat layers, we have that to prove (3.12) it suffices to prove that for

all H and I as above with |H| ≤ N0 and |I| ≤ N1 and β ∈ (0, β0],

P(E ∩ F (β,H) ∩ F (β0, ∅) ∩ C(I)) = O((ερ−1/2)m−1+o(1)). (3.13)

The estimates for non-merging layers require further developments, so we postpone its analysis. By

the moment, let us introduce the following event. Let K3 ∈ N and J = {j1, . . . , jK2} be such that

1 ≤ j1 < · · · < jK2 ≤ k0. Define

N(J) := {j1, . . . , jK2 are non-merging layers and the rest are not}.

Definition of a Markovian exploration

In this section we define an exploration from Lτ0 towards the root x as done with the points (wℓ
j).

However, recall that the points (wℓ
j) do not define a Markovian exploration since they are defined

using geodesics towards z. To do this, the exploration process in a given layer will depend only in

the randomness of the previous layer and independent and uniform choices of the children.

Let K ∈ N and S = {s1, . . . , sK , sK+1} be such that 1 = s1 < · · · < sK < sK+1 = k0. We define

points zJ , with J a vector of integers, for all the layers in S as follows:

1. Let z01 , . . . , z
0
m ∈ Lτ0 be iid sampled uniformly according to the boundary measure, and consider

them as counterclockwise ordered.

2. For each j ∈ {1, . . . ,m}, let ηzj be the unique geodesic from zj to x and let zj0 be the intersection

point of ηzj with Ls1 . Conditionally on Fs1 , let zj1, . . . , zjN ∈ Lτ1 be a minimal collection chosen

independently of B•(y)(x,D(x, y)−τs1) such that the intervals with centers zj0, zj1, . . . , zjN and

boundary length ε2as12−s1ρ cover the set

{w ∈ Lτs1
: D(w, zj) ≤ τs1 − τ0 + εa0ρ1/2}.

3. Proceed inductively applying 2 until the points zJ , with J a vector of integers, are successfully

defined for all the layers in S. We remark that the set to be covered at step n is of the form

{w ∈ Lτsn : D(w, zJ) ≤ τsn − τsn−1 + εasn2−sn/2ρ1/2},

for all J vector of integers obtained in the step n− 1.
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At each step, each point defined in a layer sn give origin to a set of points in the next layer sn+1 that

we call children.

Definition 3.25. We define points (xsnj ) for n ∈ {1, . . . , K} and j ∈ {1, . . . ,m} as follows:

1. For all j ∈ {1, . . . ,m}, set xs0j = zj.

2. Inductively, for all n ∈ {1, . . . , K} and j ∈ {1, . . . ,m}, let x
sn+1

j be sampled uniformly and

independently of everything else from the set of children of xsnj .

The points (xsnj ) constitute the Markovian exploration. Now, we aim to restrict ourselves to an event

where the amount of children of (zJ) (and therefore, the possibilities for (xsnj )) is bounded, as done

with the number of fat and crossing layers. The following estimate is a direct consequence of Lemma

4.8 in [15].

Proposition 3.26. Let H ⊆ {1, . . . , k0} be such that |H| ≤ N0. Let J be a vector of integers such

that zJ is defined in the layer Lτn, for some n ∈ {1, . . . , K}. For each integer C ≥ 1, we have

P(F (β0, ∅) ∩ F (β,H) ∩ {zJ has at most C children}) = O(ε(C−1)(asn−asn+1 )−asn+1−β0+o(1)).

For each n ∈ {1, . . . , K}, let Cn = ⌈((1 + b0)m+ 2a+ β0)/(asn+1 − asn)⌉+ 1 and define the event

C := {for all n ∈ {1, . . . , K} and J ∈ Nn, zJ has at most Cn children}.

Repeating the exact same argument done the fat and crossing layers after propositions 3.23 and

3.24, we can use the previous estimate to show that, it is enough to prove that for all H, I and J as

considered for each type of bad layer with |H| ≤ N0 and |I| ≤ N1, we have

P(E ∩ F (β,H) ∩ F (β0, ∅) ∩ C(I) ∩ C ) = O((ερ−1/2)m−1+o(1)). (3.14)

Coupling of the Markovian exploration

Let H = {h1, . . . , hK0}, I = {i1, . . . , iK1} and J = {j1, . . . , jK2} be subsets of {1, . . . , k0} labeled in

increasing order such that the following conditions hold:

(i) (H ∪ I) ∩ J = ∅.

(ii) For all n ∈ {1, . . . , K0}, hn + 1 /∈ J .

(iii) For all n ∈ {1, . . . , K1}, in + 1 /∈ J .

