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Abstract

Severa kinds of behaviors of extended-real-valued lower semicontinuous functions are known to be
equivalent to certain appropriate conditions in terms of the Clarke subdifferential. The paper provides a
systematic study showing that asych condition with the Clarke subdiffential is valid if and only if it
holds with any operator representing the Clarke subdifferential like in the subdifferential proximal formula.
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1. Introduction

After the first finite dmensional proximal normal formula appeared in the pafjgoiiblished
by Clarke, the systematic study of this and the first proximal subdifferential formula for lower
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samicontinuous (Isc) functions began with the pap@¥][of Rockafdlar. For a Isc function
f : RP — R U {+o0}, Rockafellar introduced the concept of a proximal subgradient and
defined the sedp f (x) of all proximal subgradients of atx as the proximal subdifferential.
He then investigated the litkmg proximal subdiﬁerentiabg f(x) and the singular limiting

proximal subdiI"ferentiaa'F‘,’Oo f (). Avectort is declared in37] to be alimiting (resp. a singular
limiting) proximal subgradient of at x provided there exiskx — X with f(xx) — f(X)
and¢x € 9p f(xk) suchthatsy — ¢ (resp.axlk — ¢ for someax — 07). The proximal
subdifferential formula in 7] states that the Clarke subdifferentiat f (x) (the Isc functionf
being fnite atx) is related to the proximal subgradients by the equality

dc f(x) =Tola5 f(x) + 95" F(X)]. (1.1)

Several applications of that formula for the study of the behavior of the Clarke subdifferential
of optimal value functionsn(x) = infycre (X, y) illustrate in B8] and [39] the efectiveness

of the formula. The general approach 88] not only yields useful calculus rules for the Clarke
subdifferential but it also implicitly clearly contas rich calculus rules for the limiting proximal
subdifferential. As is known, the limiting (respingular limiting) proxima subdifferential of f
coincides inRP with the limiting (resp. singular limiting) E¢het subdifferential of (defined

as above with the use of thedatiet subdifferentiadg f in placeof the proximal onedp f).

Thus, the papei3Q] contains other proofs of calculus rules established earlier by Mordukhovich
[27] for the limiting F8chet subdifferential (see als®1] and [28]). For otherinteresting proofs

of calculus rules for the Mordukhovich subdifferential, we refer the readet8owhereloffe
integrates the use of Dini subgradients. Calculus rules with general abstract subdifferentials are
contained in Jules2[)] and references therein, and equivalences between some subdifferential
calculus rules and some multidctional mean value properties appeared in Lasso@de [
and references therein. Any formula of the tyfdel) is what we call in the present paper a
subdifferential representation formula

The extension of formuldl.1) to reflexive Banach spaces was achieved by Borwein and
Strowjas in [] and by Loewen in P5]. Borwein and Strojwas in their paper][carried out
a thorough study of formuldl.1) for closed subsets of reflexive Banach spaces, that is, the
case where the indicator function of the closed suBdstconsidered in place of. Herce, the
corresponding normal proximal formula takes the form

Nc(S: x) = To N5 (S: X), (1.2)

whereN¢(S; .) and NE(S; .) denote the Clarke normal cone and the limiting proximal normal
cone, respectively. Borwein and Strojwas showedjapd [7] how many inportant properties of

the geometry of closed sets in Banach spaces aregir related to such norrheepresentations.

We can cite the following examples: the Bishop—Phelps propditgdncerning the density in

the boundary ofC of support points of closed convex séisin Banach spaces, and the Lau
theorem P4 relating to the existence of nearest points to nonconvex closed sets of reflexive
Banach spaces. Formulae of tyfddsl)and(1.2)with the F€chet subdifferential in place of the
proximal subdifferential have been estabég in Banach spaces admitting equivalergdret
differentiable (away from the origin) norms by Treiman BO[ where gplicationsare also
provided. As other important papers containing strong results on the subject in the infinite
dimensional setting, we cite the papess lhy Borweinand Giles, 19 by loffe, and the paper

[29) of Mordukhovich and Shao, where related results in the Asplund space context can be found.
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Note that P9| provides a detailed and complete analysis of several subdifferential properties of
nonsmooth functions over Asplund spaces.

During the last decade, the study of severalds of behaviors of the Isc function began,
related to the Clarke subdifferential properties. The question concerns the identification of
properties of the Clarke subdifferential that characterize the behavior of the function in which
one is interested. The first significant result in this line was provided by PoliquB8jmhere
he proved that a Isc functiodi : RP — R U {+oo} is convex if and only if its Clarke
subdifferential (or proximal subdifferential) is a set-valued monotone operator. This result has
been extended to Banach spaces for the Clarke subdifferential and some presubdifferentials by
Correa et al. in12], [13], and [14]. Since Poliquin’s paper, interest in other kinds of behavior
such as quasiconvexity, the Lipschitzian property, the Lipschitzian property up to a Isc convex
function, the directionldy Lipschitzian property, the decreasing property with respect to a convex
cone, generalized convexity, approximate cotityexnd bivariate behavior emerged in various
papers such ad 2,10,15-1726,32,45,47-49, and some of their respective references. Another
important behavior that garnered attention appeared in conjunction with the concept of primal
lower nice (pIn) finctions. This class of functions appeared in the papdrily Poliquin. In
[34], the author establishetie irterest of this class of functions by providing several interesting
applications. He then established the subdifféaboharacterization of such functions (defined
onRRP) with the Aarke and the proximal subdifferentials. This characterization has been shown
to hold in any Hilbert spacas poved by Ley et al. 23]. All the characterizations of the
different aforementioned behaviors have also been studied by many other authors for several
subdifferentials. All the subdifferentials involved have as a common point that the Zagrodny
mean value theorem (seBl]) is valid for everyone (seedf]) in the appropriate space. The
objective of the present paper is to show idieect waythat any such characterization with the
Clarke subdifferential is valid if and only if this holds with any other operafofor which the
representgon formula(1.1)is true withs" f ands, f in place ofa)s f andags ™ f, resgectively.

The paper is organized as follows.$ection 2we mnsider the subdifferential representation
formula(1.1) with an operatosf and we establish the equivalence of the monotonicity (resp.
guasimonotonicity, hypomonotonicity and submonotonicitydef with that of§f. A concept
of asymptotic operator is associateddection 3with any set-valued operator between a Banach
space and its topological dual space. This concept allows us to studycfbrand sf, the
equivalence of subdifferential criteria characterizing several properties of nonsmooth functions
such as: the Lipschitzian property, the directionally Lipschitzian property, the decreasing
property with respect to a convex cone and with respect to some furgctiaat is either convex
on a Banach space or pln on a Hilbert space. The case where the fupiticonvexly composite
is studied in the last section.

2. Representation formula and various concepts of monotonicity

Let X be a real Banach spack; be its topological dual, and : X — R U {+o00} be a
Isc function with which we associate a set-valued opedtarX = X*, which isempty valued
at any point wheref is not finite. We define the two set-valued opera®rs : X = X* and
S5 f i X = X* by

8L (x) == {x* € X* : there exist — X, X € 8f (x) suchthatx — x*}
85 F(x) == {x* € X* : there existexk — 0T, X — £ X, X\ € 8 ()

suchthat ogxg; A x*},
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wherexx — 1 X means that the sequengenorm-converges ta together withf (xx) — f(x)

and “>” denotes thav* convergence iiX*. Theoperatos" f is the limiting operator associated
with §f andéé—of is the singular limiting operator. It is easily seen thatc s- f and for any
x € Domsy, = {x € X : 85 (x) # 0} the setsL, (x) is a mne containing 0. Further, the
inclusion Doms- ¢ Doms), also holds.

Definition 2.1. Given a Isc functionf : X — R U {400}, we will say that the set-valued
operatorsf : X = X* with §f(-) C dc f(-) satisfies theepreentation formulain an open
subsetU of X if there exist two operato’ f, s f with

M) cstfx)vxeU and 0esl f(x) csyf(x)vxeUnDomsyf (2.1)
suchthat
co” (3 f () +8Af(x))=acf(x) forallx eU, (2.2)

wheredc f (X) is the Qarke subdifferential off atx, definal forx e domf :={y e X: f(y) <
oo} by

ac f(x) = {x* € X*: (x*,h) < fT(x; h) forall h € X}
andoc f (x) = ¥ forx ¢ domf. Here

i ; f(x' +th) — f(x'
ftx;h) = supinf sup inf (X" +th) ( )’
)’>08>0 xeBoce) NeB(;y) t

[fO0—f(x)|<e

te]0,e[

T0”" (S) denotes thev*-closed convex hull of the s&in X*, andB(z; ¢) = {x € X : |[x—z| <
e}.

