
Algorithmica (2019) 81:3186–3199
https://doi.org/10.1007/s00453-019-00577-6

Approximately Coloring Graphs Without Long Induced
Paths

Maria Chudnovsky1 ·Oliver Schaudt2,3 · Sophie Spirkl1,4 ·Maya Stein5 ·
Mingxian Zhong6,7

Received: 28 November 2017 / Accepted: 17 April 2019 / Published online: 26 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
It is an open problem whether the 3-coloring problem can be solved in polynomial
time in the class of graphs that do not contain an induced path on t vertices, for fixed
t . We propose an algorithm that, given a 3-colorable graph without an induced path on
t vertices, computes a coloring with max

{
5, 2

⌈ t−1
2

⌉ − 2
}
many colors. If the input

graph is triangle-free, we only need max
{
4,

⌈ t−1
2

⌉ + 1
}
many colors. The running

time of our algorithm is O((3t−2 + t2)m + n) if the input graph has n vertices and m
edges.

Keywords Graph coloring · Forbidden induced paths · Approximation algorithm

Mathematics Subject Classification 05C69 · 05C75 · 05C38

An extended abstract of the paper has previously appeared in Bodlaender H., Woeginger G. (eds):
Graph-Theoretic Concepts in Computer Science (WG) 2017. Lecture Notes in Computer Science, vol
10520. Springer, Cham.

The first author was supported by National Science Foundation grant DMS-1550991 and US Army
Research Office Grant W911NF-16-1-0404. The fourth author was supported by Fondecyt Grants
1140766 and 1180830, by CMM-Basal AFB 170001, and by Millennium Nucleus Information and
Coordination in Networks.

B Sophie Spirkl
sspirkl@math.princeton.edu

1 Princeton University, Princeton, NJ 08544, USA

2 Universität zu Köln, Cologne, Germany

3 Present Address: RWTH Aachen, Aachen, Germany

4 Present Address: Rutgers University, Piscataway, NJ 08854, USA

5 Universidad de Chile, Santiago, Chile

6 Columbia University, New York, NY 10027, USA

7 Present Address: Lehman College, CUNY, Bronx, NY 10468, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00577-6&domain=pdf
http://orcid.org/0000-0002-2536-5618

Algorithmica (2019) 81:3186–3199 3187

1 Introduction

A k-coloring of a graph G is a function c : V (G) → {1, . . . , k} such that c(v) �= c(u)

for all vu ∈ E(G). In the k-coloring problem, one has to decide whether a given graph
admits a k-coloring or not; it is NP-complete for all k ≥ 3, as Karp proved in his
seminal paper [19].
Coloring H-free graphs. One way of dealing with this hardness is to restrict the
structure of the instances. In this paper we study H-free graphs, that is, graphs that do
not contain a fixed graph H as an induced subgraph. It is known that for fixed k ≥ 3,
the k-coloring problem is NP-hard on H -free graphs if H is any graph other than a
subgraph of a chordless path [15,18,21,22]. Therefore, we further restrict our attention
to Pt -free graphs, Pt being the chordless path on t vertices.

A substantial number of papers study the complexity of coloring Pt -free graphs,
and most of the results are gathered in the survey paper of Golovach et al. [12]. Let us
recall a few results that define the current state of the art regarding the complexity of
k-coloring in Pt -free graphs.

Theorem 1 (Bonomo et al. [2]) The 3-coloring problem can be solved in polynomial
time in the class of P7-free graphs. This holds true even if each vertex comes with a
subset of {1, 2, 3} of feasible colors.

It is an intriguing open question whether the 3-coloring problem is solvable in
polynomial time in the class of Pt -free graphs, whenever t > 7 is fixed.

Theorem 2 (Chudnovsky et al. [4,5]) The 4-coloring problem can be solved in poly-
nomial time in the class of P6-free graphs.

Going back to P5-free graphs, an elegant algorithm of Hoàng et al. [14] shows that
this class is structurally restricted enough to allow for a polynomial time algorithm
solving the k-coloring problem.

Theorem 3 (Hoàng et al. [14]) The k-coloring problem can be solved in polynomial
time in the class of P5-free graphs, for each fixed k.

The above result is interesting also for the fact that if k is part of the input, the k-
coloring problem in P5-free graphs becomes NP-hard again [21]. Regarding negative
results, the following theorem of Huang is the best known so far.

Theorem 4 (Huang [16]) For all k ≥ 5, the k-coloring problem is NP-complete in the
class of P6-free graphs. Moreover, the 4-coloring problem is NP-complete in the class
of P7-free graphs.

Together, these results resolve the questions of the complexity of k-coloring in the
class of Pt -free graphs for all k and t , except for the case when k = 3 and t ≥ 8. For
this case, the following is known.

Theorem 5 (Groenland et al. [11]) For fixed t, the number of 3-colorings of a Pt -free
graph can be found in subexponential time.

123

3188 Algorithmica (2019) 81:3186–3199

Our contribution is an approximation algorithm for the latter case. This line of
research was first suggested to us by Chuzhoy [6]. The approximation guarantee of
our algorithm is better in the triangle-free case. Even in the triangle-free case, the
complexity of 3-coloring Pt -free graphs is open for t ≥ 8, and 4-coloring is known to
be N P-hard for large t :

Theorem 6 (Huang et al. [17]) The 4-coloring problem is N P-hard in the class of
{P22, triangle}-free graphs.
Approximation The hardness of approximating the k-coloring problem has been in the
focus of the research on approximation algorithms. Dinur et al. [7] proved that coloring
a 3-colorable graph with C colors, where C is any constant, is NP-hard assuming a
variant of the Unique Games Conjecture. More precisely, the assumption is that a
certain label cover problem is NP-hard (where the label cover instances are what the
authors call α-shaped). Even without this assumption, Brakensiek and Guruswami [1]
proved that for all k ≥ 3, (2k − 2)-coloring a k-colorable graph is N P-hard.