(iv) For all n ∈ {1, . . . , K2}, jn + 1 < jn+1.
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The first condition is the fact that we define the non-merging layers to be neither fat or crossing.

The second, third and fourth condition is the fact that if k is a fat, crossing or non-merging layer,

then the next non-merging layer comes after the first good layer after m, which has index at least

m+ 2. For such H, I and J , define the event

B(H, I, J) = E ∩ F (β0, ∅) ∩ F (β,H) ∩ C(I) ∩N(J).

Note that for given H and I as above,

E ∩ F (β0, ∅) ∩ F (β,H) ∩ C(I) ⊆
⋃

B(H, I, J),

where the union is taken over all J satisfying the previous conditions. Define

S := {k ∈ {1, . . . , k0} \ (H ∪ I ∪ J) : k + 1 ∈ H ∪ I ∪ J or k − 1 ∈ H ∪ I ∪ J},

S+ := {k ∈ {1, . . . , k0} \ (H ∪ I ∪ J) : k + 1 ∈ H ∪ I ∪ J},

S− := S \ S+.

Write S = {s1, . . . , sK , sK+1} with 0 = s0 < s1 < · · · < sK < sK+1 = k0. We will show that we will

show that the Markovian exploration process can be coupled with the points defined (wk,j) for the

good layers. Proceed as follows assuming that the event B(H, I, J) ∩ C holds:

1. Recall that the points x0j with j ∈ {1, . . . ,m} are iid sampled uniformly according to the

boundary length measure. In particular, the event where for all j ∈ {1, . . . ,m}, x0,j has

boundary distance at most ε2a0ρ has probability (2ε2a0)m. Conditionally on this event, we can

choose x0j = w0
j for all j ∈ {1, . . . ,m}.

2. Inductively, assume that we have chosen xsnj = wsn
j for all j ∈ {1, . . . ,m} for some n ∈

{1, . . . , K}. Then,

(a) If sn ∈ S+, then sn+1 is the first good layer after sn. For all j ∈ {1, . . . ,m}, choose the set
of children of wsn

j in Lτsn to be the same as the set of children of xsnj , and set x
sn+1

j = w
sn+1

j

for all j ∈ {1, . . . ,m}. The latter event has probability at least L−m
n .

(b) If sn ∈ S−, then {sn, sn + 1, . . . , sn+1} are all good layers and w
sn+1

j = vτsn+1 ,j
for all

j ∈ {1, . . . ,m}. The probability of choosing x
sn+1

j = w
sn+1

j for all j ∈ {1, . . . ,m} is again

at least L−m
n .

Using this coupling, define the event

G(H, I, J) :=
⋂

{xsnj = wsn
j } ∩B(H, I, J) ∩ C ,

where the intersection is taken over all n ∈ {1, . . . , K + 1} and j ∈ {1, . . . ,m}. The coupling

constructed in 1 and 2 allows us to prove the following useful estimate.
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Proposition 3.27. There is a constant depending only on a, b0, β0 and m such that

P(B(H, I, J) ∩ C ) ≤ O
(
ε−2a0m+o(1)

)
P(G(H, I, J)).

Proof. By the construction of the coupling, we have

P(G(H, I, J)|B(H, I, J) ∩ C ) ≥ (C1 . . . CK)
−m(2ε2a0)m.

Note that for all n ∈ {1, . . . , K}, asn+1 − asn = a(m+ 1)−1(m+ 2)−1 so that

Cn ≤ C̃ log2(ε
−1)2,

where C̃ depends only on a, b0, β0 and m. Then, for sufficiently small ε,

P(G(H, I, J)|B(H, I, J) ∩ C ) ≥ C̃ε2a0m+o(1),

and we conclude by developing the conditional probability.

Bounding the non-merging layers

The following proposition gives the (order of the) probability of a given layer to be non-merging.

The proof can be found in the original reference. Such exponent allows us to bound the amount of

non-merging layers, as we did with the fat and crossing layers in propositions 3.23 and 3.24.

Proposition 3.28. Let k ∈ {1, . . . , k0} be such that k+1 ∈ J . Conditionally on Fk and xmj = wm,j,

the probability that m+ 1 is a non-merging layer is O(εak−β+o(1)).

Take β = min{a/2, β0}. As a direct consequence of the previous proposition, we have

P(G(H, I, J)) = O(ε
a
2
|J |),

which implies by Proposition 3.27 that

P(B(H, I, J) ∩ C ) = O(ε−2a0m+a
2
|J |+o(1)).