When the functionf is locally Lipschitzian arouna, f(x; -) reduces to

f(x'+th) — f(x)

fT(x; h) = limsup n (2.3)
ot
and in such a case the functidn (-; -) is upper semicontinuous (se9).
Observe thaf2.1)and(2.2) entail
U NnDoms* f = U nDomac f. (2.4)

Example 2.1. Examples of functiong and operatordf for which (2.2) holds include:

e Clfunctionsf on any Banach space, the usual derivative as opetéter! f = {V f}, and
54 f = {0}

e Isc functionsf on Asplund spaces, the &afiet subdifferentiadr f as operatosf, §4 f =
3t f the limiting Fréchet subdifferential or the Murdukhovich subdifferential, aggf
ak-""f the singular limiting Fechet subdifferential (se€9,50));

e Isc functionsf on reflexive Banach spaces, the proximal subdiffereatidl as operato8f,
84 f = 95 f the limiting proximal sibdifferential, and f = 95" f the singular limiting
proximal subdifferential (se&/[25]);
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e locally Lipschitzian functions on separable Banach spaces, the opéfatm@ing given by
sf(x) = {Vf(x)} foranyx at which f is Gateaux differentiable andif (x) = ¢ otherwise,
$AF(x) = {lim VT (x) : xx = x} andsZL f = {0} (see B3));

e Isc functions f on any Banach space, the operaiéras the Clarke subdifferentiak f,
84f =ac f,ands f(x) = {0} for all x e Domac f.

We will begin with the investigation of the monotonicity @t f and éf under the
subdifferential representatiq®.2).

Definition 2.2. A set-valued operatoA : X = X* is calledmonotoneover an open sdi if for
all x,y e U nDomA, where DomA = {x € X : A(X) # ¥}, one has

X*—y"  x—y)>0 forall x* e AX), y* € A(Y).

The interest of the monotonicity of the Clarke subdifferential (also of several
presubdifferentials; refer td f]) lies in the fact that it characterizes the convexity of Isc functions
over Banach spaces. The proposition below shows in pdaithat such a characterization holds
for any operator for which the representat{@m®)is satisfied.

Proposition2.1. If f : X — R U {400} is a Isc funtion sud that §f satisfies the
repreentation formula2.2)in U, then the Clarke subdifferentiat f is monotone in U if and
only if §f is nonotone in the same set.

Proof. Supposesf is monotone inU. Let x,y € U N Doms" f, takex* e 8- f(x) and
y* € 8L f(y). Then here exist sequence® — X, Yk — f Y, Xp € 8f(xk) andyy € 8f(yw
suchthat x Ao andyy A y*. Fork sufficiently lage, sincesf is monotone inJ, we can
write

(X — Y- Xk — Yk) = 0,

and taking the limit ovek we obtain the inequality that proves the monotonicityg'of in U.
Now, we will show that for alk, y € Domsk, f N U andx* € 8L, f (x) one has

(x*,x—y) =0,

and therefore we will also have-y*, x—y) > Oforallx, y € Domék, fNU, andy* € 85 f (y).
Hence brall x, y € Doms, f N U we will obtain

(X =y x—y)>0 forallx* es f(x) and y*eslf(y),
that is,s%, f is monotone inJ.
Letx,y € DomsL f NU, x* € 85 f(x) andy* € 65 f(y). Then here existyx — O,
Xk =X, Bn = O, yn—1y, X € 6f(xw) andy;; € &8f(yn) suchthat axx; X x* and
BnYs A y*. According to the monotonicity dff , we hawe fork andn sufficiently large

(kX — akYn, Xk — Yn) = 0,

and taking the limit ovek and the& overn we obtain(x*, x —y) > 0.

Therefore, the monotonicity of- f andst, f implies that ofs" f + §5 f and hence that
of 4 f + 84 f; and we conclude recalling that, if a sealued operator is monotone, then its
pointwisew*-closed convex hull is also monotone.

The opposite implication is wial because of the inclusioAf (x) C dcf(x) for all
xeU. O
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Similar to the monotonicity, the quasimonotonicity of the Clarke subdifferential of Isc
functions characterizes, on a Banach space, its quasiconvexity{sgks] and [26)]).
Let us recall the concept of quasimonotonicity.

Definition 2.3. A set-valued operatoA : X = X* is calledquasimonotonever an open sdf
if, forall x,y e U N DomA, x* € A(x), y* € A(y), one has
(X, y=x)>0=(y",y—x) = 0.

The following proposition establishes that the quasimonotoniciBedf is equivalent to that
of §f, provided(2.2) holds.

Proposition 2.2. Let f : X — RU{+o00} be alsc function such that the representation formula
(2.2)holds fors f. Then the Clarke subdifferentiat f is quasimonotone in U if and only #f
is quasimonotone in the same set.

Proof. Supposesf is quasimonotone itJ. Letx, y € U N Domst f, takex* e 8- f(x) and

y* € 8- f(y). Then here existxx — 1 X, Yk =t Y, X € 8f (x) andy; e 8f (yk) suchthat

X Aoxr andyy A y*. Fork sufficiently lage, sinceSf is quasimonotone itJ, we have
(XY =%X) > 0= (X, Yk — Xk) > 0= (Y, Yk — X) = 0= (y*,y —X) = 0,

thatis,s" f is quasimonotone itJ.

We will now show that forx, y € U N Dom(st f + 5<'>'o f) (note that, from the representation
formula, we have the inclusiod N Domdc f c U N Dom(st f + 85 1)), xf e st f(x),
x5 e 85, f(x), yi e 8L f(y) andyy, e 85 f(y), we have the imlication

(X{,y=x)>0 or (x5, y—x)>0=(y{,y—x)>=0 and (y5,y—x) >0,
which will imply thats" f + 85 f is quasimonotone itJ.

Suppose(x;,y — x) > 0. Itis clear thaty,y — x) > 0 because f is quasimonotone.

Moreover, there exisBx — 0, yk—rt Y, yi € 8f(y) C sEf(yk) suchthat By yy A Vi
and the for k suficiently large, we have, because of the quasimonotonicis}-df and of the
inclusionsf c sb f,
(XL Y =%) > 0= (X[, Yk = X) > 0= (¥, Yk = X) = 0= (BiYi, Yk —X) = 0
= (Yoo: Y —X) = 0.
Suppose now thaix,, y — x) > 0. Letax — 0F, X — 1 X, X € 8f (x) C 8" f (x) be such
thatoxg A x%.. Fork which is large enough, sina# f is quasimonotone i), we obtain
(X5, Y= X) > 0= (akXg, Y —Xk) > 0= (X5, Y —X) > 0= (Y[, y —Xk) =0
=Y,y —x) =0,
and from the quasimonotonicity 6f in U we have

(X% Y = X) > 0= (akXg, Yk — Xk) > 0= (X, Yk — Xk) > O

= (V> Yk — Xk) = 0= (BYk, Yk — Xk) = 0= (y5,.,y —Xx) > 0.
Finally, the fact thas' f + 8(';Of is quasimonotone itJ implies the quasimonotonicity of
84 F + 54 f and the of x > T0” (84 f (x) + 84 f(x)) = dc f (X).
The converse implication comes directly from the inclusiti(x) < dc f(x) for all
xeU. O
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Several poperties of functions which are convex up to a square over a Hilbert space have
been studied by several authors. It can be seen (through CorresTifsault LL.3]) that such
functions correspond to functions with hypomonotone Clarke subdifferentidsolosition 2.3
below, we will study the relationship between the hypomonotonicityof and that ofsf. Let
us begin by clarifying the notion of hypomonotonicity (sé€]).

Definition 2.4. A set-valued operatoA : X = X* is calledhypomonoton& an open set) if
there exists > 0 such thafor all x, y € U N DomA one has

X*—y x—y)>—rx—vy|?> forall x* € AX), y* € A(y). (2.5)

Proposition2.3. Let f : X — R U {400} be a Isc function such thaif verifies the
repreentation formula2.2). Then the Clarke subdifferentiat f is hypomonotone in U if and
only if §f is hypomonotone in the same set.

Proof. If we supposesf is hypomonotone inlJ, then here exstsr > 0 such bat for all
X,y € UNDoméf one has

X*—y x—y)>—rx—vy|?> forall x* € §f(x), y* € 5f(y).

Using an argument similaotthat usedn the proof of Proposition 2.1we can prove that
st f is hypomonotone and thé¢o f ismonotone inJ. This will imply the hypomonotonicity of
st +8Lf 5841 454 f and then that odc f.

The converse implication is direct from the inclusi®fi(x) c oc f (x) forallx e U. O

Remark 2.1. WhenX is a Hilbert space, a useful charaxration of the hypomonotonicity id

of a set-valued operatd@k is the monotonicity of A+r1 in U, wherel is the identity inX. This
characterization cannot be generalized to a general Banach space by using the dual set-valued
operatorl (x) = {x* € X* : |x|2 = [|x*|2 = (x*, x)} = dc(1/2| - || (). Nevertreless, ifX

admits an equivalent &€aux differentiable (away from zero) norm (for example, any reflexive
space admits such a renormalization) that we use to define the dual opei@iove, then we

still obtain Proposition 2.3rovided we replace the definition of hypomonotoni¢®y5) by the
monotonicity ofA + r | . This is a direct consequence of the fact that in such a spasesingle

valuedand norm-weak continuous.

We are going to consider now the concept of submonotonicity of a set-valued operator. This
concept has been thoroughly studied in the pag@r$15 and [42].

Definition 2.5. A set-walued operatoA : X = X* is calledsubmonotonén an open seb if
for eachxg € U N DomA andr > 0, there existg > 0 with B(Xp; ¢) C U such that for all
X, Y € B(Xo; ¢) N DomA one has

(X' =y x=y)=-rlx=yll  forallx* e AX), y* € A(y).