On the upside, it is knownhow to color a 3-colorable graphwith relatively fewcolors
in polynomial time, and there has been a long line of subsequent improvements on the
number of colors needed. The current state of the art, according to our knowledge, is
the following result, which combines a semidefinite programming result by Chlamtac
[3] with a combinatorial algorithm for the case of large minimum degree.

Theorem 7 (Kawarabayashi and Thorup [20]) There is a polynomial time algorithm
to color a 3-colorable n-vertex graph with O(n0.19996) colors.

In this work we combine these two lines of research and strive to use the structure
of Pt -free graphs to give an approximation algorithm for the 3-coloring problem. We
are inspired by a result of Gyárfás, who proved the following.

Theorem 8 (Gyárfás [13]) If G is a graph with no induced subgraph isomorphic to
Pt , then χ(G) ≤ (t − 1)ω(G)−1.

Thus, for a graph with no Pt , we can check if it is (t −1)2-colorable or not 3-colorable
by checking whether it contains a K4. For a connected graph, Theorem 8 also holds if
the requirement of being Pt -free is weakened to the assumption that there is a vertex
v in G that does not start an induced Pt in G. We use a technique similar to the proof
of Theorem 8 in the proof of our key lemma, Lemma 1, taking advantage of the fact
that the input graph is 3-colorable. This allows us to improve the bound of (t − 1)2 on
the number of colors given by Gyárfás’ theorem. We remark that our result is not an
improvement of Theorem 8, but incomparable to it.
Our contribution We prove the following.

Theorem 9 Let t ∈ N. There is an algorithm that computes for any 3-colorable Pt -free
graph G

(a) A coloring of G with at most max
{
5, 2

⌈ t−1
2

⌉ − 2
}
colors, and a triangle of G,

or
(b) A coloring of G with at most max

{
4,

⌈ t−1
2

⌉ + 1
}
colors

123

Algorithmica (2019) 81:3186–3199 3189

with running time O((3t−2 + t2)|E(G)| + |V (G)|).
The proof of this theorem is given in Sect. 2. The outline of the proof is as follows.
Starting at a vertex v, our goal is to split the graph into two parts, one that has a
bounded-size dominating set S, and another that requires few colors. To begin, we
let S = ∅ and proceed by fixing a vertex v and considering components of its non-
neighbors. No two such components can contain a path of length ≈ t/2 ending in
a vertex of N (v), and hence there is a vertex u in N (v) such that every component
of G − N [v] not containing a neighbor of u can be colored with a small number of
colors (inductively); then we replace v by u, S by S ∪ {v}, and consider the remaining
components, and iterate. If this continues for more than t steps, then the set S of
vertices we fixed induces a Pt in G (starting v − u − · · ·); thus we may assume we
found a coloring of G − (S ∪ N (S)) with a small number of colors and |S| ≤ t .
The 3-coloring problem in graphs with bounded domination number can be reduced
to a constant number of 2Sat instances, which can be solved in linear time [8,9,23],
and so we can compute a 3-coloring of G[S ∪ N (S)] and add it to the colorings of
components; this yields the desired coloring.

There is a variant of this problemwherewe replace the requirement thatG is Pt -free
with the weaker restriction that in each connected componentG has at least one vertex
that is not a starting vertex of a Pt . We give an algorithm for this harder problem as
well, with a worse approximation bound, see Lemmas 1 and 2 below. Additionally,
we give a hardness result, Theorem 11, to show that Lemma 1 can probably not be
improved.

We remark that our algorithm can easily be implemented such that it takes an
arbitrary graph as its input. It then either refutes the graph by outputting that it contains
a Pt or that it is not 3-colorable or computes a coloring as promised by Theorem 9. In
the case that the graph is refuted for not being 3-colorable, the algorithm can output a
certificate that is easily checked in polynomial time. If the graph is refuted because it
contains an induced Pt , our algorithm outputs the path.

2 Algorithm

Throughout this paper, we use N (v) to denote the set of neighbors of a vertex v, and
N (X) to denote the set of neighbors of a set X . Moreover, we let N [v] = N (v) ∪ {v}
and N [X] = N (X) ∪ X .

We startwith a lemma that uses ideas from the proof ofTheorem8 to color connected
graphs in which some vertex does not start a Pt . The coloring it returns, if any, is a
3-coloring as long as t ≤ 4; in Sect. 3 we show that 3-coloring becomes NP-hard in
this setting for t ≥ 5, which means that our result is best possible in this sense. In
Lemma 2, we bound the running time of the algorithm given in Lemma 1.

Lemma 1 Let G be connected, v ∈ V (G), and t ∈ Nwith t ≥ 1. There is a polynomial-
time algorithm that outputs

(a) That G is not 3-colorable, or
(b) An induced path Pt starting with vertex v, or

123

3190 Algorithmica (2019) 81:3186–3199

(c) A max {2, t − 2}-coloring of G, or
(d) A max {3, 2t − 5}-coloring of G and a triangle in G.