Repeating the exact same argument done the fat and crossing layers after propositions 3.23 and 3.24,

we can use the previous estimate to show that, if N2 := ⌈2m(a0 + 1+ b0)/a⌉, then to prove (3.14) it

is enough to prove that for all H, I and J as considered for each type of bad layer with |H| ≤ N0,

|I| ≤ N1 and |J | ≤ N2, we have

P(B(H, I, J) ∩ C ) = O((ερ−1/2)m−1+o(1)). (3.15)
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Conclusion of the proof

Let H, I and J be as in the previous section and such that |H| ≤ N0, |I| ≤ N1 and |J | ≤ N2. In

this setting, we will prove the following proposition.

Proposition 3.29. P(B(H, I, J)) = O((ερ−1/2)m−1+o(1)).

Note that this implies (3.15), so this ends the proof of Proposition 3.14.

Proof. Consider the set S− as defined in the previous section and fix n ∈ {1, . . . , K}. By con-

struction, for each sn ∈ S−, all the layers in {sn, . . . , sn+1} are good layers and the geodesic γsnj

from wsn
j to x merge with the geodesic ηj from zj to z in the layer sn + 1. Therefore, the geodesics

ηsn,j for j ∈ {1, . . . ,m} are disjoint in the metric band B•(y)(x,D(x, y)−τsn)\B•(y)(x,D(x, y)−τsn+1).

For each j ∈ {1, . . . ,m} and t ≥ 0, let

Zsn,j
t = counterclockwise boundary length from esnτsn+t,j to e

sn
τsn+t,j+1,

where we take the convention esnτsn+t,m+1 = esnτsn+t,1. Then, the processes Zsn,1, . . . , Zsn,m evolve as

independent 3/2-stable CSBP. Using this, define the event

An := {None of the processes Zsn,1, . . . , Zsn,m hit 0 before τsn+1 − τsn}.

By construction, we have

B(H, I, J) ⊆
⋂

n∈{1,...,K}
sn∈S−

An.

Finally, noting that P(An) ≲ 2−
1
2
(sn+1−sn)(m−1) using the independence of the m independent stable

CSBPs and 1.12, we have by conditional independence of the bands that

P(B(H, I, J)) ≲
∏

n∈{1,...,K}
sn∈S−

2−
1
2
(sn+1−sn)(m−1).

Note that ∑
n∈{1,...,K}

sn∈S−

(sn+1 − sn) ≥ k0 − 2(N0 +N1 +N2) ≥ log2(ε
−2b1ρ)− 2(N0 +N1 +N2),

so we have

P(B(H, I, J)) = O((εb1ρ−1/2)m−1).

Since b1 can be made arbitrarily close to 1, this ends the proof.
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3.2.2 Proof of the upper bound

We are ready to prove the upper bound in Theorem 3.2. In fact, it follows rapidly by bounding the

Hausdorff measure of a well chosen covering of the geodesic m-stars, where Proposition 3.14 plays a

fundamental role in the involved exponents.

Theorem 3.30.

� If m ∈ {1, 2, 3, 4, 5}, dimH(Gm) ≤ 5−m a.s.

� If m ≥ 6, the set Gm is a.s. empty.

Proof. Fix a,M > 0. It suffices to prove for diam(m∞) ≤ M . By propositions 1.22 and 1.23, there

exists r0 > 0 such that for all r ∈ (0, r0) and z ∈ m∞, if Uz,r denotes the connected component with

the largest diameter of m∞ \B(z, r), then diam(Uz,r) ≥ diam(m∞)/2 and Vol(Uz,r) ≥ Vol(m∞)/2.

For each r1 ∈ (0, r0), let Gm,r be the set of points z such that there are m disjoint geodesics emerging

from z towards ∂B•(w)(z, r1), where w is any point in Uz,r1 . It follows that

Gm ⊆
⋃

r∈(0,r0)

Gm,r.

Noting that Gm,r is decreasing as set in the parameter r, so that we can see the previous union as a

countable union. By countable stability of the Hausdorff dimension (Proposition 2.2), it suffices to

show that for all r ∈ (0, r0), dimH(Gm,r) ≤ 5−m.

Let b > 0 and set Nε = ε−4−b and Mε = ε−b. Let (xi)i∈N and (yj)j∈N be iid points sampled according

to Vol(·). Then, by Proposition 1.21, there is some (random) ε0 > 0 such that if ε ∈ (0, ε0),

m∞ ⊆
Nε⋃
i=1

B(xi, ε), and m∞ ⊆
Mε⋃
i=1

B(yj, diam(m∞)/10).

The goal now is to estimate the probability that the i-th ball of the first covering has a non-empty

intersection with Gm,r. Choose ε
′ ∈ (0, r1/2) and let ε ∈ (0, ε0 ∧ ε′). Define

Iε,m,r1 = {i ∈ {1, . . . , Nε} : Gm,r1 ∩B(xi, ε) ̸= ∅}.