Proposition 2.4. If f : X — RU{+4o0} is alsc funtion sud thats f verifies the representation
formula (2.2), then the Clarke subdifferentidc f is saibmonotone in U if and only isf is
submonotone in the same set.

Proof. Let xg € U andr > 0. From the submonotonicity ¢ff, thereexigs e > 0 such hat for
all x, y € B(xo; &) "U N Domsf one has

(X* =y, x—y)=—r|x—yl for all x* € §f (x), y* € §f(y).
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Using arguments similaotthose usedni the proof of Proposition 2.1we can prove thas" f
is submonotone and thaty, f is monotone inU. This will imply the submonotonicity of
8- f 485 f andsA f + 82 f, and laer that ofac f .

The converse implication is direct from the inclusi®inx) c ac f (x) forallx e U. O

An important direct consequence dPropositions 2.1-2.4oncerns the convexity, the
guasiconvexity, the convexity up to a square, and the approximate convexity behavior of
nondifferentiable functions/Me recall that a functionf is quasiconvex iran open convex set
Uifforall x,y € U andi € [0, 1] one hasf (Ax 4+ (1 —21)y) < max f (x), f(y)}. The function
f is convex up to a square i if there exists > 0 such thatf +r |- |2is convexinU, and f is
approximately convex it if for all xo € U andr > 0, there exists > 0 such hatforallx, y
B(xp; £)NU andx € [0, 1] one hasf (AXx+(1—=A)y) < Af (X)+ (A=) f (V) +rad—=1)||x—Y]|
(see B1)).

Corollary 2.1. Let f : X — R U {400} be a Isc @inction with domf # @ and letsf
satisfy the representation formu(@.2) in an open convex subset U of X. Then, the following
characterizations hold:

(a) f is convex in Uif and only if §f is nonotone in U;

(b) f isquasiconvexin U if and only #f isquasimonotone in U;

(c) when X is a Hilbert space, f is convex up to a square in U if and ondyf ifs hypomonotone
inU;

(d)if f is locally Lipschitzian in U, then f is approximately convex in U if and onlyfifis
submonotone in the same set.

Proof. (a) is a direct consequence Bfoposition 2.1and Theorem 2.4 in14]. (b) is a direct
consequence oProposition 2.2and Theorem 4.1 in1]. From Remark 2.1 (c) is a direct
consequence dProposition 2.3and Theorem 2.4 in14] apgied to the functionf + r|| - ||2.
(d) is a direct consequenceBfoposition 2.4and Theorem 2 inl5. O

3. Representation formula and local behavior of Isc functions

Several characterizations of the decreasing property with respect to a convex cone,
Lipschitzian property, directional Lipschitzian behavior, pln property, etc. of Isc functions are
provided in the literature with the Clarke sufférential and some presubdifferentials. The
objective of this section is to study similar characterizations with any opesétdor which
(2.2)holds. In more general terms, we will examine the equivalence between the corresponding
characterization with the Clarke subdifferential and the similar onedfitsubstituting foroc f.

The next theorem makes use of the concepts of asymptotic operator and closedness of an
operator at a point.

Definition 3.1. For a setvaluedoperatorl” : X = X*, we definethe asymptotic operator
I'no : X = X* of I" by

Too(X) == {x* € X* : there exét netsej — 0, X; — X andx} € I'(x;)
suchthat{ejx;j}; is bounded and = xH

Definition 3.2. We say that aet-valued operatar : X = X*iswy — || - || is closed ak € X
if, for any netx; — x and any bounded nem]‘-* X x* with x]k € I'(xj), one hax* € I'(x).
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We will say thatI" is locally bounded ak € X if there existss > 0 such hat the image of
B(x; ¢) by I, given byUX,eB(X;g) I'(x), isbounded.

We can now establish the following theorem cenning a general set-valued operatar
Several choices of this set-valued operator witha us to derive varioubehaviors of functions.

Theorem 3.1. Let f : X — R U {400} be a Isc function, D be a subset Pbm(s‘) and U
be anopensetin X. Lét : X = X* be awj — || - || closed set-valued operator at any point of
U N D and K9 be aw*-closed convex cone in*XThen, the following assertions hold.

(a) If I' islocally bounded at any point of b D, then wehave the equivalence
sf(x)c KO+ I(x) forallx eUNnD « 8- f(x)+85 f(x) c KO+ I'(x)
forallx e UND. (3.2)

(b) If K9 and I satisfy
() I'o(x)N—K9={0}forallx e UND;
(i) either KO = {0} or there exists some*-compact subset S with ¢ S, suchthat
KO=R,S;
(i) I'X) + I'o(X) Cc I'(x) forallx e U N D,
then we alsdave the equivalend8.1).
(c) Ifin (a) or (b) we assme hatsf additionallysatisfieghe representation formu(2.2)in U,
D = Dom(s4 f), and that! is convex valued, thenesave the equivalence

sfX) c KO+ I(x) forallx eU & acf(x) c KO+ I'(x)
forall x € U. (3.2)

Proof. (a) The impication < is evident becaus&f (x) c 8- f(x) + 85 f(x) for all x € X. In
order to prove= we first show that the left hand side @.1)implies that

sLf(x) c KO+ I'(x) forallx e UnND. (3.3)

Letx e UND, x* € 8- (), Xk — 1 X andxg € &f (xk) be such thaky X Then, from the
left hand side of(3.1), x; = a + by with a; KO andby € I'(xx). Sinceby is bounded, it has
abounded subnet converging weakly-star to strneSincel" is wy; — | - || closed ak, we have
thatb* € I"(x) andx* — b* € KC. Therdore, we conclude that* € K° + I'(x).

Let us nowprove that

sLf(x)c KO  forallx eUND. (3.4)

Letx e UND, x* € 8gof(x), Xk —f X, ax — OF andxy € §f (xk) be such thadx; 2w,
Thenxg = ag + by with a; € KO and by € I'(xk). Sinceby is bounded, we conclude that
okay 2 oxr e KO

Inclusions(3.3)and(3.4) and the fact thaK © is a convex one prove the result.

(b) As atove, the imfication < is evident. In order to prove> we first establish the inclusion
(3.3) Letx € UND, x* € 8-f(x), xxk— ¢ x andx} € &f (x) be such thax; 2oxx,
Thenx; = af + by with af e KO and by € I'(xk). Let us showthat the squenceay is
bounded. Otherwise it has a subsequence Wn)ll* — +o00, and we define, for each,
some eal numbet., > 0 ands; € Ssuchthatay,, = Ans;. As the setSis bounded, one has
An — 400 and, according to the weak-star compactnesS diie bounded sequensg admits
abounded subnet converging weakly-star to s@he: S. Sinces;; € KO, the w*-closainess
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of KO entailss* € KO. On the other hand, through the bounded subneg‘afonverging tos*
and the boundedness mj(n), theequality —s; = Aglbﬁ(n) - Aglx;(n) yields —s* € I'no(X).
Sinces* # 0, we get a contradiction witfi). Then, the bounded sequerggadmits a bounded
subnet converging weakly-star to somec K°. In this way, the corresponding bounded subnet
of b = x¢ — ag will converge weakly-star ta* — a* and, sincel” is wy; — || - || closed ak, we
conclude thak* — a* € I'(x), and therx* € K° + I"(x).

Let us prove now the inclusion

85 F(x) € KO+ I'no(x) Yx e U N D. (3.5)

Letx e UND,x* e 5(';Of(x), Xk — f X, ax — 0T andxy € §f (xk) be such thadrx; Xoxx,
Thenx; = a; + b} with a} € K®andb;: € I'(x). As above, lets show that the sequenega;;
is bounded. Otherwise, it has a subsequence Mﬂ@n)af(‘(n) I« — +oo. Take for eacn some
An > 0 ands; € Ssuchthatay, = Ansgy,- As the setSis bounded one hagnin — +00
and following the same arguments as were used in the pr¢a8f@fabove, we get a contradiction
with (i). The bounded sequenegay then admits a bounded subnet converging weakly-star to
somea* € KO. Consequently, the corresponding bounded subneklof = axx; — axay will
converge weakly-star to* — a* € I'n(X), that isx* € KO+ 'y (X).

Combining inclusiong3.3) and(3.5), hypothesis (iii), and the convexity ¢¢° allows us to
obtain the right hand side inclusion (8.1) and to conclude (b).

(c) Observe first that, under the assumptions of (c) and foxany) N D, the seond inclusion
of (3.1)entai|s(3/1 f(x) + 8§o f(x) ¢ K9+ I"(x). So for anyx € U N D we obtain from(3.1)
the implication

5E(x) C KO+ I(x) = 84 f(x) + 84 f(x) € KO+ I'(x). (3.6)

If the represeration formula(2.2) holds in (a), from(3.6) the implication= of (3.2)is evident
whenx e D, becauseK® + I'(x) is the addition of a convew*-closed set and a convex*-
compact set, which is always a conugX-closed set.

In (b), the convexity oK ® + I'(x) is evident and the hypothesis (i) insures thé-closainess

of this set for allx € D. In fact, ifa¥ + b* X x* with a* e KO andb]" € I'(x), from (i), with
arguments similar to those used in this proof in the first part of (b), we can obtain the boundedness
of these nets and we conclude thate K° + I"(x). From(3.6), the reoresenttion formula then
allows us to obtain the implicatiog> of (3.2)for all x € U N D.