Proof We prove this by induction on t and |V (G)|. If V (G) = {v}, then (c) holds, and
we return a 1-coloring ofG. From now on, we may therefore assume that |V (G)| > 1.

We first prove the result for t ≤ 4. Let Z = V (G)\N [v]. Consider a component C
of G[Z] (if one exists). By connectivity, there is a vertex x ∈ V (C) such that N (x) ∩
N (v) �= ∅. If there is an induced P4 in G starting at v, we output it. Otherwise, each
neighbor of x inC is adjacent to all of N (x)∩N (v). Thus N (y)∩N (v) = N (x)∩N (v)

for every y ∈ V (C). In particular, if |C | ≥ 2, we found a triangle.
Color v with color 1, and give each vertex in a singleton component of Z color 1.

For each non-singleton component C of Z , note that if C is not bipartite, then G is
not 3-colorable (and we have outcome (a)). So we may assume C is bipartite, and we
color all vertices from one partition class with 1. This is valid since every vertex of C
has the same set of neighbors in N (v), and no vertex in N (v) is colored 1. We call G ′
the subgraph of G that contains all yet uncolored vertices. (So all remaining vertices
of Z form singleton components of G ′ − N (v).)

If G ′ has no edges, we can color V (G ′) with color 2 to obtain a valid 2-coloring
of G, and are done with outcome (c). If G ′ is bipartite and has an edge xy, then we
can color V (G ′) with colors 2 and 3 to obtain a valid 3-coloring of G. Observe that
if x, y ∈ N (v), then G has a triangle, and that otherwise, we can assume x ∈ N (v)

and y ∈ Z . In G, vertex y belongs to a non-trivial component of G − N (v); thus, as
noted above, G has a triangle containing xy. In either case, we have outcome (d).

Now suppose that G ′ is not bipartite, that is, G ′ has an odd cycle C�, on vertices
c1, . . . , c�, say. Then, for each ci lying in Z , we know that in G, there is a vertex c′

i
(from the non-trivial component of Z that ci belongs to) which is adjacent to all three
of ci−1, ci , ci+1 (mod �). So in any valid 3-coloring of G, vertices ci−1 and ci+1 have
the same color. Since � is odd, no such coloring exists; and we can output (a). This
proves the result for t ≤ 4.

Now let t ≥ 5, and assume that the result is true for all smaller values of t . For every
component C of Z = V (G)\N [v], there is a vertex wC in N (v) with neighbors in C .
We apply the induction hypothesis (for t − 1) to GC := G[V (C) ∪ {wC }] and wC . If
this subgraph is not 3-colorable, neither is G (and we have outcome (a)). If there is an
induced Pt−1 starting atwC , then we can add v to this path and have found an induced
Pt in G starting at v, giving outcome (b). If neither outcome (a) nor outcome (b)
occurred in any component, then each component C of G[Z] (without wC) can be
colored with 2(t − 1) − 5 colors if the algorithm detected a triangle in GC , and with
t − 3 colors otherwise.

If N (v) is a stable set, and no triangle was detected, then we color each component
of G[Z] with t − 3 colors (which can be repeated), and use one more color for N (v),
and repeat one of the colors from Z for v to obtain a (t − 2)-coloring of G, obtaining
outcome (c).

Therefore,wemay assume that the algorithmdetected a triangle inG[N [v]] or some
GC , and we output this triangle. If G[N (v)] is not bipartite, then G is not 3-colorable.
Otherwise, we color each component of G[Z] with the same at most 2(t − 1) − 5
colors, color N (v) with at most two new colors, and repeat a color from Z for v.

123

Algorithmica (2019) 81:3186–3199 3191

Then, this yields a coloring of G with 2t − 5 colors, and we found a triangle, which
is outcome (d). �

Lemma 2 The algorithm from Lemma 1 can be implemented with a running time of
O(t |E(G)|) for a connected input graph G.

Proof For t ≤ 4, we can compute N (v) and Z = V (G)\N [v] in time O(|E(G)|).
The components of Z can be found in linear time. By going through each vertex w in
N (v), and for each such w, going through each component C of Z , we can check that
w has exactly 0 or |V (C)| neighbors in C ; if this is not true for some component C ,
then we have found a P4 starting at v, obtaining outcome (b).

Otherwise, color v with color 1, as well as all components in Z of size 1. If a
component C contains two or more vertices, then we check if it is bipartite (in linear
time); if not, then since there is a neighbor w of C in N (v) and w is complete to C ,
we output that G is not 3-colorable for outcome (a). If C is bipartite, we choose one
of the partition classes of the bipartition, and give all vertices in this class color 1.

Let G ′ be the remaining graph after removing all vertices colored so far. We check
if G ′ has an edge; if not, then we can give a 2-coloring of G and output (c). If G ′ has
an edge xy, then check if G ′ is bipartite. If so, we can get a valid 3-coloring of G.
Moreover, xy lies in a triangle (either because x, y ∈ N (v) or because x and y have
a common neighbor in Z), and we can output (d). So assume we found that G ′ is not
bipartite, that is, we found an odd cycle C� in G ′, on vertices c1, . . . , c�, say. For each
ci ∈ Z ∩ V (G ′), there is a vertex c′

i ∈ Z ∩ V (G) adjacent to all three of ci−1, ci , ci+1
(mod �), hence we can output (a), as vertices c′

i , V (C�) and v induce an obstruction
to 3-coloring G.

