
Kalai’s conjecture in r-partite r-graphs

Maya Stein∗

University of Chile

December 24, 2019

Abstract

Kalai conjectured that every n-vertex r-uniform hypergraph with
more than t−1

r

(
n

r−1
)

edges contains all tight r-trees of some fixed size t.
We prove Kalai’s conjecture for r-partite r-uniform hypergraphs. Our
result is asymptotically best possible up to replacing the term t−1

r
with the term t−r+1

r .
We apply our main result in graphs to show an upper bound for

the Turán number of trees.

1 Introduction

For graphs, the well-known Erdős-Sós conjecture from 1963 states that any
graph with more than (t− 1)n

2
edges contains, as subgraphs, all trees with t

edges. In 1984, Kalai introduced a natural generalisation of this conjecture
to uniform hypergraphs. For simplicity, from now on r-uniform hypergraphs
will be called r-graphs.

In order to be able to state Kalai’s conjecture, we need to clarify the
notion of a tree in an r-graph. The definition we will use relies on the following
construction. Start with an r-edge e1 and the r vertices it contains: This
is T1. Now, in every step i, we may add a new edge ei. It is required that ei
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contains precisely one new vertex vi, and that ei\{vi} is a subset of some edge
of Ti−1. The new hypergraph is Ti. Any hypergraph that can be constructed
in this way will be called a tight r-tree.

Here is Kalai’s generalisation of the Erdős-Sós conjecture.

Conjecture 1.1 (Kalai 1984, see [6]). Let H be an r-graph on n vertices
with more than t−1

r

(
n

r−1

)
edges. Then H contains every tight r-tree T having

t edges.

As already noted in [6], it follows from constructions using a result of
Rödl [14] (or alternatively, one can use designs whose existence is guaran-
teed by Keevash’s work [12]) that this conjecture is tight as long as certain
divisibility conditions are satisfied.

It has been observed (see e.g. [7]) that if the bound in Conjecture 1.1 is
multiplied with a factor of r then the conjecture holds:

Conjecture 1.1 holds if the bound is replaced by (t− 1)
(

n
r−1

)
. (1)

The reason is that we can successively delete edges from the host r-graph
until arriving at an r-graph H ′ having the property that each (r−1)-subset S
of V (H) either belongs to 0 or to at least t edges. Then we can embed the
tree greedily into H ′, following the given ordering of the edges.

Not much is known on Kalai’s conjecture in general, except for the case
r = 2. We refer to [15] for an overview of known results in this case.

The known results for r ≥ 3 all focus on specific types of tight r-trees.
Frankl and Füredi [6] show that Conjecture 1.1 holds for all ‘star-shaped’
tight r-trees, that is, tight r-trees whose first edge intersects each other edge
in r − 1 vertices. Füredi, Jiang, Kostochka, Mubayi and Verstraëte [9, 10]
show versions of Conjecture 1.1 for a broadened variant of the concept of ‘star-
shaped’ (instead of the first edge, there is a constant number of first edges
intersecting all other edges), and Füredi and Jiang [7] show the conjecture
for special types of tight r-trees with many leaves.

For tight r-paths, bounds on the number of edges of the host r-graph
below the bound (t − 1)

(
n

r−1

)
from (1) were established by Patkós [13] and

by Füredi, Jiang, Kostochka, Mubayi and Verstraëte [8]. Namely, the bound
in (1) can be replaced by t−1

2

(
n

r−1

)
if r is even, and by a similar bound if r

is odd. An asymptotic version of Kalai’s conjecture for tight r-paths whose
order is linear in the order n of the host r-graph has been confirmed by Allen,
Böttcher, Cooley and Mycroft [1] for large n.
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Also, the authors of [9] show that if one replaces the bound in Kalai’s
conjecture with t−1

r
|∂H|, an equivalent conjecture is obtained. (As it is usual,

we define the shadow ∂H of an r-graphH as the set of all (r−1)-sets contained
in edges of H.)

Our first contribution is a solution of Kalai’s conjecture for r-partite r-
graphs. We will actually show our result with the bound from [9], that
is, the term

(
n

r−1

)
from Kalai’s conjecture will be replaced with the smaller

term |∂H|.

Theorem 1.2. Let r ≥ 2 and let H be an r-partite r-graph. If H has more
than t−1

r
|∂H| edges, then H contains every tight r-tree T having t edges.