The reverse implicatior= of (3.2) being obvious, due to the inclusidfi C dc f, we have
proved the equivalend8.2)for all x € U N D in either (a) or (b).

Whenx ¢ D the equivalence is trivial becausé(x) = oc f (x) = @. O

Remark 3.1. If dim X < 400, the hypothesis (ii) in part (b) ofTheorem 3.lalways holds.
Otherwise, as shown in the following lemmasdficient condition for this hypothesis is that
KO = {x* e X*: (x,x*) < 0Vx € K} whereK C X is a cmnvex cone with nonempty interior.

The following lemma is well known. We give a simple proof.

Lemma3.1. Let K ¢ X be a conex ®mne and
KO = {x* e X*: (x*,x) <0Vx € K.

If KO = {0}, asufficient condition for the existence ofi&-compact set S with ¢ S sut that
KO =R, SishatintK # ¢.
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Proof. For p € intK andr > Osuchhatp+rBx c K, whereBx = {x € X : ||x|| < 1}, we
define thew*-closed set

S={x*e KY: (x* p) = —r}.

SinceK? # {0}, it is easy to see that® = R, S. To conclude, let us prove th& is bounded.
For allx* € Sandu € Bx, we have(x*, p 4+ ru) < 0, which imgies that(x*, u) < 1 for all
u € Bx andx* € S, thatis,SC Bx+ = {x* € X* : |x*|l. <1}. O

Observe that the condition of the lemma is easily seen to be also necessary witkisever
required to be in addition convex.

The choice of the Clarke subdifferentiagd g(x), for some Is functiong in place ofI"(x)
requires the closedness afg at x. Such aproperty does not hold for any functiam The
functiong in [35] given byg : R3 — R U {400} suchthat

0 ifxeC

+oo ifx¢C, (3.7)

gx) =¥ (C; x) = {
whereC = {x = (X1, X2, X3) € R3: |x3| = X1x2} provides an example of a Isc function where
dcgis not closed at0, 0, 0). In fact, it is easy to check thagg(t, 0, 0) = {0} x R x R for all
t # 0 anddcg(0, 0, 0) = {0} x {0} x RR.
A primary general important class of not necessarily convex functmpneheredcg is
w* — | - || closed, is the class of directionally Lipschitzian functions.

Definition 3.3 ([3€]). A Isc functionf : X — R U {+o0} is directionally Lipschitzianat
x € dom f with respect to a vector € X if

’ N 1
Iimsupf(x +ty") f(x)<
Y=y t

X' = X
t—0t

+o0o

We will say that f is directionally Lipschitzian at if there is at least some vectgrsuchthat
f is directionally Lipschitzian ax with respect toy. Note hat f is locally Lipschitzian a if
and only if it is directionally Lipschitzian at with respect toy = 0. Finally, we will say that f
is directionally Lipschitzian if it is directionallizipschitzian at each point of its effective domain
domf.

It is well known that if f is a Isc function, directionally Lipschitzian &, the Clarke
subdifferential of f atx is characterized by (se8€)])

ac f(x) = {x* € X*: (x*, h) < fOx; h) Vh € X} (3.8)
where
£9(x: h) = lim sup— +”1) — (3.9)
o

The following lemma gives a useful semicontinuity property of the Clarke directional
derivative fO(-; h). It will allow us to easily derive in the proof dfheorem 3.2he closeness of
dc f atx when f is a directionally Lipschitzian function.
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Lemma3.2. If f : X — R U {400} is a Isc function at x, then
limsup fOx’; hy < f%x; h) vh e X. (3.10)
X' —§ X

Proof. Fix h € X. Equdity (3.9)can be written as

f(z+th) — f
9 hy = inf sup AW =T@
gio zeB (x/;¢) t
t€]0,8[

)

whereBs (X’; ) ={ze B(X’;¢) : | f(2) — f(X)| < €}. Fixn > 0, > 0and lety > 0 be such
thatBs(x’; £/2) C Bi(x; ¢) forall X' € B (x; y). Then

fo(x’; hy = inf  sup f(z+th)— f(2) < sup f(z+th) — f(2

gig zeBt (X';v) t B2 t
te]0,8( tel0.nl
f(z+th) - f(2
< _er v e
zeBg (X;¢) t
te]0,nl

for all X’ € Bt (x; y). This implies

f thy — f
limsupfox’;h) < sup ferth - 1@
X' —§ X zeBt (x;6) t

te]0,nl

forall e > 0 andn > 0. Taking the infimum over andn, weobtain(3.10) O

When f is a Isc directionally Lipschitzian function id, as a diect application 0{3.8) and
(3.10) weobtain the closedness &f f and furthermore the equality

ac F(x) = 95 F(X) + 8& o F(X) ¥x € U. (3.12)

Although the inclusion of the first member (§.11) in the secondne always holds, the
converse may fail. In fact, the functioh = g, whereg is given in(3.7) (see B9)) provides
an example wheré.11)fails. In fact (0,1, 1) € aé f(0,0,0) + agm f(0,0,0) but(0,1,1) ¢
8(/;1 f (0, O,AO). So, we cannot obtain for such a functidnthe representation formu(2.2) with
34f =05 f.

A seaC)nd class of functions for which we can establish the closedness of the Clarke
subdifferential is the class of primal lower nice functions. This class is also involved in
Theorem 3.2It has keen introduced by Poliquin ir8fl] wherehe shows, in the finite dimensional
sdting, the integration property of such functions and studies their generalized second-order
behavior.

Before stating the definition of primal lower nice functions, we need to recall the concept of
proximal subgradient.

Definition 3.4. An elementx* € X* is a proximal subgradienbf a function f from X into
R U {+o00} atx € domf if, for somet > 0, the inequality
FOX) = F00 + (X%, % = %) — t]x = x'||?

is valid for all X’ in a reighborhood ofx. We denote by dp f(x) the set of dl proximal
subgradients off atx.

It is well known (and easyotsee) that the inclusiofp f (x) C dc f (x) always holds.
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Definition 3.5 ([34]). We say that a Isc functiof : X — R U {400} is dp-primal-lower-nice
(dp-pln) atx € cl(domf) if the domain ofdp f is a dense subset of some neighborhookof
intersected with the domain df and if there exist positive scalassc andr such thatift > r,
[X*|l« < ct, X — X|| < & andx* € 3p f (x), then theinequality

t
FOX) 2 F00 + (XX = x) = SIIX' = x| (3.12)
is valid for all X’ with ||x’ — X|| < . The function f is called dp-primal-lowa-niceif it is
dp-primal-lower-nice at all points in ¢llomf).

We note that wherX is a Hilbert space the proximal subdifferential is automatically nonempty
on a dense subset of the domain of the Isc funcfion

The above definition of thép-pln property can be obviously extended for any set-valued
operatosf suchthatsf (x) = ¥ whenx ¢ domf.

Definition 3.6. We say that dsc functionf : X — R U {400} is §-primal-lower-nice(s-pln)
atx € cl(domf) if the domain ofsf is a dense subset of some neighborhoo&dfitersected
with the domain off and if there exist positive scalarsc andt such thatift > 7, | x*|. < ct,
Ix —X|| <& andx* € §f (x), then theinequality(3.12)is valid for allx” with |[x" — X|| < . The
function f is calleds-primal-lower-niceif it is §-primal-lower-nice at all points in ¢lomf).

We first esthlish a relation betweebc f andop f whensf satisfieq2.2).

Proposition3.1. Let f : X — R U {+o00} be a Isc function such thatf sdisfies the
repregntation formulg2.2)in U. If f is §-pIn, then we have the equality

ac f(X) = cly=(ap f (X)) forall x € U.

Proof. Forx € U \ Doms4f = U \ Domic f (see(2.4) the above equality is trivial. Let
x € UNnDomédf = UnDom@Af + 84 ), x4 € 64F(x), x5, e 84 f(%), xx— X,

X € 8f (%), ak — 0%, zc— £ X, Z € 8f (z), be sub thatx} = x* andaxz; — x%. On the
other hand, from the representation formula we know that cl(dom f) and, thus, there exist
positive constants, c ande such thatift > 7, |y*|« < ct, X" —X]| < ¢ andy* € §f (x”), then

t
f(x)> f(X")+ (y, x —x") — §||x’ —x")?>  forallx' € B(X";¢).

Since, fort > 7 andk sufficiently large, we have|x{|l. < ct, [[xk — X|| < £/2, [|Z|lx < ct/ax,
t/ax > T and||zx — X|| < /2, we canwrite

f(xX) > f) + (x5, X — Xk) — %IIX/ — x> forall X' € B(x; &/2),
t
f(x) > f(z)+ (Z, X —z) — 2—||x’ —z? forall X' € B(x; £/2).
ok
If X’ € domf N B(x; ¢/2) we multiply the second inequality by, taking he lowerlimit over
k in both inequalities and adding these two limits. This permits us to obtain the inequality
f(x) > F(X) + (X + X5, X —x) —tx' — x|

The latter is evident wher' ¢ dom f. This yieldsx% + x5, € dp f (x) and therefore we have
proved the inclusion

M)+ 8L fx)coapfx)cacfx)  forallx e U.
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Taking thew*-closed convex hull in the above inclusion, we obtain the desired equalify.