Now let t ≥ 5.We compute N (v) in time |d(v)|, compute components ofG−N [v]
in linear time, check if N (v) is bipartite in linear time (if not, return that G is not 3-
colorable), check if N (v) contains two adjacent vertices, and correspondingly 1 or
2-color N (v). Then we go through N (v) to find a neighbor wC for each component C
of G − N [v] and run the algorithm with vertex wC and parameter t − 1 on the graph
G[V (C) ∪ {wC }].

If the outcome in any component C is an induced Pt−1 starting at wc, we can add
v at the start of the path and get outcome (b). If some component is not 3-colorable,
then neither is G, giving outcome (a). Otherwise, we find the necessary colorings (and
possibly a triangle) to output (c) or (d).

Note that no edge occurs in two components, therefore we require O(|E(G)|)
processing time before using recursion and a total amortized running time of at most
O((t−1)|E(G)|) for recursive calls of the algorithm,which implies the overall running
time. �

In the following, we will use a slightly modified version of Lemma 1:

Corollary 1 Let G be connected, v ∈ V (G), and t ∈ N. Then, there is an algorithm
that outputs

(a) That G is not 3-colorable, or
(b) An induced path Pt starting with vertex v, or
(c) A max {1, t − 2}-coloring of G − v, or

123

3192 Algorithmica (2019) 81:3186–3199

(d) A max {2, 2t − 5}-coloring of G − v and a triangle in G

with running time O(t |E(G)|).
Proof This is a direct consequence of Lemma 1 unless t ≤ 3. If t ≤ 3, then we can
find an induced Pt starting at v unless v is adjacent to every vertex in G − v. So
assume v is adjacent to every other vertex. If G − v is not bipartite, then G is not
3-colorable. Otherwise, G − v is 2-colorable and the algorithm detects a triangle, or
G − v is 1-colorable. �

”For a set S of vertices ofG, we let F(S) denote the smallest set such that S ⊆ F(S)

and no vertex in G − F(S) has two adjacent neighbors in F(S). Note that F(S) can
be computed by starting with S and repeatedly adding vertices that have two adjacent
neighbors in the current set; since G is finite, this process terminates and the set at
termination has the required properties. In a 3-coloring, the colors of the vertices in S
uniquely determine the colors of all vertices in F(S).

Below, inLemma3,we prove themain technical result of this paper, and inLemma4
we analyze the running time of the algorithm from Lemma 3.

Lemma 3 Let G be connected, v ∈ V (G) and k, t ∈ N with k ≥ 1, t ≥ 2. There is a
polynomial-time algorithm that outputs

(a) That G is not 3-colorable, or
(b) An induced path Pt in G, or
(c) An induced path Pk in G starting in v, or
(d) A set S of size at most max {1, k − 2} with v ∈ S, and a max

{
1,

⌈ t−1
2

⌉ − 2
}
-

coloring of G − N [F(S)], or
(e) A set S of size at most max {1, k − 2} with v ∈ S, and a max

{
2, 2

⌈ t−1
2

⌉ − 5
}
-

coloring of G − N [F(S)], and a triangle in G.

Proof We prove this by induction on k and |V (G)|. If V (G) = {v}, then outcome (d)
holds with S = {v}; therefore we may assume from now on that |V (G)| > 1. If k ≤ 2,
then outcome (c) holds. If k = 3, then the result follows since either N [v] = V (G) or
G contains a P3 starting in v. In the latter case, outcome (c) holds, and in the former
case, we return S = {v} and outcome (d) holds.

Now let k > 3. Note that we can assume k ≤ t , because otherwise we can run the
algorithm for k set to t , and all outcomes except (c) will be valid for the original k as
well, and if we do get outcome (c), we can use it as outcome (b) instead. Furthermore,
if k ≤ ⌈ t−1

2

⌉
, then Corollary 1 with input G, v and k yields a coloring of G − v with

at most as many colors as claimed in the lemma. The result of the lemma follows by
setting S = {v}.

So we may assume that k > � t−1
2 �. Consider Z = V (G)\N [v]. Let C =

{C1, . . . ,Cr } be the list of components of G[Z], and let D = {D1, . . . , Dl} be the
list of components of G[N (v)]. We now describe a procedure during which at each
step, we color one of the components of C, and then put it aside, and continue working
with the remaining graph, until one component D ∈ D has neighbors in all remaining
components of C.

The details are as follows. We may assume that for every component in D, some
component of C has no neighbors in D. Now choose a component D ∈ D that has

123

Algorithmica (2019) 81:3186–3199 3193

neighbors in as many components of C as possible. Then some component C ′ ∈ C has
no neighbor in D, and therefore, there is a component D′ ∈ D with a neighbor in C ′
by the connectivity of G. But C ′ has a neighbor in D′ and not D, and so by choice of
D, D′ cannot have a neighbor in all components C ∈ C in which D has a neighbor;
now let C be a component in C such that D has a neighbor in C and D′ does not. Let
x ∈ V (D) such that x has a neighbor in C , and let x ′ ∈ V (D′) such that x ′ has a
neighbor in C ′.