Observe that if i ∈ Iε,m,r1 and z ∈ Gm,r1 ∩ B(xi, ε), then there exists j ∈ {1, . . . ,Mε} such that

yj ∈ Uz,r1 and D(z, yj) ≥ diam(m∞)/4. Moreover, there are m geodesics starting at z towards

∂B•(yj)(xi, r1/2). If we set tn = nr1/4 for n ∈ {1, . . . , ⌊4M/r1⌋}, Lemma 7.2 in [15] tells us that the

following event holds outside an event with negligible probability:

E(xi, yj) :=

⌊4M/r1⌋⋃
n=1

(
E(ε,m, tn, ε

2a) ∩ {diam(m∞) ≤M} ∩ {D(xi, yj) > tn}
)
.
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where E(ε,m, tn, ε
2a) is the event of Proposition 3.14. We also have that

{i ∈ Iε,m,r1} ∩ {diam(m∞) ≤M} ⊆
Mε⋃
j=1

E(xi, yj),

By union bound, we see that

N0 ({i ∈ Iε,m,r1} ∩ {diam(m∞) ≤M})

≤
Mε∑
j=1

⌊4M/r1⌋∑
n=1

N0

(
E(ε,m, tn, ε

2a) ∩ {diam(m∞) ≤M} ∩ {D(xi, yj) > tn}
)

≤
Mε∑
j=1

⌊4M/r1⌋∑
n=1

N0

(
E(ε,m, tn, ε

2a)|D(xi, yj) > tn
)
N0(D(xi, yj) > tn)

≲ ε−b+(m−1)(1−a)+o(1).

Since a > 0 was arbitrary, this shows that N0 ({i ∈ Iε,m,r1} ∩ {diam(m∞) ≤M}) = O(ε−b+m−1+o(1)).

We use this to compute the α-value of the covering Iε,m,r1 of the set Gm,r. We have that

N0

 ∑
i∈Iε,m,r1

diam(B(xi, ε))
α1{ε<ε0}1{diam(m∞)≤M}

 ≲ εα−2b+m−5+o(1).

Assume that α > 5 − m and that b is sufficiently small so that the resulting exponent is positive.

This gives that the above quantity goes to zero as ε → 0, proving that dimH(Gm,r) ≤ 5 − m for

m ≤ 5. On the other hand, if m ≥ 6 and α ≤ 5−m,

N0({Gm,r ̸= ∅} ∩ {ε < ε0} ∩ {diam(m∞) ≤M})

≤
Nε∑
i=1

N0 ({i ∈ Iε,m,r1} ∩ {ε < ε0} ∩ {diam(m∞) ≤M})

≲ ε−2b+m−5+o(1).

If we take b ∈ (0, 1/2), the exponent is positive and this quantity goes to zero as ε → 0. This

completes the proof of Theorem 3.30.
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Chapter 4

Stable geometry

At the beginning of Chapter 1, we claimed that the Brownian map appears as the scaling limit of

uniform random planar maps with small faces. The latter restriction can be weakened to consider

models of planar maps with large faces. In this case, a different limit space appears, which is called

α-stable gasket or carpet, depending on the value of α ∈ (1, 2). The canonical way of doing this is to

consider a model of bipartite planar maps where the weight sequence is in the domain of attraction

of a stable law [3]. This gives raise to the so-called stable geometry, which is the stable version of

the Brownian geometry presented in Chapter 1.

4.1 Construction

Again we focus on the construction of the α-stable geometry as a continuum object, rather than its

emergence as scaling limit of planar maps. For a complete presentation of this, we refer to [3].

The stable geometry is a construction where the building blocks are Lévy excursions and Gaussian

processes, unlike Brownian geometry where we use only Brownian excursions and Gaussian pro-

cesses. In this sense, the Brownian geometry is a particular case of the stable geometry. However,

the mathematical treatment of the latter is sometimes very different from the Brownian setting, as

we shall remark.

The natural space for Lévy processes is D(R+,R), the space of càdlàg functions. On D(R+,R), we
consider the canonical process X = (Xt)t≥0 and endow D(R+,R) with different measures that will

define the distribution of X. Namely:

� For each v ≥ 0, we let N(v) be the measure on D(R+,R) under which X is a normalized

excursion with lifetime v of an α-stable Lévy process with no-negative jumps and Laplace

exponent λ 7→ λα (see the Interlude in Section 1.2.4).
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� We let N to be the excursion measure, which can be defined by the disintegration formula

N(A) :=

∫ ∞

0

N(v)(A)
dv

αΓ(1− 1
α
)v

1
α
+1
,

for each measurable subset of A. Informally, a sample of the excursion measure is composed of

lifetime σ with distribution v 7→ 1/(αΓ(1− 1
α
)v

1
α
+1) and a Lévy excursion sampled from N(σ).