It is shown in R3] that when X is a Hilbert space and is dp-pln, thendp f = dc f. The
following proposition, together witfProposition 3.1will allow us to see that the equality still
holds in the reflexive Banach context whéris dp-plin.

For a sibsetS C X* (resp.X x X*) we will denote bywjcl (S) (resp.|| - || — wicl (S)) the
set of allw* limits (resp.|| - || — wj limits) of bounded nets of points i8.

Proposition 3.2. Let f : X — R U {4-00} be a Isc function. If f ig-pln, then
| - I — wpel (gphéf) C gphae f,

wheregphA is thegraph of the set-valued operator :AX = X* defined by
gphA = {(x, x") € X x X* : x* € A(X)}.

Proof. Let (x, x*) € || - || — wgcl(gphsf). Thus, there exist a net — x and a bounded net

x}‘ Aoxr suchthatx]" € 6f(xj). Sincex € cl(Doméf) C cl(domf), f is §-pln atx. We
know that there exist positive scalarsc, T such thatift > 7, |y*|l« < ct, X" — X|| < ¢ and
y* € §f (x”), then

f(x) > f(xX")+ (y, x' =x") — £2||x’ —x"?2  forallx' e B(x"; ¢).
Then, fort sufficiently large we hav¢|x}‘||>k < ct for all j and there existgg suchthat
Ixj — x|l < e/2forall j > jo. In this way, wecan write for allj > jo

f(x) > f(xj)+ {xj, X' = Xj) — £2||x’ — X; I% for all X' € B(x; &/2) C B(xj;e) (3.13)
and taking the lower limit ovej we obtain

f(x) > fx)+ (x*, x' =x) - %Hx’ —x|? forall X' € B(x; &/2),
which implies that* € 9p f (x). O
Corollary 3.1. Assume that the space X is reflexive and dpigpln atX. Then for # X nearX,
onehasthe equality

ac f(x) = ap f (x). (3.14)

Proof. The spaceX being reflexive, we know that the representation form@a&) holds for
8f = dp f. Then br all x nearX we have by Proposition 3.Jand the reflexivity ofX

dc T (x) = clyw=(0p T (X)) = cl . (@p f (X)).

Applying Proposition 3.2vith § f = dp f we obtainac f (x) C dp f(x) and hencéc f (x) =
op f (x) for x nearx. 0O

The following theorem examines some special examples of the set-valued mafping
involved in Theorem 3.1 These examles, which are of great interest in the rest of the paper,
correspond to the choicE = dcg + yBx+ with the classes of functiong introduced in
Definitions 3.3and 3.5. The wellknown classes of convex and locally Lipschitzian functions
are also considered.
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Theorem 3.2. Let f : X — RU{+o0} be alsc function such thaf verifies the representation
formula(2.2)in U and let K° ¢ X* be aw*-closed convex cone. The following assertions hold.

(a) If g : X — Ris alocally Lipschitzian function, then

8F(x) € KO+ 9cg(x) + yByx Vx € U & dc f(x) € KO+ dcg(x) + yBx:
Vx € U, (3.15)

wherey > 0.
(b) Assume that g X — R U {+00} is a function that satiges one of the following properties:
(1) g is alsc comex function,
(2) g is alsc directionally Lipschitzian function that is continuous relativéedilomadc g,
(3) X is a reflive space and g i8p-pin,
and assume also that
(i) —K%N (8cg)s(x) = {0} forall x € U, and
(i) either KO = {0} or there exists av*-compact set S with ¢ S suchhat K® = R..S.
Then, the quivalencg3.15)still holds.

Proof. (a) This is a consequence bfieorem 3.Jpart (c) with the hypothesis of part (a). Indeed,
sinceg is locally Lipschitzian, the set-valued operatiyg is wi, — || - || closed and locally
bounded inX, andhence it is easily seen that the same holds for the set-valued opEraifith
I'(x) = dcg(X) + yBxx.

(b) We proceed to prove that this is a consequendédebrem 3.Dart (c) with the hypothesis
of part (b). In fact, we will show under conditions (1), (2) or (3), thalg is awj — || - ||
closed operator ifd N U, whereD := Dom(§4 f + 54 f) = Doms/ f, andhencel'(x) :=
dcg(X) + yBx+ will be awf — || - || closed operator ifd N U, and that

9cg(X) + (0cP) oo (X) C cg(X) forall x € X.

The above inclusion and the fact thBf,(X) = (dc0)eo(X) Will give us hypothesis (iii) in
Theorem 3.Jand will allow us to conclude.

(1) The lowe semicotinuity of the convex functiorg and the classical characterization of
the Qarke subdifferential for convex functions

9cg(X) = {x* € X*: g(x) + (x*,y —x) < g(y) forall y € X}, (3.16)

imply thatI'(x) := dcg(X) + yBx+ is aw}; — || - || closed set-valued operatori To conclude,
let us now prove the inclusion

acg(X) + (0cY) oo (X) C dcg(X) forall x € X.
Letx* € 9cg(X), X% € (IcPoo(X), aj — OF, X; — X andx}‘ € dcg(xj) be such thamzjx]" is
bounded andj x; = X5,. Then
giy) > gx) + (x*,y—x) forally e X (3.17)
a(y) = g(xj) + (Xj', Yy — Xj) forally e X. (3.18)

If we multiply (3.18)by «j and take the lower limit ovej we obtain, using the positivity af |
and the lower semicontinuity @f, theinequality

(X5, y—x) <0 for ally € domg;
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and if we add3.17)to this, we obtain
a(y) = g(x) + (x* + x5, y—x) forallye X,

that is,x* 4+ x%, € dcg(x).
(2) Assume now thag is a Iscdirectionally Lipschitzian function, that is continuous relative
to Domacg. First,(3.10)allows us to write

limsupg®(x’; h) < g%x;h)  forallh e X.

X' —gX
Then, the characterizatidB.8) of the Clarke subdifferential af, the inequality(3.10) and the
continuity of g relative to Domacg imply the w — || - || closedness ofcg at all points of

Domacg and in particular irD = Dom (84 f 4 84 f).
Now, letx € Domdcg C domg, x* € dcg(X), X%, € (dcPoo(X), @j — 01, X; — x and

Xj € dcg(x;) be such thatxj is bounded and; x; = x%,. From(3.8)we have
(x*,h) <g®x;h)y  forallhe X
(xt.h) < g®x;;h)  forallh e X.

If g°(x; h) is finite, we multiply the second inequality lay; and take the upper limit ovejr
taking (3.10)into account. Then, we add it to the first one and we obtain the inequality

(x* + x5, hy < g®x: hy.

Otherwise, the above inequality is evident and hence we have
(x*4+x%.hy <g®x;hy  forallhe X,

that is,x* + x, € dcg(x). Thedesired inclusion
9cg(X) + (IcPoo(X) C dcg(x)  forallx e X

is then valid.

(3) We now suppose thatis dp-pIn. UsingProposition 3.2it is not difficult to see that the
convex sebpg(x) is w*-closed. ByProposition 3.1the refleivity of X, and(3.14)we have the
equalitydpg(x) = acg(x) for all x € U. Proposition 3.2also yields that the operatéeg is
| - I — w} closed.

To finish, wewill prove now the inclusion

dcg(X) + (3c ) oo (X) C dcg(xX) forall x € X. (3.19)
Letx € Domapg, X* € Ipg(X), X% € (ApQP)oc(X), j — 0T, Xj — X andx}‘ € 9pg(X;) be

suchthatejxj is bounded and; xj N X%,. As alove, we knav that here elsts jo such that for
allt > T sufficiently large and > jo we have|x{|l. < ct/ej, t/aj = T, [IXj — x| < 2/2, and
then

t
9(x) = g(x)) + (X, X' = xj) — 27-”)(, —xj|?  forallx’ € B(x;1/2) C B(xj; A).
J

If we multiply this inequality byrj and we take the lower limit ovejr, we obtain

t
0> (X, x' —x)— E||x’ —x||>  forallx' € domgn B(x; 1/2).

00 ?
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On the other had, we know that there exist> 0 and O< ¢ < A/2 such hat
g(x) = gx) + (x*, X' = x) —r||x' = x||? forall X' € B(x; &).

The addition of the two last inequalities allows us to write
t
g(x) > g(x) + (x* + x5, X" — x) — <§ + r) X" — x||? forall X' € B(x; ¢)

which proves the inclusio(8.19) O

A first important consequence ®heorem 3.2Zoncerns the locally Lipschitzian behavior of
functions.

Corollary 3.2. Let f : X — R U {+o0} be a Isc function. Assume thaf sdisfies the
represntation formula in an open convex set U withrlllom f # @. Then f isLipschitzian in
U with modulusy > 0if and only if

3f(X) C yBxx forall x € U.
Proof. According to (a) inTheorem 3.20ne has
3f(X) C yBxx forallx e U & ac f(X) C yBx» forall x € U.