Then, we apply Corollary 1 to G[{x} ∪ V (C)] (with parameter
⌈ t−1

2

⌉
and vertex

x) and to G[{x ′} ∪ V (C ′)] (with parameter
⌈ t−1

2

⌉
and vertex x ′). If either of these

graphs is not 3-colorable, then G is not 3-colorable. If, in both cases, there is an
induced P⌈

t−1
2

⌉ starting at x and at x ′, respectively, then, since x has no neighbors in

V (C ′)∪V (D′) and x ′ has no neighbors in V (D)∪V (C), we can combine them, using
the path xvx ′, to obtain an induced P

2
⌈
t−1
2

⌉
+1

in G, which contains an induced Pt .

Thus, we can assume that for at least one of the two components, we found a coloring
instead. In particular, we found a coloring of C or of C ′ with max

{
1, � t−1

2 � − 2
}

colors, or a triangle in G, and a coloring of C or of C ′ with max
{
2, 2

⌈ t−1
2

⌉ − 5
}

colors. We then remove the component with the coloring and continue.
Finally, we arrive at a point where there is a component D ∈ D that has neighbors

in all remaining components of C. Note that if S is a set that includes v and any vertex
x ∈ D, then F(S) ⊇ V (D) and thus N (V (D)) ⊆ N [F(S)]. Therefore, we call a
remaining component of C good if it is contained in N (V (D)), and bad otherwise.
Our goal is to find a vertex x ∈ V (D) with neighbors in all bad components.

Suppose that there is no vertex in V (D) with neighbors in all bad components.
Then, we can find two bad components C,C ′ among the remaining components of C
such that C has a neighbor y in D, C ′ has a neighbor y′ in D, y has no neighbors in C ′
and y′ has no neighbors in C . As before, we can find these components by choosing
y with neighbors in as many bad components as possible, and then letting y′ be a
vertex with a neighbor in a bad component C ′ in which y does not have a neighbor.
Consequently, y′ has no neighbor in at least one bad component C in which y does
have a neighbor.

As C and C ′ are bad, there exist components E and E ′, of C\N (V (D)), and of
V (C ′)\N (V (D)), respectively. Let x be the second vertex on a shortest path P from
E to y, and define x ′ and P ′ analogously; that is, x is the unique vertex of P such
that x /∈ V (E) and x has a neighbor in E , and similarly, x ′ is the unique vertex of
P ′ such that x ′ /∈ V (E ′) and x ′ has a neighbor in E ′. Since y, y′ ∈ V (D), and E
is disjoint from N (V (D)), it follows that x �= y and x ′ �= y′. Since C and C ′ are
different components of G − N [v], it follows that there are no edges between V (P)

and V (P ′) except possibly yy′.
We apply Corollary 1 toG[{x}∪V (E)] (with parameter

⌈ t−2
2

⌉
and vertex x) and to

G[{x ′} ∪ V (E ′)] (with parameter
⌈ t−2

2

⌉
and vertex x ′). If either of these two graphs

is not 3-colorable, then G is not 3-colorable. If, in both cases, there is an induced
P⌈

t−2
2

⌉, say Q starting at x and Q′ starting at x ′, respectively, then we can combine

these paths to an induced path R at least t vertices by taking R = QxPyy′P ′x ′Q′ or
R = QxPyvy′P ′x ′Q′ (depending on whether yy′ is an edge or not). Since both x Py

123

3194 Algorithmica (2019) 81:3186–3199

and x ′P ′y′ have length at least 1, and therefore y, y′ /∈ V (Q)∪ V (Q′), it follows that
R has at least 2

⌈ t−2
2

⌉ + 2 ≥ t vertices.
Thus, we may assume that for at least one of G[{x} ∪ V (E)], G[{x ′} ∪

V (E ′)], we found a coloring instead. In particular, we found a coloring of E or
of E ′ with max

{
1, � t−2

2 � − 2
}
colors, or a triangle in G, and a coloring with

max
{
2, 2

⌈ t−2
2

⌉ − 5
}
colors. We then remove the component with the coloring and

continue.
We are left with the case when there is a single vertex v′ ∈ V (D) that has neighbors

in all remaining components of C, except possibly those contained in N (V (D)). Let
V ′ be the set of vertices in the remaining components of C that are not contained
in N (V (D)). Then we can apply the induction hypothesis with k − 1, t , and v′ to
G ′ = G[V ′ ∪ {

v′}]. If G ′ is not 3-colorable, neither is G. If G ′ contains an induced
path Pt , so does G. If G ′ contains an induced path Pk−1 starting in v′, then we can
add v to this path to obtain an induced path Pk starting in v. If there is a set S of size
at most k − 3 with v′ ∈ S, and a max

{
1,

⌈ t−1
2

⌉ − 2
}
-coloring of G ′ − N [F(S)] or a

max
{
2, 2

⌈ t−1
2

⌉ − 5
}
-coloring of G ′ − N [F(S)] and a triangle, then we proceed as

follows. We add v to S, and now S has size at most k − 2. Moreover, since both v

and v′ are in S, we know that V (D) ⊆ F(S), thus all vertices in N [v] ∪ N [D] are
in N [F(S)]. We colored different components of Z\N (V (D)) at different stages, but
we can reuse the colors used on these components. Therefore, this leads to outcome
(d) or (e), depending on whether the algorithm detected a triangle at any stage or not.

�

Lemma 4 The algorithm from Lemma 3 can be implemented with running time
O

(
k

⌈ t−1
2

⌉ |E(G)|) for a connected input graph G.