Now we construct the stable geometry. Fix α ∈ (1, 2) and endow D(R+,R) with N. Denote the

lifetime of X by σ = sup{t ≥ 0 : Xt > 0}. Let us introduce further notation. For s, t ∈ [0, σ],

� Set ∆t := Xt −Xt− and Is,t := inf [s,t]X.

� Write s ≼ t if s ≤ t and Is,t ≥ Xs−. In such case, we say that s is an ancestor of t. If both

inequalities are strict, we say that s is a strict ancestor of t.

� For s ancestor of t, define xs,t = Is,t −Xs−.

� s ⋏ t := sup{r ≤ s ∧ t : r ≼ s and r ≼ t} is the most recent ancestor of s and t (well-defined

since ≼ is a partial order on [0, σ]).

� Set Branch(s, t) := {r ∈ [0, σ] : s⋏ t ≺ r ≺ s} ∪ {r ∈ [0, 1] : s⋏ t ≺ r ≺ t} ∪ {s, t}.

Similarly to the construction of real trees, we now identify times in [0, σ] using the excursion X.

However, the jumps of X make this a bit more complicated, but still possible in the following way.

In fact, it is easier to introduce the equivalence relation first, rather than the metric, on which we

will not comment. Define the equivalence relation ∼ on [0, σ] to be such that for all s, t ∈ [0, σ],

s ∼ t if, and only if Is∧t,s∨t = X(s∧t)− = Xs∨t.

The equivalence relation ∼ is in fact induced by a pseudo-distance d on [0, σ], that we are not intro-

ducing here (see [3]). We then consider the quotient space Lα := [0, σ]/ ∼ with the metric induced by

d. Topologically, this space is not a real tree in the sense of Definition 1.1, but a looptree. Informally,

a looptree a concatenation of tangent closed curves (normally drawn as circumferences) that form

the structure of a tree. The equivalence relation ∼ is constructed in a way such that each jump of

X corresponds to a loop in the looptree. Better than words, Figure 4.1 is self-explanatory.

Now we assign labels to the looptree in a similar way to the Brownian sphere. To do so, assume

further that there is a probability space (Ω,F , P ) supporting an iid sequence (bi)i∈N of Brownian

bridges with lifetime 1, starting and ending at 0, independent of X. Let (ti)i∈N be a measurable

enumeration of the set of jump times {t ∈ [0, σ] : ∆t > 0}. For each t ∈ [0, σ], define

Zt :=
∑

i∈N:ti≼t

∆
1/2
ti bi

(
xti,t
∆ti

)
.
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Figure 4.1: In the first picture, an approximated graph of X and two times s, t ∈ [0, 1]. In the second

picture, the associated looptree drawn at scale. The red dots are the set Branch(s, t).

where the series is proven to converge in L2, and the process t 7→ Zt has a continuous modification

with a.s. ( 1
2α

− ε)-Hölder continuous sample paths, for all ε ∈ (0, 1
2α
), see propositions 5 and 6 in

[12]. We consider such a modification from now on. Similarly to the label process of the Brownian

sphere, the process Z = (Zt)0≤t≤σ can be seen as indexed by Lα. Equivalently, this process can be

seen as the Gaussian Free Field in Lα, see Section 3.1 in [3]. The construction of the α-stable gasket

and carpet now continues as we already have seen for the Brownian sphere. Using the convention

[s, t] = [0, t] ∪ [s, 1] if t < s, define for all s, t ∈ [0, σ],

D◦
α(s, t) := Zs + Zt − 2max

{
min
[s,t]

Z,min
[t,s]

Z

}
.

Consider the Dα to be the largest pseudo-distance bounded by D◦
α, and define Sα := [0, σ]\{Dα = 0}

with the distance induced by Dα, still denoted Dα. Let Πα : [0, σ] → Sα be the canonical projection

and define the root as ρα := Πα(0). Finally, define the volume measure Volα on Sα as the pushforward

of the Lebesgue measure on [0, σ] by Πα.

Definition 4.1. The compact pointed measure metric space (Sα, Dα,Volα, ρα) is called α-stable

gasket (resp. carpet) if α ∈ (1, 3/2) (resp. α ∈ [3/2, 2)).
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The terminology changes with the value of α since there is a phase transition for the topology of

(Sα, Dα), as shown in Section 8 of [3]. For α ∈ [3/2, 2), the loops of Lα are converted in the holes of

Sα, whose boundaries are simple and non-intersecting loops. Furthermore, the topology of (Sα, Dα)

in this phase is that of the Sierpinski carpet. For α ∈ (1, 3/2), the boundaries of the holes in Sα do

intersect, and it is conjectured that the topology is random in this phase.

