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Abstract

We survey some recent results on bounds on the minimum and maximum
degree of graph that ensure it contains all trees of a fixed size, and correspond-
ing results for digraphs. We also present a number of conjectures and open
questions.

1 Introduction

At the core of extremal graph theory are subgraph containment problems, in par-
ticular those where the existence of a certain subgraph is connected to a condition
on the minimum degree of the host graph. We focus on the case when the subgraph
in question is a tree. One of the best-known results in this direction is the Komlds—
Sarkozy—Szemerédi theorem [12] which gives a lower bound on the minimum degree
d(G) of a graph G that ensures G contains any spanning tree of bounded degree. In
recent years, some versions for smaller trees and corresponding lower bounds on §(G)
have been proposed. We will see below that in these versions, it is necessary to add
an additional condition on the host graph, such as a lower bound on the maximum
degree A(G) of G. We give a quick overview of the state of the art for graphs in
Section 2.

A natural question is how to generalise problems of the above type to digraphs,
following the increasingly popular trend of extending results from extremal graph
theory to the digraph setting. As every graph can be viewed as a digraph, but the
universe of digraphs is much richer than the world of graphs, this leads to fascinating
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new challenges. A few new results on using semidegree conditions to find oriented
trees in digraphs are surveyed in Section 3.

For more context, we refer the interested reader to the surveys [18, 19], and
remark that in particular, Section 3 here can be seen as a continuation of Section 6
of [19].

We remark that for better exposition, some of the results are not stated here in
the same generality as they appear in the respective sources.

2 Trees in graphs

We start by noting that every graph G of minimum degree §(G) > k contains all
trees with k edges, as we can just embed the tree greedily into G. The bound on §(G)
could not be weaker: Consider the union of several disjoint copies of K which gives
a graph of minimum degree k — 1 that does not contain any tree with k edges. This
example can be eliminated if we decide to add the constraint that G is connected and
sufficiently large. Dirac and independently Erdés and Gallai observed the following.

Proposition 2.1 (See [4]). If a graph G has minimum degree at least k/2 and a
connected component on at least k + 1 vertices then G contains a path with k edges.

However, connectivity and large order alone are not helpful if we are looking for
trees other than paths (see [18] for details).

Trying to overcome the example from above from a different angle, we may ob-
serve that the construction only works if £ < |V(G)|/2. So for trees that are com-
paratively large with respect to the host graph G, a better bound on ¢(G) would
be possible. This has been confirmed for trees of bounded maximum degree in the
folowing classical result:

Theorem 2.2 (Komlés, Sarkézy and Szemerédi [12]). For all 6 > 0, there are ny
and c such that every graph G on n > ng vertices with 6(G) > (1+6)%5 contains each
n-vertez tree T' with A(T) < e

All bounds in Theorem 2.2 are tight up to the constant ¢. In particular, it is
necessary to bound A(T'). If we wish to omit the bound on A(T), that is, if we wish
to find all spanning trees, then it will be necessary to require a vertex of large degree
in G (because T could be a star). It turns out that having just one vertex of degree
at least k is indeed sufficient, if we also elevate the bound on §(G):

Theorem 2.3 (Reed and Stein [14, 15]). There is ng such that for every n > ny,
every n-vertex graph with 6(G) > |2(n—1)/3] and A(G) > n — 1 contains each
n-verter tree.



Theorem 2.3 solves a special case of the next conjecture, Conjecture 2.4, which
considers smaller trees and corresponding weaker bounds on 6(G).

Conjecture 2.4 (Havet, Reed, Wood and Stein [5]). Every graph of minimum degree
at least |2k/3] and mazimum degree at least k contains each k-edge tree.

Note that the bounds in Conjecture 2.4 are tight, which can be seen by considering
the following example: Assume 3 divides k and consider the tree obtained from
identifying the starting vertices of three distinct g—edge paths. This tree is not a
subgraph of the graph obtained by taking two cliques of size 2k/3 — 1 and adding a
universal vertex (i.e., a vertex adjacent to all other vertices).