Proof For k < 3, we can check in linear time if (b) or (d) holds. For k = 3, we
check in linear time if V (G) = N [v]; in this case, the algorithm returns S = {v}, and
outcome (d) holds. Otherwise, G contains a vertex w /∈ N [v] with a neighbor u in
N (v), and vuw is a P3; so outcome (b) holds, and we can find u and w in linear time.
For k > 3, we compute Z = V (G)\N [v] and the components C1, . . .Cr of G[Z] and
the components D1, . . . , Dr of G[N (v)] as in the proof of Lemma 3; all this can be
done in linear time.

Now, subsequently, for j = 1, . . . , r , we consider Dj , and some of the Ci adjacent
to it, and after possibly coloring anddeleting these componentsCi ,wemight also delete
Dj . More precisely, for j = 1, . . . , r , we consider those Ci that only have neighbors
in Dj . For each such Ci , choose a neighbor xi j in V (Dj) and apply Corollary 1 to
G[V (Ci) ∪ {

xi j
}]. If this graph is not 3-colorable, then neither is G. If the algorithm

returns a coloring (and possibly a triangle), then this is the coloring we will use in
Ci , as explained in the proof of Lemma 3, so we can delete Ci . (But, if the algorithm
found a triangle, we shall remember this triangle for a possible output, at least if it
is the first one to be found.) Otherwise, the algorithm returns a path of length

⌈ t−1
2

⌉
,

which we keep. After going through all Ci with neighbors only in Dj , we delete Dj

if the algorithm always returned a coloring (or if there were no Ci to consider), since
we guarantee that v ∈ S and therefore V (Dj) ⊆ N [F(S)], and in this case we have

123

Algorithmica (2019) 81:3186–3199 3195

also already processed all components Ci with a neighbor in Dj . That is, we keep Dj

if and only if for some i we found a path starting from xi j with interior in V (Ci).
The amortized time it takes to process all Dj is O

(⌈ t−1
2

⌉ |E(G)|) . This is so
because every component Ci is used for the algorithm from Corollary 1 at most once.

In the end, if there are Dj , Dj ′ with j �= j ′ that we did not delete, then there is a
component Ci that only has neighbors in Dj , and another component Ci ′ that only has
neighbors in Dj ′ , and both Ci and Ci ′ contain a P⌈

t−1
2

⌉ in their interior, starting at xi j

and xi ′ j ′ respectively. By connecting them using the middle segment xi jvxi ′ j ′ , we find
a Pt in G that we can output as outcome (b). Otherwise, there is only one Dj left at the
end. Since whenever we deleted a component Dj ′ , we ensured that each remaining Ci

has a neighbor in some Dj with j �= j ′, this means that Dj has neighbors in all Ci

that we did not color yet.
Let Z ′ be the set of vertices of remaining components Ci , and let Z ′′ =

Z ′\N (V (Dj)). Each component of G[Z ′′] is contained in some component Ci and
thus it has a neighbor in N (V (Dj)). Therefore, we can apply the same argument
as before to components of G[Z ′′] and components of N (V (Dj)) with neighbors in
them. Whenever the algorithm for Corollary 1 outputs a coloring we keep it (and
we also keep the possibly found triangle, if it is the first triangle to be found), and
if it outputs that a component is not 3-colorable, then G is not 3-colorable, and if
there is a path P⌈

t−2
2

⌉, we keep track of it. (Note that components of N (V (Dj)) that

are not adjacent to Z ′′ get deleted automatically.) When this terminates, if there are
still two components of N (V (Dj)), then there are two paths we can combine to a
Pt as in Lemma 3. Otherwise, a single component D∗ of N (V (Dj)) has a neighbor
in all remaining components C ′

1, . . . ,C
′
s , so there is a vertex v′ ∈ V (Dj) such that

G[{v′} ∪ D∗ ∪ C ′
1 ∪ · · · ∪ C ′

s] is connected, and v′ is the only neighbor of v in that
subgraph. Next, we apply induction for k − 1 with root vertex v on that set. If this
finds a set S and a coloring, we add v to S. If it finds a path Pk−1, we add v to the path.
If it finds a Pt , we output it. If it is not 3-colorable, then neither is G.

The total running time of the recursive application of the algorithm
is O

(
(k − 1)

⌈ t−1
2

⌉ |E(G)|), and all preprocessing steps leading there can be imple-
mented with a running time of O

(⌈ t−1
2

⌉ |E(G)|), which implies the result. �

We can now give the proof of our main result, which we restate:

Theorem 10 Let t ∈ N. There is an algorithm that computes for any 3-colorable
Pt -free graph G

(a) A coloring of G with at most max
{
5, 2

⌈ t−1
2

⌉ − 2
}
colors, and a triangle of G,

or
(b) A coloring of G with at most max

{
4,

⌈ t−1
2

⌉ + 1
}
colors

with running time O((3t−2 + t2)|E(G)| + |V (G)|).
Proof of Theorem 10 We use the algorithm from Lemma 3 with k = t . By Lemma 4,
the running time of this algorithm is O

(
t2|E(G)|). Since only outcomes (d) and (e)

can occur in this setting, it is sufficient to show that if G is 3-colorable, we can find
a 3-coloring of N [F(S)] in time O(3t−2|E(G)|), as follows: For each vertex in the