The previous facts represent the very first remarkable difference between the stable gasket/carpet

and the Brownian sphere, since the latter is homeomorphic to the 2-dimensional sphere. Another

inmediate consequence of the topology of Sα is that there is no notion of exit measures. However, the

holes in Sα also facilitate other computations, such as the identification of the equivalence classes of

{D = 0}. There is actually a trade-off in terms of geometric and probabilistic properties associated to

the change from the Brownian geometry to the stable geometry, that the reader is invited to reflect on.

The construction of (Sα, Dα,Volα, ρα) is the same when D(R+,R) is endowed with N(v). Note that

the distribution of the stable gasket/carpet is N⊗ P . However, we will abuse of notation by always

dropping from the notation the measure P , so that the distribution of the stable gasket/carpet is

denoted just by N. We still denote B(x, r) = {y ∈ Sα : Dα(x, y) < r}.

Let us briefly comment on the point with minimal label of Z. It turns out that such a point is

almost surely unique as in the Brownian sphere, and it is a typical point in Sα. We record this in

the following proposition, for which we refer to the original reference for the proof.

Proposition 4.2 (Propositions 4.3 and 7.1 in [3]).

� The (two-sided) local minima of Z are distinct. Denote by t∗ ∈ [0, 1] the (a.s. unique) time

such that Zt∗ = min[0,1] Z and let ρ∗ := Πα(t∗).

� Re-rooting property: Conditionally on σ,

(Sα, D,Volα, ρα)
(d)
= (Sα, D,Volα, ρ∗)

(d)
= (Sα, D,Volα,Πα(U)),

where U is an uniform random variable on [0, σ].

4.2 Heuristics for geodesics stars

In this section, we aim to give some heuristics to prove the extension of Theorem 3.2 to stable

geometry. One should not expect to replicate the exact same computations done for the Brownian

sphere. This is mainly because of the presence of faces and the weaker Markovian structure in stable

geometry. However, we can still try to translate some objects in Brownian geometry to the stable

language. Let Gα
m be the set of geodesic m-stars in Sα.
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Conjecture 4.1. dimH(G
α
m) = 2α + 1−m.

Note that if α → 2, the conjecture matches Theorem 3.2. In fact, this is expected since the basic

underlying process ruling the Brownian sphere is the Brownian motion, whose Laplace exponent is

λ 7→ λ2. For the α-stable geometry with α ∈ (1, 2), the latter is replaced by λ 7→ λα, so that α is

changed only in a linear way. There are also other quantities that show this linear dependence of

observables with respect to α, such as the Hausdorff dimension of the α-stable gasket/carpet itself:

we have dimH(Sα) = 2α, while dimH(m∞) = 4.

Towards a first moment estimate

Let us sketch some ideas to prove the lower bound of the previous conjecture, and more specifically,

a first moment estimate as done in 3.9 for the Brownian sphere. To do so, let us identify the key

ingredients used in the latter that allowed to prove such an estimate.

Note from the proof of 3.9 that the first moment estimate comes from two essential properties of

the Brownian sphere, namely, its Markov property and the Poissonian structure governing hulls.

In fact, after applying the Markov property, the estimate is simplified to analize the probability of

events related to independent parts of m∞, where the hull is easily handled thanks to its Poissonian

structure (recall Section 1.3.3). Then, it makes sense to pose the question:

Can we find a structure in the stable gasket/carpet with nice Markovian and Poissonian properties?

A first answer might come from the spinal decomposition of Sα, discussed in Section 6.2 of [3]. First,

define the measure N• by the relation

N•(F (X,Z, t•)) = N

(∫ σ

0

dtF (X,Z, t)

)
,

for all F : D(R+,R) × C(R+,R) × R+ → R+ measurable. The measure N• can be seen as N

together with a distinguished uniformly distributed point t•. The spinal decomposition describes the

interaction between the loops visited along the branch connecting 0 and t• and the remaining parts

of Sα. Roughly speaking, when performing such an exploration and conditionally on the labels across

the branch, for each visited loop we have a Poissonian structure for the labeled looptrees attached

to them, see Figure 4.2. To state this property formally, we need to introduce further objects.

� For each fixed t ≥ 0, let

Ht := lim
ε→0

1

ε

∫ t

0

ds1{Xs<Is,t+ε},

where the limit is proved to exist in probability, see [11]. The process (Ht)t≥0 has a continuous

modification, that we consider from now and still denote it by (Ht)t≥0. We call (Ht)t≥0 the

height process associated to X.