The proof of Theorem 1.2 relies on an auxiliary lemma, Lemma 2.1, which
might be interesting in its own right. Lemma 2.1 is a variation of the earlier
observation on subhypergraphs of convenient codegree that led to (1) (as
usual, we will say S ∈ ∂H has codegree c if S lies in c edges of H). The
novelty in Lemma 2.1 is that it allows for a different minimum codegree into
each of the partition classes. For instance, for bipartite graphs of average
degree exceeding t1 + t2 − 2, the lemma yields a subgraph having minimum
degree at least t1 in one direction, and t2 in the other direction, for any
integers t1, t2 (see Corollary 2.2). For r-partite r-graphs, Lemma 2.1 gives
an analogous statement based on codegrees.

Theorem 1.2 is not very far from best possible. We will see in Proposi-
tion 3.1 that there are r-partite r-graphs H not containing all tight r-trees
with t edges fulfilling

|E(H)| ∼ t− r + 1

r
|∂H|. (2)

For r ≥ 3, this might indicate some room for a small improvement of the
bound t−1

r
|∂H| from Theorem 1.2, with other methods than the ones used

here.
Theorem 1.2 also has an interesting application. Namely, for graphs,

Theorem 1.2 can be used to obtain an upper bound for the Turán number
ex(n, T ) of a tree T (this is the maximum number of edges a graph on n
vertices can have without necessarily containing T as a subgraph).

Observe that for r = 2, the bound implied by (1) for the Turán number
of a t-edge tree T is

ex(n, T ) ≤ (t− 1)n, (3)
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which is a factor of 2 away from the bound ex(n, T ) ≤ (t−1)n
2

one can cal-
culate from the Erdős–Sós conjecture. We will see in Proposition 4.2 that
the bound (3) can be replaced by the slightly better bound

ex(n, T ) ≤ t

t+ 1
(t− 1)n. (4)

Moreover, if t is even, the term t
t+1

can be replaced with the term t−1
t

. We
achieve the bound (4) by considering a maximum 2-cut, that is, a bipartition
of the vertices of a graph G that maximises the number of edges crossing the
bipartition. A result of Alon, Krivelevich and Sudakov [2] states that, if a
fixed tree is excluded from G, then one can guarantee that substantially more
than half of the edges of G cross some 2-cut. We then apply Theorem 1.2 to
the bipartite graph spanned by the edges in the cut.

The paper is organised as follows. We will state and prove Lemma 2.1
and use it to prove Theorem 1.2 in Section 2. In Section 3 we will prove that
Theorem 1.2 is not far from best possible in the above described sense, at
least for balanced trees, by exhibiting r-graphs H fulfilling (2). Finally, in
Section 4, we will prove (4), our Turán number bound for trees, in Proposi-
tion 4.2.

2 Proof of Theorem 1.2

The main ingredient for the proof of Theorem 1.2 is Lemma 2.1 below. For
convenience, let us give a quick definition before we state the lemma.

If H is an r-partite r-graph, we say that δ(1,2,...,r)(H) ≥ (t1, t2, . . . , tr) if
there is a way of labeling the partition classes of H as V1, V2, . . . , Vr such that
for each i ∈ [r], every S ∈ ∂H missing Vi is contained in at least ti edges
of H.

Lemma 2.1. Let r, t, t1, t2, . . . , tr ∈ N such that

t1 + t2 + . . .+ tr = t+ r − 1,

and let H be an r-partite r-graph with more than t−1
r
|∂H| edges. Then there

is a non-empty r-graph H ′ ⊆ H such that

δ(1,2,...,r)(H
′) ≥ (t1, t2, . . . , tr).
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Lemma 2.1 has the following corollary.

Corollary 2.2. For all t1, t2 ∈ N every bipartite graph G with d(G) > t1 +
t2−2 has a non-empty subgraph G′ = (V1, V2) such that each vertex in Vi has
degree at least ti in G′, for i = 1, 2.

Before proving Lemma 2.1, let us show how it implies Theorem 1.2. For
this, we will need the following fact which is immediate from the definition
of tight r-trees.

Fact 2.3. Every tight r-tree has a unique r-partition.

Now we are ready to prove our main result.

Proof of Theorem 1.2. Assume we are given an r-graph H, and a tight r-
tree T with t edges. Consider the r-partition of T given by Fact 2.3, and let
t1, t2, . . . , tr be the sizes of the partition classes. Thus

t1 + t2 + . . .+ tr = t+ r − 1.

We apply Lemma 2.1 to see that there is an r-graph H ′ ⊆ H with r-
partition V1 ∪ V2 ∪ . . . ∪ Vr, such that for each i ≤ r, any element of ∂H ′

which avoids Vi is contained in at least ti edges of H ′ (each containing a
different vertex from Vi). We may therefore embed T following its natural
order v1, v2, . . . , vt+r−1. At every step j, there is an unoccupied vertex we can
choose as the image of vj, because the total number of vertices from V (T )
we need to embed in any fixed class Vi is at most ti.