123

3196 Algorithmica (2019) 81:3186–3199

Table 1 Number of colors we use for a 3-colorable Pt -free graph if there is a triangle

t 3 4 5 6 7 8 9 10 11 > 11

max {3, 2t − 5} 3 3 5 7 9 11 13 15 17

max
{
5, 2

⌈
t−1
2

⌉
− 2

}
5 5 5 5 5 6 6 8 8

Best option 3 3 3a 5 5 6 6 8 8 2
⌈
t−1
2

⌉
− 2

a If t = 5, we can improve the number of colors required if there is a triangle to 3, because it cannot happen
that there are two components C,C ′ of G − N [v] and components D, D′ of G[N (v)] such that C has a
neighbor in D but not D′, and C ′ has a neighbor in D′ but not D′, because this already yields an induced
P5. Thus, by induction, all vertices will be in N [F(S)], where we can test for 3-colorability as described
in Theorem 9

Table 2 Number of colors we use for a 3-colorable Pt -free graph if there is no triangle

t 3 4 5 6 7 8 9 10 11 > 11

max {2, t − 2} 2 2 3 4 5 6 7 8 9

max
{
4,

⌈
t−1
2

⌉
+ 1

}
4 4 4 4 4 5 5 6 6

Best option 2 2 3 4 4 5 5 6 6
⌈
t−1
2

⌉
+ 1

set S, we try each possible color for a total of at most 3t−2 possibilities. From the
definition of F(S), it follows that this determines the color of every vertex in F(S),
and hence for every vertex in N (F(S)), there are at most two possible colors. Thus, we
reduced our problem to a 2-list-coloring problem, which can be solved in linear time
O(|E(G)| + |N (F(S))|) = O(|E(G)|) (since |N (F(S))| ≤ |E(G)|) by reduction
to 2Sat [8,9,23]. It follows that, if G is 3-colorable, we can 3-color N [F(S)] in time
O(3t−2|E(G)|), and add these three new colors to the coloring from Lemma 3.

The total running time follows from the running time of the algorithm in Lemma 4
in addition to an algorithm determining the connected components of G. �

By combining Theorem 9 with Lemma 1, we obtain the algorithms for coloring
3-colorable Pt -free graphs with the number of colors shown in Table 1 (if there is
a triangle) and Table 2 (if there is no triangle). For t larger than shown in the table,
Theorem 9 uses a smaller number of colors. In both tables, “Best option” shows the
number of colors used by the better algorithm (assuming a 3-colorable Pt -free input
graph), which is the algorithm from Lemma 1 for small values of t , and the algorithm
from Theorem 9 for large values of t .

3 Hardness Result

In this section, we show that improving Lemma 1 is hard. More precisely:

Theorem 11 Let G be a connected graph and v ∈ V (G) such that there is no induced
Pt in G starting at v. Then, deciding k-colorability on this class of graphs is NP-hard

123

Algorithmica (2019) 81:3186–3199 3197

if k ≥ 4 and t ≥ 3 or if k = 3 and t ≥ 5. It can be solved in polynomial time if t ≤ 2
or if k = 3 and t ≤ 4.

Proof For the polynomial time solvability, observe that if t ≤ 2, then |V (G)| ≤ 1. If
k = 3, t ≤ 4, then the result follows from Lemma 1.

For the hardness, first consider the case k ≥ 4, t ≥ 3. In this case, we can reduce
the 3-coloring problem to this problem by taking any instance G and adding a clique
of size k−3 complete to G. Then, no vertex in this clique starts a P3, but the resulting
graph is k-colorable if and only if G is 3-colorable.

It remains to consider the case k = 3, t ≥ 5. We show a reduction from the NP-
complete problem NAE- 3Sat [10]. An instance of NAE- 3Sat is a boolean formula
with variables x1, . . . , xn and clausesC1, . . . ,Cm , where each clause contains exactly
three literals (variables or their negations). It is a Yes-instance if and only if there is
an assignment of the variables as true or false such that for every clause, not all three
literals in the clause are true, and not all three are false.

We construct a graph G as follows: G contains a vertex v, vertices labeled xi and
xi for 1 ≤ i ≤ n, and a triangle Tj for each clause C j . The vertex v is adjacent to
all vertices xi and xi , but not to any of the triangles. For each i , xi is adjacent to xi .
For each clause C j , we assign each literal a vertex of the triangle Tj , and connect this
vertex to the literal (the vertex labeled xi or xi). There are no other edges in G.

Then, there is no P5 starting at v in G, because such a path would have to contain
exactly one of the vertices labeled xi and xi , and this would be the second vertex of
the path. As there are no edges between the triangles Tj , all remaining vertices of the
P5 would have to be in one triangle Tj . But no triangle can contain a P3. Therefore,
G is a valid instance.

It remains to show that G is 3-colorable if and only if the instance of NAE- 3Sat is
a Yes-instance. If G has a 3-coloring, then the neighbors of v are 2-colored (say with
colors 1 and 2) and xi never receives the same color as xi . Assign the variables so that
literals colored 1 are true, and those colored 2 are false. Then, if there is a clause C j

such that all of its literals are true, this means that each vertex of Tj has a neighbor
colored 1, so Tj uses only colors 2 and 3, which is impossible in a valid coloring of a
triangle. For the same reason, there cannot be a clause such that all of its literals are
false. Thus, G was constructed from a Yes-instance.

Conversely, if the instance we started with is a Yes-instance, we color v with color
3, true literals with color 1, and false literals with color 2. For each triangle Tj , one of
the vertices adjacent to a true literal is colored 2, one of the vertices adjacent to a false
literal is colored 1, and the remaining vertex is colored 3. This is a valid 3-coloring of
G. �

4 Conclusion

In this paper we showed how to color a given 3-colorable Pt -free graph with a number
of colors that is t , roughly. The running time of our algorithm is of the form O(f (t) ·
nO(1)), when the input graph has n vertices, and thus FPT in the parameter t . (The
class FPT contains the fixed parameter tractable problems, which are those that can
be solved in time f (k) · |x |O(1) for some computable function f .)