So, the equivalence of the Corollary follows from the characterization of Lipschitzian functions
in terms of Clarke subdifferentials (see for examplf]). O

More generally, we proceed with the study of thenondecreasing property of a function
with respect to a convex corteé c X. Theexact(y = 0) nondecreasing property in terms of
subdifferentials has been investigated by Clarke et al18j vith the proximal subdifferential.
Here, we examine the general case for anyn relation to any operatoéf satisfying the
representation formula. In the next two propositions thekset= X* will be the negative polar
cone of some conK, that is,

KO = {x* e X*: (x*,x) <Oforallx € K}.

We state nowa versionof the Zagrodny approximate mean value theoréfj [n the form
that we will use it in the next two propositions.

Theorem 3.3. Let a b two points in an open convex subset U of a Banach space X (wi#tba
andlet f: X — R U {+o0} be Isc on U and finite at a. Then for each real numpet f (b),
there exisa point xp € [a, b[:= {tb+ (1 —t)a: t € [0, 1[}, a sejuence ¥ converging to ¥, and
points % € dc f (xk) suchthat

(2) iminfi oo (x5, b — x) = Le1E b — o] and

(b) liminfy_ y o (XF, b —a) > p — f(a).

Proposition 3.3. Let f : X — R U {+o0} be a Isc function. If K is the negatie polar of a
convex cone KC X containing the origin and ifsf satisfies the representation formula in an
open convex set U of X, then

8f(x) c KO+ yByx-  forallx e U
if and only if f isy-nondecreasing over U with respect to the cone K, that is,

f(y) < fX)+vIx =Vl forall x,y € U,withy — x € K.
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Proof. If we define in part (a) oTheorem 3.2g(x) = Ofor allx € X, weobtain the equivalence
5 (x) € K04 yBy+ ¥x e U & dac f(x) € KO+ yBx: Vx € U.
Then, it suffices to prove that

f(y) < fOO+ylx =yl
& {forallx,y e U, (3.20)

{acf(x) C KO+ yBx
suchthaty — x € K

forallx e U

(=) Letx,y € U be such thay — x € K. If x ¢ domf the result $ evdent. Otherwise,
by the Zagrodny mean value theorem, for any real number f (y), there existxg € [X, Y,
Xk —> X0, X¢ € dc f (xk) suchthat

p — F(x) <liminf(xg, y —x).
k— 400
From the left hand side B.20)and the convexity o, we can write, fork sufficiently large,
x; = qf + yb; with g € K® andb € Bx+. Herce
p — F(x) <liminf(qg +bg, y —x) <liminf(bf,y —x) < ylIx =yl
k— 400 k— 400
which proves the implication.
(<) We will first prove that the right hand side ¢8.20)implies that
f1(x;h) < v (K, h) +ylh| forall x e U andh € X, (3.21)
wherey (K ; +) is the indcator function ofK defined by

0 ifhekK
'”(K’h)z{Jroo ifhekK.

Leth € K, x € U andXx > 0 be such that +th € U forallt € 10, A[. Then we have
f(X' +th) — f(x)

" < y|h| for all X’ nearx andt € 10, A[,

and hence

) ) f(x'+th) — f(x
f7(x;h) = supinf  sup inf "+ th) ( ),
n=06>0 e heBhin) t
1F 00— f(x)|<e
t€]0,e[

. f(x'+th) — f (X
<inf  sup JEFZTCO
e>0 x'eB(x;€) t
1fx)—f(x)|<e
te]0,e[

thatis,(3.21)holds. Moreover, fox € U and for allx* € ac f (x), (3.21)implies that
xX*y—x) <YK, y—x)+yly—x| forallyeX.

Hencex* € ac(¥ (K, - —X) + y|l - —x|D(X) = K9 + yBx-+. This equdity is direct from the
characterizatiof3.16)of the Clarke subdifferential for Isc convex functions and the equality

ac (P (K, - =x)+yll - =xIN(y) = dc (Y (K, - =X))(Y) + dc (¥ Il - =XID(Y)
forally € X

which is a consequence of the continuity oéthorm (according to the Moreau—Rockafellar
Theorem BQ] concerning the subdifferential of the sum of two convex functiong)l
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Remark 3.2. As a direct generalization of implicatios- in the last Proposition, we can prove
that

forall x,y e U,y e domf withy —x € K
= { there existx € [X, y[ suchthat
f(y) < fX)+y@©Ix =yl

wherey is a gven real-valued continuous functionlih

8T (x) C KO+ y (x)Bx-
forallx e U

A property along the lines of the-nondecreasing property buwiniving in addition a convex
function g can also be analyzed. Before stating tireperty, recall that a locally Lipschitz
functiong : X — R is Clarkeregular at a poinx providedthe directional derivative
g'(x; -) exigs and coincides witly® (x; -). Thedirectional derivative of any functiop : X —

R U {+o0} atx € domg is given by’ (x; h) = lim;_, o+ w when it exists.

We mustmention that the proof of the convex part of the theorem makes use of many ideas of

Thibault and Zagrodny5] and [46)].

Theorem 3.4. Let K° be the negative polar of some cone X and f: X — R U {+o0}
be a Isc function such thatf sdisfies the representation fimula in anopen convex set U of X
with U ndom f # @. Then, the following assertions hold.

(a) If g : X — R is a Clarke directionally regular locally Lipschitzian function in U, then

gx)+ f(y) < f)+ay) +yIx =yl
= {forall x, y € U suc that (3.22)

{Sf (¥) € KO+ 3cg(x) + yBx
y—xeK

forallx e U

(b) Assume that the cone K is open and) — R U {400} is a Isc convexunction such that
—KO%N (3cg)so(X) = {0} for all x € U. Then we ado have implicatiorf3.22)

Proof. Observe that under condition (b),k # X then byLemma 3.1there exéts somew*-

compact seBwith 0 ¢ SsuchthatK® = R, S. So condition (i) in (b) of Theorem 3.2holds.
So,from Theorem 3.2we see tht the inclusiors f (x) ¢ K° + dcg(x) + yBx+ implies, under
(2.2)and the assumptions above, the inclusion

dcf(x) c KO+ 9cg(x) + yBx-  forall x € U. (3.23)

Therefore, we need to obtain the conclusioi®22)under(3.23)and under the assumption that
g is either a Clarke directionally regular locally Lipschitzian function or a Isc convex function.
Obsave that the nonemptiness &f N domf entails thatU N Domac f andU N domg are
nonempty. Fix ank € U Ndomf andy € U withy — x € K, x # vy, and take any > 0. Fix
also anyu € [x, y[ndomf.

(I) We proceed first to show that there exists san@]0, 1[ suchthat

fu+riy—uw) — fw <gu+riy—w)—gw+ +a)lry—wl. (3.24)

Case(a). g is locally Lipschitzian and Clarke directionally regular.
By the definition of directional derivative, we know that there exigts 10, 1[ suchthat

t(y — —
guy—u < g+ ty " W) ~ g + glly— ull forall t € ]0, tg[

and if we putw: := u + t(y — u) the above inequality can be written in the form

g'(U; wp — u) < g(wp) — g(u) + gnwt —ul. (3.25)
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Onthe ather hand, the upper semicontinuity gf(; y — u) = g°(; y — u) implies that there
exigsr e ]0, tg] suchthat
/ . / .

sy —u _gUy-u +%  forallsefo,r]. (3.26)
Iy —ull ly —ull 2
From (b) in he Zagrodny mean value theorem, for any real number f (w;) there exist
Xo € [u, wr[, Xk = Xo, andx; € dc f(xk) suchthatp — f(u) < liminfyx_, Lo (Xg, wr — u).
From(3.23) we can writex; = g + z; + y by with g € KO, Z € 0c9(Xk), andbg € Bx+, and
sincew; —u =r(y—u) € K (accordingtoy —x € K) weobtain using the upper semicontinuity
of g'(-; wr — )

p— f(u) <liminf(z., wr —u) + yllwr —ul|
k— 400
< liminf g'(x; wr — u) + ylwy —ul|
kK—+o00

< g'(Xo; wr —U) + yllwr —ul
g'(uy—u 8}
< [Jlwr — Ul [7+ + =,
r ly—ul 772
where the last inequality follows froif8.26) giventhatxp = ws for somes € [0, r[. In this
way, wecan write, using3.25)

I
/ . _ e _
po— f) <dW; wr u)+(y+2) lwy — ul|

< g(wr) —gW) + (¥ +&)llwr —u].

The parametep < f (wy) beng arbitrary, we obtain the desired inequali8/24)
Case(b). g is a Isc and corvex.
Here in a first step, we suppose, in additioryte x € K with x # y, thatx e U nDomac f
andy € domg; hercex € U N Domag. Below, we will follow several arguments frond §)].
Fix somea* € dg(x) and consider the convex functign: R —> R U {4oc0} with

gxX) +s{@*,y—x) ifsel—oo,0[
0(8) = 1 g(X +s(y — X)) if se[0,1]
400 if se]l, +ool.

Sinceg(x) andg(y) are finite, this convex functioa is finite on]—oco, 1[ and thus it is locally
Lipschitzian on]—oo, 1[. Therdore the refriction to [0, 1[ of the functions — g'(x + s(y —
X); Y — X) is finite and upper semicontinuous.