It only remains to prove Lemma 2.1.

Proof of Lemma 2.1. We may assume that t1 ≤ t2 ≤ . . . ≤ tr. Set

δi := ti −
t+ r − 1

r
,

for all i = 1, . . . , r. Clearly, we have

δ1 ≤ δ2 ≤ . . . ≤ δr and δ1 ≤ 0, (5)

and moreover,
r∑

i=1

δi = 0. (6)
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We now turn to the r-graph H, with its r-partition V1∪V2∪ . . .∪Vr. We
let hi denote the number of elements of ∂H that avoid Vi, for each i ∈ [r].
Clearly,

r∑
i=1

hi = |∂H|, (7)

and after possibly relabeling the partition classes of H, we may assume that

h1 ≥ h2 ≥ . . . ≥ hr. (8)

Let E0 denote the set of all edges of H. For j ≥ 1, we inductively define
the set Ej as follows. If there is an (r − 1)-set S ⊆ V (H) missing Vi and
contained in at least one, but less than ti edges from Ej−1, then we set
Ej := {e ∈ Ej−1 : e 6⊇ S}. If there is no set S ⊆ V (H) as above, we
terminate the process, and set E := Ej−1.

Observe that every (r − 1)-subset S of V (H) appears in at most one of
the steps j as the reason for deleting edges, and in that step, we deleted at
most ti−1 edges, where i is such that S misses Vi. Also, (r−1)-sets S /∈ ∂H
never appear.

Therefore,

|E(H)| ≤ |E|+
r∑

i=1

(ti − 1)hi.

We claim that
E 6= ∅. (9)

Then, we can take H ′ to be the subhypergraph induced by the edges in E,
and are done. So it only remains to prove (9).

In order to see (9), note that otherwise, by our assumption on the number
of edges of H, we have that

t− 1

r
|∂H| < |E(H)| ≤

r∑
i=1

(ti − 1)hi ≤
r∑

i=1

(
t+ r − 1

r
− 1 + δi)hi

≤ t− 1

r
·

r∑
i=1

hi +
r∑

i=1

δihi,

and so, using (7), we obtain that

r∑
i=1

δihi > 0. (10)
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By (5), we can choose an index i ∈ [r] such that δi ≤ 0 for all i ≤ i∗ and
δi > 0 for all i > i∗. This choice of i∗, together with (8) and (6), enables us
to calculate that

r∑
i=1

δihi =
i∗∑
i=1

δihi +
r∑

i=i∗+1

δihi ≤
i∗∑
i=1

δihi∗ +
r∑

i=i∗+1

δihi∗

≤ hi∗ ·
r∑

i=1

δi

= 0,

a contradiction to (10). This proves (9), thus completing the proof of the
lemma.

3 Lower bounds for r-partite r-graphs

The bounds from Kalai’s conjecture cannot be weakened much in r-partite
r-graphs. This is asymptotically shown in Proposition 3.1 below. However,
in this proposition, the term t−1

r
from Kalai’s conjecture is replaced with the

term t−r+1
r

, which for r ≥ 3 leaves us with a small gap. Possible finer scale
improvements are discussed at the end of this section.

We call a tight r-tree balanced if all its partition classes have the same
size.

Proposition 3.1. For all r ≥ 2, t ≥ 1 such that t+ 1 is a multiple of r, and
for all ε > 0, there exists an r-graph H with r-partition V (H) = V1 ∪ V2 ∪
. . . ∪ Vr fulfilling

|E(H)| ≥
(
1− ε

)t− r + 1

r
·

r∑
i=1

∏
` 6=i

|V`|

such that H does not contain any balanced tight r-tree T with t edges.

Proof. Consider the sets V j
i for i ∈ [r] and j = 1, 2, where |V 1

i | = t+1
r
−1 and

|V 2
i | = γ−1( t+1

r
− 1), for γ := (1− ε)

1
1−r − 1. Let H be the r-partite r-graph

with partition sets Vi := V 1
i ∪V 2

i (for i ∈ [r]) and all edges {v1, . . . , vr} having
the property that vi∗ ∈ V 1

i∗ for exactly one index i∗ ∈ [r], and vi ∈ V 2
i for all

i 6= i∗.
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It is easy to see that no r-tight tree may contain vertices from both V 1
i

and V 2
i , for any i ∈ [r]. So, since |V 1

i | < t+1
r

for all i, we see that H does not
contain any balanced tight r-tree T with t edges.