As a cross-over of Conjecture 2.4 and Theorem 2.2, it was conjectured in [2] that
every graph of minimum degree at least k£/2 and maximum degree at least 2k contains
each k-edge tree. However, although an approximate version of this statement holds
for large bounded degree trees [2], it is not true in general. Hyde and Reed [6]
recently gave a counterexample. The following may still hold:

Conjecture 2.5. Is it true that every graph with 6(G) > k/2 and with A(G) > 2k
contains each k-edge tree?

Asymptotic versions of Conjectures 2.4 and 2.5 hold for bounded degree trees.

Theorem 2.6 (Besomi, Pavez-Signé and Stein [2]). For every n > 0 there is ng € N
such that for all n > ng and all k > nn every n-vertex graph G fulfilling

(a) 6(G) > (1 +n)k/2 and A(G) > 2(1 +n)k; or
(b) 6(G) > (14+n)2k/3 and A(G) > (1 +n)k
contains every k-edge tree T with A(T) < kY97 as a subgraph.
Also, Hyde and Reed [6] recently proved the following for all host graphs.

Theorem 2.7 (Hyde and Reed [6]). There is a function f: N — N such that every
graph G- with §(G) > k/2 and A(G) > f(k) contains each k-edge tree.

Earlier it had been shown by Havet, Reed, Wood and the author [5] that there
is an absolute constant 7 > 0 such that every graph G with 6(G) > (1 — )k and
A(G) > k contains each k-edge tree.

If we wish to leave the minimum degree condition at k/2 but avoid requiring the
existence of a vertex of very large degree, then a natural candidate for an alterna-
tive additional condition is to ask for some kind of expansion of G. In particular,
forbidding short cycles should be helpful for finding trees. Note that it will still be
necessary to require a vertex of degree at least k, because of the stars. The following
result shows that it suffices to forbid 4-cycles.
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Theorem 2.8 (Saclé and Wozniak (see Section 4 of [16])). Every graph G having
no 4-cycles and fulfilling §(G) > k/2 and A(G) > k contains any k-edge tree.

Assuming G has large girth (where the girth of a graph G is the largest g such
that G has no cycles of length < ¢), the bound on the minimum degree can be even
smaller, as long as T" has somewhat bounded degree.

Theorem 2.9 (Jiang [8]). Every graph G of girth at least 20 + 1 with 6(G) >
max{k/l,A(T)} contains any k-edge tree.

Note that the additional condition 6(G) > A(T) is indeed necessary, which can
be seen by considering a balanced double star and a suitable host graph.

3 Oriented trees in digraphs

We consider both digraphs, which may have up to one edge in each direction between
any pair of vertices, and oriented graphs which have at most one edge between any
pair of vertices. Loops are forbidden in both cases. Since the edges of a digraph
have directions, there are several possibilities when it comes to translating the no-
tion of the minimum degree to a digraph. The most popular one is the minimum
semidegree 6°(D), which is defined as the minimum over all the indegrees and all the
outdegrees of the vertices of the digraph D.

In analogy to the graph case, every digraph of minimum semidegree at least k
contains every oriented tree 7" with k edges. The bound cannot be weakened since
T may be an oriented star. Even if T is an oriented path, a bound below £k will
not be sufficient: to see this, we can consider the disjoint union of complete digraphs
(i.e. digraphs having all possible edges) of order k, which has minimum semidegree
k — 1 but contains no oriented subgraph with k edges.

However, if we are only looking for oriented paths in oriented graphs, a gener-
alisation of Proposition 2.1 may be possible. Indeed, the following was conjectured
in [18].

Conjecture 3.1.[18] Every oriented graph of minimum semidegree exceeding k/2
contains any oriented path of length k.

Results of Kelly [10] imply that this is true if k is larger than 3n/4+o(n), and an
even earlier result of Jackson [7] shows that the conjecture holds for directed paths,
i.e. oriented paths where each vertex has in- and outdegree at most one. Some more
evidence can be found in [3, 11, 17].