Put noww; := u + t(y — u), whereu € [x, yi[ndomf as above. The convexity af entails
forallt > 0

_ gty —u) — g

guy—u < .
and hence
g'(u; wy — U) < g(wy) — g(u) forallt > 0. (3.27)

As the restriction td0, 1[ of the functions — ¢'(ws; y — X) is, according to the foregoing, finite
and upper semicontinuous, we know that there existq0, 1[ suchthat
gwry—uw _guy—u
ly—ul = lly—ull

(3.28)
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From (a) in he Zagrodny mean value theorem, for any real number f (w;) there exist
Xo € [u, wr[, Xk = Xo, andxy € dc f (xx) suchthat
lwr — Xoll .
——(p — (W) < liminf(x}, wr — Xx).
[wr — U] (p ) < k%+oo< K> Wr k)
By (3.23) we maywrite x;' = o + z; + ybj with g € K°, z € 9g(x), andb}; € Bx~, and
sincewy —u =r(y — u) € K weobtainw, — xx € K (becaus«k is open) and then
lwr — Xoll

or —u] (p— F(x) = Limjrr;!(zﬁ, wr — Xk) + ¥ [wr — Xol. (3.29)
r — —

On the othehand, usind3.28)and(3.27) we obtain

liminf(z{, wr — xk) < liminf(g(wr) — g(x)) < g(wr) — g(Xo) < g'(wr; wr — Xo)
k— 400 k— 400

/ . y—u
= llwr —Xollg" { w =< llwr — Xoll

"y —ul
) ]
x g lu =—)+¢
[g< Iy —ul
lwr — %ol ,
= NG wr — U) +eflwr — ul]
lwr —u]
lwr — Xoll

< [9(wr) — g(u) + llwr —ull].
lwr —ul

Then, from(3.29)we can write the inequality
p— F) = gwr) —gW) + (¥ + &)llwr — ull

which implies(3.24)whenx € U N Domac f.
(1) Put now

o =supte]0,1]: f(Xx+t(y—x) — f(X) < gX+t(y—x))
—9(X) + (¥ + o)ty =3I}

and observe that the lattset is nonempty according 1®.24) Using the Isc poperty of f and
the continuity of the restriction of on the segmerix, y], it is easily seen that the supremum
above is attained. We claim that= 1. Otherwise, fon := X 4+ o (y — X), we havev € [X, y[
andv € domf according to the definition af and the finiteness aj(v). Applying (3.24)with

v in place ofu, we obtain some < ]0, 1[ suchthat

fw+ry—v)—f@ <g+ry-v)-g@+ @ +ely-vl. (3.30)
Further, we also have, according to the definitiom afthich is attained,

f) =100 =9g@) —gx) + (v + o)llv = X||
and adding this inequality ar(8.30)we arrive at the inequality

fo+riy—x)—f) =gw+rly—x)—gx) + & +oly—xI,

which is easily seen to be in contradiction with the definitiomofSocs = 1 ande > 0 being
arbitrary, we get the inequality

f(y)+9x) < f(x)+gy)+ vy — x| (3.31)
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in its full generality in case (a) and fore Domac f in case (b), since the inequality is obvious
forx =y.

(1) Now, we complete the proof for the convex case. SupposexhatU N domf. We
know from the graphical density of Dobg f in dom f that there ex§ts a squencexx — ¢ X
with xx € Domac f. Asy — xk € K, for k large enough (becaus¢ is open), we have from
(3.31)

f(y)+90x) = ) + 9 + vy — Xl

Using the Isc poperty ofg and passing to the limit, we obtain

f(y)+9x) < fx)+g9y) +vIy—x|.

The latter inequality still obviously holds for eithgr¢g domg or x ¢ dom f. Theproof is then
complete. O

A similar result al® holds forap-pln functions in Hilbert space8efore stating the result, we
recall that for the Fe€het subdifferentialg f (x) a vectorx* € ag f provided

. . 1 / * /7
Il)ngrJ(f ||x’—x||[f(x)_ f(x) — (x*,x" —x)] > 0.

Proposition 3.4. Assume that X is a Hilbert space and letgf: X — R U {400} be Isc
functions such that g i8p-pln atx € dom f andsf satisfies he representation formula near.
Assume also that Kis the negative polaof some convex cone K X sud that

() —K2N (8cg)se(x) = {0} for all x near tox;
(i) either K = X or thereexigs S,w*-compact witt0 ¢ S, suctthat K® = R, S;
(i) there existyy > 0 suchthat

8F(x) € KO+ dcg(x) + yBx-
for all x in aneighborhood of.

Then fo anyy” > y there exists some neighborhoogbf X such hat for dl x,y € U,
with y — x € K one has

g + f(y) = F0 + 9y + ¥ Ix =yl
Proof. FromTheorem 3.Zpart (b)(3) and Eq(3.15)and (iii) we have
dc f(x) € KO+ dcg(x) + yBx-

for all x in a reighborhood ok. We introduced f (x) := a5 f (x) = 3f f (x). Thesecond equality
is due to the fact thaX is a Hilbert space (see for examplEd]). Recall that sincey is dp-pin
one hasipg = dcg = 9g. So, thee existsx > 0 such that

af (%) KO+ ag(x) + yBx+ VX € B(X; ). (3.32)

Falowing the poof of Theorem 3.7 in3] we may suppose that = 0, f (0) = 0, andg(0) =
0. Takees > 0 andc > 0 corresponding to thép-pIn property ofg and satisfying conditions
(14a) and (14b) in3] with in additions < a. Takey’ > y and O< ¢’ < min{e, c,c(y’'—y)/y’}.
As in the same proofve obtain for allx > 0 small enough and all € B(0; ¢/4)
P.fw c (0 +2T,H 1w (3.33)

dre f(u) c A1 — (1 +AT.H (W), (3.34)
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where, forB[0; ¢] denoting the closed ball with radiuscentered at the originf = f +
V(BIO; €], ), t == ¢/A,

_ _ 1 _
e f(u) = )12;( { f(x)+ > lu— x||2} (Moreau’s envelope of ),

3 _ 1
P f(u) = Argmin{ fx) + o v - x||2} ,

XeX

anthkf is the set-valed operator whose graph is

gphT," == {(x, x*) € gphdf : [Ix — || < & and |X*[l. < t;}.

We will prove in the lemma below that there is some> 0 for which for everyr € 10, 1]
there existe > 0 such that

Af () NrBx: C 9cg(X) N (I + ¥ + p)Bx+ + K® + yBx+ ¥x € B(X: ). (3.35)

Hence, by(3.32)and(3.35)we have tle existee of some; € 10, £/8[ such that for anyx small
enough we can fing, > 0 for whichTtAf - TtE’Jr),erA + KO+ yBx- on B(0; ), and then we
follow the proof of Theorem 3.73] in orderto obtain

e f -0 cK'+yBx-  onB;n)
whereg := g + ¥ (BI0; ], -). Obseve thate, f ande, § are finite everywhere. Therefore, from
Proposition 3.3ve have for allx, y € B(0, n) withy — x € K
& fo0 —edx) <ef(y) —eady) +rIx -yl
As e, f ande, g converge pointwise td andg respectively as. — 0T (see, e.g.,3]) one has
the desired inequality
gx) + f(y) < F00+gy) +y'Ix =yl
We only have to prove thlenma that show§3.35)

Lemma 3.3. Let suppose the same hypothesis as Rvoposition3.4 Then here exits some
n > 0 such hat for every r> 0 there existg > 0 for which

Af (X) NrBx+ C acg(X) N (r +y + p)Bxx + KO + y By Vx € B(X; ).

Proof. The lemma is obvious with the assumptiEn= X in (ii). So we assume in (i) thak

has the compact ba&as stated in (ii). Suppose in this case that the inclusion of the lemma does
not hold. Fix a sequenag | 0 with nx < «. Then for eacltk € N, there existy € ]0, 1], xx €

B(X; 1/k), andx; € of (xx) NrkBx+ suchthatx? & 9g(xx) N (rk + ¥ + K)Bx+ + KO+ yBy-.

By (3.32)one has that

Xg = Z+ P+ O (3.36)

wherez; € dg(x), p € K andgy € yBx+. So p; is not bounded due to the boundedness of
x¢ andqy and the fact thaty & (rk + ¥ + K)Bx+. By (i), taking a sibsequence if necessary, we
canwritep; = Bks; with gx — oo ands; € S. Then by(3.36)there exist subsequences such that
5 s* € Sandz /fk, — Z*. Sincex — X, We have(dg)o(X) 3 z* = —s* € —K°\ {0}
which is a contradiction with (i). O

Then we have finished the proof of the propositiori]
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Chaiacterizations of directionally Lipschitzian property of Isc functions in terms of some
subdifferentials have been established by TreimamBj (with the Qarke subdifferential) and
Thibault and Zlateva in47] (with several other subdifferentials). We show Proposition 3.6
that such characterizations generally hold with any operator satisfying the representation formula
(2.2). First, let us recall the result with the Clarke subdifferential.

Proposition 3.5 ([49]). A Isc unction f: X — R U {400} is directionally Lipschitzian at
x € dom f with respect to a vector h if and only if there exist- 0,r € R, andy > 0 suchthat

(X*,hy +ylIx s <r

for all x e B(X: £). x* € dc f (%) (3.37)

(Pac f ) {
is satisfied.