123

3198 Algorithmica (2019) 81:3186–3199

In view of this, it seems to be an intriguing question whether the 3-coloring problem
is fixed-parameter tractable when parameterized by the length of the longest induced
path. That is, whether there is an algorithm with running time O(f (t) · nO(1)) that
decides 3-colorability in Pt -free graphs. So far, however, it is not even known whether
there is an XP algorithm to decide 3-colorability in Pt -free graphs. (XP is the class
of parameterized problems that can be solved in time O(n f (k)) for some computable
function f .) If such an XP-algorithm existed, this would show that the problem is in P
whenever t is fixed. Therefore, attempting to prove W[1]-hardness seems to be more
reasonable than trying to prove that the problem is in FPT.

Another question we addressed is k-coloring connected graphs such that some
vertex is not the end vertex of an induced Pt . We showed that coloring in this case is
NP-hard whenever k = 3 and t ≥ 5, or k ≥ 4 and t ≥ 3. Lemma 1 gives a simple
algorithm for an f (t)-approximate coloring for k = 3 and any t , and it would be
interesting to have a complementing result proving hardness of approximation. On the
other hand, any improvement of Lemma 1 would immediately yield an improvement
of our main result.

Acknowledgements We are thankful to Paul Seymour for many helpful discussions. We thank Stefan
Hougardy for pointing out [20] to us. This material is based upon work supported in part by the U.S. Army
Research Laboratory and the U.S. Army Research Office under Grant No. W911NF-16-1-0404.

References

1. Brakensiek, J., Guruswami, V.: New hardness results for graph and hypergraph colorings. In: LIPIcs-
Leibniz International Proceedings in Informatics, vol. 50. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2016)

2. Bonomo, F., Chudnovsky, M., Maceli, P., Schaudt, O., Stein, M., Zhong, M.: Three-coloring and list
three-coloring graphs without induced paths on seven vertices. Combinatorica 38(4), 779–801 (2018)

3. Chlamtac, E.: Approximation algorithms using hierarchies of semidefinite programming relaxations.
In: 48th Annual IEEE Symposium on Foundations of Computer Science (2007)

4. Chudnovsky, M., Spirkl, S., Zhong, M.: Four-coloring P6-free graphs. I. Extending an excellent pre-
coloring. arXiv preprint arXiv:1802.02282 (2018)

5. Chudnovsky, M., Spirkl, S., Zhong, M.: Four-coloring P6-free graphs. II. Finding an excellent precol-
oring. arXiv preprint arXiv:1802.02283 (2018)

6. Chuzhoy, J.: Private communication (2015)
7. Dinur, I., Mossel, E., Regev, O.: Conditional hardness for approximate coloring. SIAM J. Comput. 39,

843–873 (2009)
8. Edwards, K.: The complexity of colouring problems on dense graphs. Theor. Comput. Sci. 43, 337–343

(1986)
9. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Congressus Numerantium 26, 125–157

(1979)
10. Garey, M.R., Johnson, D.S.: A Guide to the Theory of NP-Completeness. WH Freemann, New York

(1979)
11. Groenland, C., Okrasa, K., Rzążewski, P., Scott, A., Seymour, P., Spirkl, S.: H -colouring Pt -free graphs

in subexponential time. arXiv preprint arXiv:1803.05396 (2018)
12. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of

colouring graphs with forbidden subgraphs. J. Graph Theory 84(4), 331–363 (2017)
13. Gyárfás, A.: Problems from the world surrounding perfect graphs. Appl. Math. 19(3–4), 413–441

(1987)
14. Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding k-colorability of P5-free graphs

in polynomial time. Algorithmica 57(1), 74–81 (2010)

123

http://arxiv.org/abs/1802.02282
http://arxiv.org/abs/1802.02283
http://arxiv.org/abs/1803.05396

Algorithmica (2019) 81:3186–3199 3199

15. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720 (1981)
16. Huang, S.: Improved complexity results on k-coloring Pt -free graphs. Eur. J. Comb. 51, 336–346

(2016)
17. Huang, S., Johnson, M., Paulusma, D.: Narrowing the complexity gap for colouring (Cs , Pt)-free

graphs. Comput. J. 58(11), 3074–3088 (2015)
18. Kamiński, M., Lozin, V.: Coloring edges and vertices of graphs without short or long cycles. Contrib.

Discrete Math. 2, 61–66 (2007)
19. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity

of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
20. Kawarabayashi, K., Thorup, M.: Coloring 3-Colorable Graphs with o(n1/5) Colors. LIPIcs-Leibniz

International Proceedings in Informatics, vol. 25. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Wadern (2014)

21. Král, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs without forbidden
induced subgraphs. Proc. WG 2001, 254–262 (2001)

22. Leven, D., Galil, Z.: NP-completeness of finding the chromatic index of regular graphs. J. Algorithms
4, 35–44 (1983)

23. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz 29(3), 3–10 (1976)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Approximately Coloring Graphs Without Long Induced Paths
	Abstract
	1 Introduction
	2 Algorithm
	3 Hardness Result
	4 Conclusion
	Acknowledgements
	References