One nice property of paths, apart from not having vertices of high degree, is
that if they have an even number of vertices, they are balanced, i.e. their partition
classes have the same size. It may be possible to extend Conjecture 3.1 to balanced
oriented trees. In this direction, it was conjectured in [19] that every oriented n-
vertex graph D with 6°(D) > k/2 contains each balanced antidirected k-edge tree
with A(T) < o(n), where A(T) denotes the mazimum total degree of T, i.e. the
maximum degree of the underlying undirected tree, and a tree is antidirected, if each
of its vertices has either outdegree or indegree 0. With a weaker bound on A(T),
this conjecture is true if D is large, and k is large compared to the order of D:

Theorem 3.2 (Stein and Zarate-Guerén [21]). For all n > 0, ¢ € N there is ng
such that for all n > ng and k > nn, every oriented graph D on n vertices with
8°(D) > (1+n)k/2 contains every balanced antidirected tree T with k edges and with
A(T) < (log(n))*.

We remark that the condition that 7" is balanced is necessary. To see this, assume
k is even and consider the oriented graph D on sets V;, V3, V3, each of size k/2, having
all edges from V; to Vi1 (mod 3). Then 6°(D) = k/2. Let T be an unbalanced
antidirected tree. It is easy to see that T is not contained in D. In fact, the more
unbalanced T is, the larger we could make the sets V;, and D would still not contain 7.
The extreme case is when T’ is an antidirected star and each V; has size k — 2.

In the case that T and D have the same order and A(T") is bounded by a constant,
we can omit the condition that 7" is antidirected in Theorem 3.2, and lower the bound
on §°(D) to about 3n/8, as we will see in the following new result. Interestingly, this
bound on the minimum semidegree corresponds to the bound for oriented Hamilton
cycles in oriented graphs due to Kelly [10].

Theorem 3.3 (Aratjo, Santos and Stein [1]). For every n > 0 and A € N, there

is an integer ng such that for all n > ng each oriented graph D on n vertices with
8°(D) > (3/8 + n)n contains each oriented tree T on n vertices with A(T) < A.

Note that Theorem 3.3 can be viewed as a version of Theorem 2.2 for oriented
graphs (albeit with a worse bound on A(7)). Some years ago, Kathapurkar and
Montgomery gave a generalisation of the same theorem to digraphs [9]. Again, all
bounds are best possible up to the constant.

Theorem 3.4 (Kathapurkar and Montgomery [9]). For each n > 0, there are ¢ > 0
and ng € N such that every n-vertex digraph on n > ng vertices and with §°(G) >
(1/2 4 n)n contains each n-vertex oriented tree with A(T) < en/logn.



From the examples given above, we know that Theorem 3.4 becomes false if we
change the size of the tree to arbitrary k& (independent of n), and accordingly require
8°(D) > (1/2 + n)k. However, this changes if we add the restriction that D has a
vertex of large outdegree and a vertex of large indegree. Let us define A*(D) as the
largest ¢ such that D has a vertex of outdegree > ¢ and a vertex of indegree > ¢
(these two vertices may coincide).

In the spirit of Conjectures 2.4 and 2.5 we have the following new result for
balanced antidirected trees.

Theorem 3.5 (Kontogeorgiou, Santos and Stein [13]). For all n > 0 and ¢ € N,
there exists ng € N such that for all n > ng and k > nn, every digraph D on n
vertices fulfilling

(a) 8°(D) > (2 +n)k and AE(D) > 2(1 +n)k or
(b) §°(D) > (% +n)k and AX(D) > (1 +n)k
contains every balanced antidirected tree T with k edges and with A(T') < (logn)°.

Another new result is the generalisation of Theorem 2.8 to digraphs. We now
forbid all orientations of the 4-cycle.

Theorem 3.6 (Stein and Trujillo-Negrete [20]). Every digraph D having no oriented
4-cycles with 6°(D) > k/2 and AT(D) > k contains all oriented trees T with k edges.

It would be interesting to extend also Theorem 2.9 to digraphs. In this respect,
we pose the following question.

Question 3.7. Does every oriented graph D of girth at least 20 + 1 with 6°(D) >
max{k/l, A(T)} contain every orientation of each k-edge tree?
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