73



� For each t ≥ 0 and r ∈ [0, Ht), define

ξt(r) := inf{s ≤ t : Hu > r for all u ∈ (s, t]},

and set ξt(r) = t for all r ≥ Ht.

� For t ≥ 0 such that ∆t > 0, let ft(s) := inf{r ≥ t : Xr = Xt − s∆t} for all s ∈ [0, 1].

Let us now argue under N• and let t• be the distinguished uniformly distributed point sampled from

such measure. For each r ∈ [0, Ht• ], denote Y
•
r := Zξt• (r). We have that the process Y • = (Y •

r )r∈[0,Ht• ]

keeps track of the labels seen across Branch(0, t•), and that if r is a jump time of Y •, then ξt•(r−)

is a jump time of X (see Lemma 2.5 in [3]). Using this, we aim to describe the structure around the

loop of ξt•(r−) associated to a fixed jump time r of Y •. To do so, we introduce the quantities

Ĝr := Xξt• (r−) −Xξt• (r), and Gr := Xξt• (r) −Xξt• (r−)−.

Note that ∆ξt• (r−) = Ĝr +Gr. Define also the labels seen across the segments of lengths Ĝr and Gr

respectively by

B̂s := Z
fξt• (r−)

(
s

Ĝr+Gr

), for s ∈ [0, Ĝr], and Bs := Z
fξt• (r−)

(
Ĝr+Gr−s

Ĝr+Gr

), for s ∈ [0,Gr].

Now we code the labeled looptrees attached to the loop corresponding to r. Let ((ui, vi))i∈N be the

connected components of the set {t ∈ [fξt• (r−)(0), fξt• (r−)(1)] : Xt > Iξt• (r−),t}. Using this, define the

excursions processes

X i
s := X(ui+s)∧vi −Xui

and Zi
s := Z(ui+s)∧vi − Zui

, for all s ≥ 0.

Finally, introduce the point measures

P̂r :=
∑

i≥1:ui<ξt• (r)

δXξt• (r−)−Xui ,X
i,Zi and Pr :=

∑
i≥1:ui<ξt• (r)

δXui−Xξt• (r−)−,Xi,Zi . (4.1)

We are ready to state the spinal decomposition of the stable gasket/carpet. Here, P(T )
a→b denotes the

law of a Brownian bridge from a to b with lifetime T .

Proposition 4.3 (Proposition 6.2 in [3]). Under N• and conditionally on r 7→ Y •
r , the collection

(Ĝr,Gr, B̂
(r), B(r), P̂r,Pr) for r such that ∆Y •

r := Y •
r −Y •

r− ̸= 0, are independent and their conditional

distribution can be determined as follows. First, the law of (Ĝr,Gr) is proportional to

1ℓ1,ℓ2>0|∆Y •
r |2α−1 (ℓ1 + ℓ2)

−α− 1
2

√
2πℓ1ℓ2

exp

(
−(∆Y •

r )
2 ℓ1 + ℓ2
2ℓ1ℓ2

)
dℓ1dℓ2.

Then, conditionally on ((Y •
r , Ĝr,Gr) : r ≥ 0), the variables ((B̂(r), B(r), P̂r,Pr) : r ≥ 0) are indepen-

dent and for all r jumping time of Y • we have:
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� The law of (B̂(r), B(r)) is P(Ĝr)
Y •
r−→Y •

r
⊗ P(Gr)

Y •
r−→Y •

r
(dB̂dB).

� (P̂r,Pr) are independent Poisson measures, independent of (B̂(r), B(r)), with respective inten-

sities

1[0,Ĝr]
(t)dt⊗N(dXdZ) and 1[0,Gr](t)dt⊗N(dXdZ).

Figure 4.2: Figure 22 in [3]. Illustration of Proposition 4.3.

Using the previous fact, we can define a version of the approximated geodesic stars, that were coded

by the function F
(m)
ε,r (x, y) in the Brownian sphere, recall the definitions predecing Proposition 3.9.

In this setting, we propose to define F
(α,m)
ε,r (x, y) in the following way.

� Given r > 0, x, y ∈ Sα and s, t ∈ [0, σ] such that Πα(s) = x and Πα(t) = y, let ℓ(x, y, r) be the

loop associated to the furthest pinch point in Branch(s, t) at distance r from s in (Lα, d).

� For ε, r > 0, x, y ∈ Sα and s, t ∈ [0, σ] as before, let G
(α,m)
ε,r (x, y) be the event where there exists

m geodesics η1, . . . , ηm starting from ℓ(x, y, r) towards y, disjoint outside B(y, ε).