Proposition 3.6. Let f : X — R U {+o0} be a Isc function such thaif saisfies the
repreentation formulain U. Then, f is directionally Lipschitziansat U ndom f with respect
to a vector h if and only if there exist> 0,r € R andy > 0 suchthat

(X*,h) +yIx*ls <r

for all x € B(X; £), x* € 5f(x) (3.38)

(Pst) {
is satisfied.

Proof. From Proposition 3.5it suffices to show thatPss) in (3.38)is equivalent to(Py. ¢ ) in
(3.37)

Suppose(Ps f). Let 0 < ¢ < ¢ be such thaB(X; ¢’) c U. Fix anyx € B(X;¢’) and
Xy € 8 £ (x). There tfen existxx — ¢ X, Xg € 86f(xk) suchthat x A X% By (3.38)and the
lower semicontinuity off - ||.. with respect to thev*-topology, we can write

(i )+ rIxclle <1 = (G, h)y + v Il <,

and hence the property

(X3, h) + vl <r

forall x € B(X; '), X% € 8 f (x) (3.39)

(P(SAf){

is valid.
Now, consider any}, < 5§o f (x). There tlen existex — 01, Xk — ¢ X, xg € 8f(xx) such

thatoyxg A x%,. Using(3.38)we conclude that
(X% ) + v XSl < 0.

Furthemore, from(3.39)we obtain that
(X3 + X5, h) + v XSl + X ) < T

is satisfied for alk € B(x; &), x% € 8/ f (x) andx?, € 62 f (x) which entails in particular the
inequality (x; + X%, h) + y[Ix%, 4+ X} llx < r. That imgies (passing to thev*-closed convex
hull of 84 f (x) + 82 f(x)) that (Ps. 1) is valid and hence is directionally Lipschitzian ak
with respect tdh.

The opposite implication is dict because of the inclusiodf (x) c dc f(x) for all
xeU. O
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4. The convexly composite case

In this section, we analyze the behavior of another significant class of functions, the
composition of a lower semicontinuous convex functiodefined on agal Banach spacé with
values inR U {+o00}, and a continuously differentiable operatér: X — Y. The functiong =
hoF is calledconvexly composit€onvexly composite functions are omnipresentin optimization
theory and nonsmooth analysis. Many problems commonly encountered in optimization can be
reformulated in terms of these functions. 84] Poliquin showed, in the finite dimensional case,
that whenF is twice continuously differentiable and ataral qualification condition is satisfied,
then the functiorg is dp-pIn. In general Banach spaces, Thibault and Zagrod#sy dave a
partial extension of this result. In order to extend the set of functions for which the result of
Theorem 3.2holds, we will first prove thev) — || - || closedness adicg.

We will say that the convexly composite functign= h o F satisfies thé&kobinson constraint
qualificgtion atx € X if

R, [domh — F(x)] — VE(X)(X) = Y. (R)

The following two lemmas will be useful in the reformulation @) and in the proof of
Proposition 4.Wwhich is thekey for the poof of the closedness 6t g.
Lemma4.l. Let E be areal lineargace, A and B two convex sets in E such that AN B.
ThenR,(A+B)=R,A+R,B.

Proof. Let ea and b be such thatr, 8 € R,, a € A andb € B. Without loss of generality,
we suppose thag > «. If 8 = 0 itis clear thaiwa + 8b € Ry (A + B). Otherwise, sincé is
convex and (e A, we have(e/B)a € A, andhencexa + b = B((e/B)a+ b) € Ry (A+ B).
The opposite inclusion is evident.O

The next lemma recalls a classical result (see for example Lemma 12.1))n [

Lemma4.2 ([41]). Let E be a Banach space, € E a clod convex set. TheRR,.C = E if
and only if C is a neighborhood df € E.

If F(x) € domh, from Lemma 4.1we note tha condtion (R) can be written as
Ry([domh — F(x)]NBy — VE(X)(Bx)) =,

and then, fronb,emma 4.2the Robinson constraint qualification ate X is equival@tto saying
that[domh — F(X)] "By — VF (X)(Bx) is a nreighborhood of = Y, that is,

sBy C [domh — F(X)]NBy — VF(X)(Bx) for somes > 0. (R)
We danote byV F (x)*y* the adpint of VF (x) evaluated iry* € Y*.

Proposition 4.1. Assume that the convexly composite functica [y o F satisfies the condition
(R) at x and Kx) € domh. If x; — X, yf € 0h(F(xj)) andaj > O are three nets such
that aj VF(xj)*y; and«a; are eventually bounded, then there existK 0 and jp suchthat
lejyillv= < K forall j = jo.

Proof. First, let us prove that
Ry (domh — F(x)) = Ry (domh N LithEx) — F(X),
WhereLHh(F(X)) ={veY:h®w) <1+ h(FX))}.
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Lety € Ry(domh — F(x)). Theny = a(z — F(x)) with @ > 0 andz € domh. Assume
that 1+ h(F(x)) < h(2); otherwise, i is clear thaty € R(domh N LithExy) — F(X)).
Without loss of generality, we may suppokéF (x)) > 0. Putting = o«h(z) andy =
(1-1/h(2)FX) + (1/h(2))z, we havey = B(y — F(x)) and furthermore, according to the
convexity ofh,

h(y) < 1 -1/h(2)h(F(X)) + 1L < h(F(x)) + 1,

that is,y € Ry(domh N Lithrx)) — F(X)). The opposite inclusion is evident. Then, with
the same arguments as were used to show(Rjis equivalent taR’), we can see thafR) is
equivalent to

sBy C [domh N LithExy) — FX)INBy — VEX)(Bx) for somes > 0. (4.1

Let us nowprove thaiy; y]k is eventually bounded. Choose sorjigand somes > 0 such that
aj + llaj VEX))*yll« < y forall j = joand

IVF(xj) = VF(X)|l <s/2 forall j > jo.

Take anyb € By. By (4.1)we may writesb = vy — F (X) — VF (X) (Up) with h(vp) < 1+h(F (X))
andup € Bx. Then he inclusiony]" € oh(F(x})) gives

s(yj, b) = {yj, v — F(X) = VF(X)(Up))
= (¥}, vo — F(X)) — (¥}, VE(Xj)(Up)) + (¥, [VF(Xj) — VF(X)1(Up))
< h(wp) = h(FX) + IVEXD*Y] I« + 1Y lIv<IVE (X)) = VEX).
Then the inequality(vp) < 1+ h(F(x)) and the choice of and jg entail for allj > jo
S(arjyj. b) <y + (s/2)llejyj lly=
and hencsllejy;lly+ <y +(s/2)llej Y} lly+. In conclusion, we obtaitiej y;lly+ < 2y /s for all
j=jo. O
Recall that (seel1]) dcg = VF(-)*ah(F(-)) whenever the convexicomposite function
g = h o F satisfies the conditio(R).

Coroallary 4.1. If the convexly composite functiongh o F : X — R U {400} satisfies the
Robinson constraint qualificatiofR) at x € domg, then the Clarke’s subdifferential of gcg,
iswp — || - || closed at x.

Proof. Letx; be a net converging mandx}‘ abounded net converging g with x}‘ € dcg(Xj).
Then, there existgl]k e oh(F(xj)) suchthatx]k = VF(xj)*yT. From the above proposition,
putting «j = 1, we obtain that for somgy, the set{y}‘ : j > jo} is bounded, implying the
existence of a bounded subnet*-converging to somg* € Y*. Sincedh is wj; — || - || closed
at F(x), according to the convexity of the Isc functidnn we havey* e ah(F(x)) and then
x* = VF(X)*y* € acg(x), whichproves the result. O

We can now prove our theorem concerning convexly composite functions.

Theorem 4.1. Let f : X — RU{+o0} be alsc function such thdf verifies the representation
formula(2.2)in U and let KO ¢ X* be aw*-closed convex cone. Assume that the convexly
composite function g= h o F sdisfies he Robinson constraint qualificatigR) at all points of

U and
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(i) —K%N (8cg)so(x) = {0} forall x € U, and
(i) either KO = {0} or there exists a*-compact set S with ¢ S, suchthat K® = R, S.

Thenone has

8F(x) € KO+ 9cg(x) + ¥Bx+ ¥x € U < ac f(x) € KO+ dcg(x) + yBx+ Vx € U.
Proof. In order to usérheorem 3.1we will first prove the inclusion

acg(X) + (0cP) oo (X) C Icg(X) forall x € X. (4.2)

Using Proposition 4.1 we directly check that(dcg)eo(X) = VF(X)*(9h)so(F(X)). Indeed,
the seond member being obviously included in the first one, fix afiye (dcg)oo(X). Let
aj — 0%, Xj — X, andxj € dcg(xj) be such that the net; x; is bounded andv*-convergent
to x*. Choose somey]k e 0h(F(x;)) suchthat x}‘ = VF(xj)*y}‘. From Proposition 4.1
we know that the sel{ajy}‘ : jJ = Jo} is bounded for somgg. Then we mnclude that

ajyj 2 y* € (0o (F (X)) andx* = VF()*y* € VF (X)*(9h) o (F (X)).
Finally, weobtain the desired inclusiqd.2) using therelaion

oh(y) + (0h)o(y) C ah(y) forally €,

proved in part (b) (1) ofrheorem 3.2Further, byCorollary 4.1, dcg is wj; — || - || closed and
hence the proof is complete.O
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