The number of edges of H is

|E(H)| =
r∑

i=1

|V 1
i |
∏
6̀=i

|V 2
` | = r · γ1−r

(t+ 1

r
− 1
)r

= (1 + γ)1−r
(t+ 1

r
− 1
)
·

r∑
i=1

∏
`6=i

|V`|,

giving the desired bound.

In the example behind Proposition 3.1, the host r-graph is much larger
than the r-tree we are looking for, and another error term hides behind
the ε. On a finer scale, more improvements on Kalai’s bounds might be
possible for r-partite r-graphs. For r = 2, Gyárfás, Rousseau and Schelp [11]
determine the extremal number of t-edge paths Pt in bipartite graphs with
partition classes of sizes n ≥ m (that is, the maximum number ex(n,m;Pt)
of edges such a bipartite graph can have without necessarily containing Pt).
In particular, if t ≤ m+ 1 is odd they obtain

ex(n,m;Pt) =
t− 1

2
(n+m− t+ 1). (11)

Yuan and Zhang [16] conjecture similar results as (11) hold for all trees T (the
exact bounds depend on how the bipartition sizes of T relate to n and m),
and establish several special cases.

Analogous improvements might be possible for hypergraphs. Note that
the quantity from (11) coincides with the number of edges of the r-graph
from the proof of Proposition 3.1, for the case r = 2. For r = 3 one might
add in all edges meeting all sets V 1

i , and the obtained r-graph still does not
contain T . More generally, for r ≥ 4 one might add in all edges meeting V 1

i

in an odd number of indices i.

4 A better Turán bound for all 2-graphs

We now discuss an implication of Theorem 1.2 for tree containment in graphs
(i.e. 2-graphs) that are not necessarily bipartite. This will establish the
bound (4.2) mentioned in the introduction.
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We need some easy definitions first. We call a partition of the vertices of
a graph into two sets a 2-cut. The size of a 2-cut is the number of edges that
cross the cut (where an edge is said to cross the cut if it has one endvertex
on either side).

It is well known and easy to prove that every m-edge graph has a 2-cut of
size at least m

2
. A random partition achieves this bound in expectation. But

this is not best possible. A classical result of Edwards [4] states that instead
of only m

2
edges we can actually guarantee a 2-cut of size at least m

2
+Ω(
√
m).

Even better bounds can be achieved by excluding a fixed subgraph from G.
Alon, Krivelevich and Sudakov [2] show that if we exclude any fixed tree T
from the graph G, the maximum number of edges crossing some 2-cut can
be bounded as follows.

Theorem 4.1 (Alon, Krivelevich and Sudakov [2]). Let t > 1 and let T be
a t-edge tree. Let G be a graph with m edges that does not contain T .
Then G has a 2-cut of size at least m

2
+ m

2t
if t is odd, and of size at least

m
2

+ m
2t−2 if t is even.

We can use Theorem 4.1 to improve the bound from (1). The following
proposition proves the bound (4) we mentioned in the introduction.

Proposition 4.2. Let t ∈ N and let G be a graph on n vertices with more
than (1− 1

t+1
)(t− 1)n edges if t is odd, and with more than (1− 1

t
)(t− 1)n

edges if t is even. Then G contains every tree T having t edges.

Proof. We may assume that t > 1. We only treat the case when t is odd, as
the other case is very similar.

Given G and T , we use Theorem 4.1 to either find a copy of T in G, or
to obtain a 2-cut of G having size greater than

t
t+1

(t− 1)n

2
+

t
t+1

(t− 1)n

2t
=
t− 1

2
n.

In the latter case, we apply Theorem 1.2 to the graph induced by this 2-cut
to see that it contains T .

Variants of Edwards’ results for hypergraphs have been studied by Erdős
and Kleitman [5]. They showed that in an m-edge r-graph, the expected
size of an r-cut is r!

rr
m (where an r-cut is a partition of the vertices into r

sets, edges cross the cut if they have one vertex in each partition set, and
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the size of an r-cut is the number of crossing edges). Recently, Conlon, Fox,
Kwan and Sudakov [3] improved this bound. In particular, they obtain that

for r ≥ 3, every m-edge r-graph has an r-cut of size at least r!
rr
m + Ω(m

5
9 ).

They conjecture the exponent in the second term can be improved to 2
3
.

Unfortunately, we are not aware of any result in the spirit of Theorem 4.1 for
hypergraphs and the bound from [3] alone does not seem to suffice to prove
a meaningful version of Proposition 4.2 for r-graphs with r ≥ 3.
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straëte, J. Hypergraphs not containing a tight tree with a bounded
trunk II: 3-trees with a trunk of size 2. Discrete Applied Mathematics
(2019).
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