� Finally, define F
(α,m)
ε,r (x, y) := 1

G
(α,m)
ε,r (x,y)

.

Now, recall that to estimate the proportion of geodesic stars in the Brownian sphere we used the

point with minimal label as a reference point, since we can then consider the geodesics following

the running infimum along the neighboring labeled trees (recall Lemma 3.8). In this setting, the

goal is to implement the same idea, for which we would need a version of the spinal decomposition

for the branch connecting 0 with t∗. In fact, this would allow us to study the event G
(α,m)
ε,r (ρα, ρ∗),

since it can be translated to an event concerning the properties of the labeled looptrees attached to

ℓ(ρα, ρ∗, r) which we expect to behave in a Poissonian way (recall the event 3.1), as in Proposition

4.3.
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Heuristically, assume that a version of Proposition 4.3 holds with t• replaced by t∗. By Proposition

4.2, we expect that an identity of the form

N

(∫
Sα

Volα(dx)

σ
F (α,m)
ε,r (ρα, x)

)
= N

(
F (α,m)
ε,r (ρα, ρ∗)

)
,

holds, and there we should have a suitable Poissonian structure to make computations using the

conjectured spinal decomposition. In fact, by the previous discussion we can relate this quantity to

the probability of the event

Aα
ε,m := {#{i ≥ 1 : Zt∗ < minZi + B̂(r)

si
< Zt∗ + ε} ≥ m}.

where si ∈ [0, Ĝr +Gr] is defined to be such that fξt• (r−)

(
si

Ĝr+Gr

)
= ui (this corresponds to adding

the label at the root to recover the actual labels in Sα). If we define

A1,α
ε,m := {#{i ≥ 1 such that ui < ξt∗(r) : Zt∗ < minZi + B̂(r)

si
< Zt∗ + ε} = m},

A2,α
ε,m := {#{i ≥ 1 such that ui > ξt∗(r) : Zt∗ < minZi +B(r)

si
< Zt∗ + ε} = m},

which corresponds to separate the looptrees emerging from both sides of the loop associated to

ξt•(r−) (see Figure 4.2), then we can write

Aε
m =

⋃
k≥m

⋃
m1,m2∈N
m1+m2=k

(
A1,α

ε,m1
∩ A2,α

ε,m2

)
.

Conditionally on the labels seen across Branch(0, t∗), Ĝr and Gr, the probability of each term in

the previous writing of Aε
m can be determined as the probability related to a Poisson random vari-

able, thanks to the (expected) Poissonian mechanism ruling the labeled looptrees emerging from

ℓ(ρα, ρ∗, r). By estimating properly such probabilities, we could obtain a first moment estimate for

the approximated geodesic stars in the α-stable gasket/carpet.
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Final comments

In this document, we have reviewed the Brownian sphere along with a proof involving many of its

properties, remarkably its Markov property that gives the Poissonian mechanism of the hull part.

The latter fact simplifies the seemingly difficult estimation of the probability for the existence of

geodesics towards a point, disjoint outside a small neighborhood of it. This is the notion of approx-

imated geodesic stars, that in the limit to zero of the radius of such neighborhood, turns out to be

actual geodesic stars in the sense of Chapter 3 (just like remarked for the Brownian cone points in

Chapter 2). This gives, after some additional arguments, the lower bound of the Hausdorff dimension

of the geodesic stars. On the other hand, the upper bound is obtained as −essentially− a conse-

quence of the strong confluence of geodesics. In fact, the probability for the existence of geodesics

towards a point in a neighborhood of a typical point, is estimated by identifying these geodesics

with geodesics towards the typical point in all but a constant number of layers across the Brownian

sphere. Here, the independence properties of the Brownian sphere again play a fundamental role in

the computations.

For our purposes, we pose the question of how can we adapt these techniques to the stable geometry

setting. As we saw, there is less independence in this structure, due to the jumps of the underlying

Lévy excursion. However, such a process within its labels (on the associated looptree) still Markovian

when performing appropriate explorations, and the Poissonian behavior still holds in a weaker form,

since many additional conditionings have to be made. In this sense, if we think about adapting the

arguments given for the Brownian sphere to the stable geometry setting, a good starting point might

be to find a spinal decomposition for the branch connecting the root and the point with minimal label

in the stable geometry setting. Here, we think that the analog structure of hulls in the Brownian

sphere is any loop associated to a jump time of the label process in such a branch, to which labeled

looptrees are attached according to independent Poisson measures. This gives a way to define and

also mathematically treat the notion of approximated geodesic stars in the stable gasket/carpet, in

case that we let such geodesics to start at the loop. These ideas are left as future work.
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