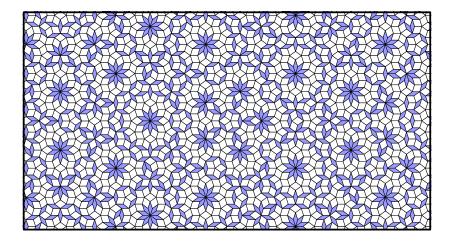
N-fold tilings

N. Bédaride, Th. Fernique 12M, université Aix Marseille

December 2014

Tiling of the plane



Several classes of tilings

- ► Substitution.
- Cut and project.
- ► SFT (subshift of finite type).

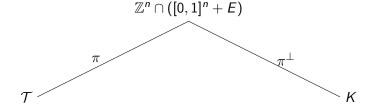
Cut and project

Let E be a 2-plane in $\mathbb{R}^n = E \oplus E'$.

 π projection on E with respect to E'.

 π^{\perp} projection on E' with respect to E.

Strip: $[0,1]^n + E$



Consider n non collinear unit vectors of the plane. We can construct $\binom{n}{2}$ rhombi. We study the tilings obtained by these rhombi.

Consider n non collinear unit vectors of the plane. We can construct $\binom{n}{2}$ rhombi. We study the tilings obtained by these rhombi.

lift: homeomorphism which send tiles of \mathcal{T} on 2-faces of hypercubes in \mathbb{R}^n .

$$\mathcal{T} \mapsto \mathcal{S}$$

Consider n non collinear unit vectors of the plane. We can construct $\binom{n}{2}$ rhombi. We study the tilings obtained by these rhombi.

lift: homeomorphism which send tiles of \mathcal{T} on 2-faces of hypercubes in \mathbb{R}^n .

$$\begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^r \\ \mathcal{T} & \mapsto & \mathcal{S} \end{array}$$

Planar tilings: lift in $E + [0, t]^n$, where E is a 2-plane called the *slope* and t is the *thickness*.

Local rules

Definition

A slope E has **local rules** (LR) if there is a finite set of *patches* s. t. any rhombus tiling without any such patch is planar with slope E.

N-fold tilings

Question:

Find some LR for a given plane \boldsymbol{E} ?

N-fold tilings

Question:

Find some LR for a given plane E?

Other possibility:

Question:

Find some SFT such that every tiling in the subshift is **planar**.

Subject of the talk

Study of the plan E_n given by

▶ If n = 2p + 1 the 2-plane of \mathbb{R}^{2p+1} generated by

$$\begin{pmatrix} 1 \\ \cos \frac{2\pi}{2p+1} \\ \vdots \\ \cos \frac{4p\pi}{2p+1} \end{pmatrix}, \begin{pmatrix} 0 \\ \sin \frac{2\pi}{2p+1} \\ \vdots \\ \sin \frac{4p\pi}{2p+1} \end{pmatrix}.$$

▶ If n = 2p the 2-plane of \mathbb{R}^p generated by

$$\begin{pmatrix} 1 \\ \cos\frac{\pi}{\rho} \\ \vdots \\ \cos\frac{(\rho-1)\pi}{\rho} \end{pmatrix}, \begin{pmatrix} 0 \\ \sin\frac{\pi}{\rho} \\ \vdots \\ \sin\frac{(\rho-1)\pi}{\rho} \end{pmatrix}.$$

These planes define n fold tilings.

History

Tiling	local rules	
5,10-fold	yes	Penrose
8-fold	none	Burkov 88
$(4k+i)$ -fold, $i \neq 0$	yes	Socolar 90
non algebraic slope	none	Le

Result

Theorem (B-Fernique)

The plane E_n admits local rules if and only if $n \neq 0[4]$.

Proof I: Subperiod

How do you find the good SFT ?

Grassmann-Plücker coordinates

Definition

The plane $\mathbb{R}\vec{u} + \mathbb{R}\vec{v}$ has GP-coordinates $(G_{ij})_{i < j} = (u_i v_j - u_j v_i)_{i < j}$.

Proposition (Grassmann-Plücker)

GP-coordinates satisfy all the relations $G_{ij}G_{kl}=G_{ik}G_{jl}-G_{il}G_{jk}$.

Definition

A **subperiod** of the plane is a vector $p\vec{e}_i + q\vec{e}_j + r\vec{e}_k$ such that we have a relation of the form: $pG_{jk} - qG_{ik} + rG_{ij} = 0$ where p, q, r are integers.

Subperiod and SFT

Lemma

There exists a subshift of finite type in which planar tilings all have the same subperiods.

N-fold tilings

Lift of the tiling: Surface ${\mathcal S}$

Tiling by rhombi

Subperiod

Plane \boldsymbol{E}

Background

Theorem (B-Fernique 13)

Let E be a plane in \mathbb{R}^4 .

We find an iff condition such that every tilling in the SFT is planar.

We find a sufficient condition such that E admits local rules.

Application to some planes in \mathbb{R}^n .

Proposition (B-Fernique 13)

For every n there exists a SFT such that every tiling in the SFT is planar and one tiling is planar with slope E_{4n} .

Proposition (Socolar 90, B-Fernique 13)

The plane E_{4n+i} , $i \neq 0$ admits local rules.

Example n = 8. Amman-Beenker tilings

$$\begin{cases}
G_{12} = G_{23} = G_{34} = G_{14} \\
2G_{12}^2 = G_{13}G_{24}
\end{cases}$$

Example n = 8. Amman-Beenker tilings

$$\begin{cases}
G_{12} = G_{23} = G_{34} = G_{14} \\
2G_{12}^2 = G_{13}G_{24}
\end{cases}$$

$$\begin{cases}
G_{12} = G_{23} = G_{34} = G_{14} = 1 \\
2 = G_{13}G_{24}
\end{cases}$$

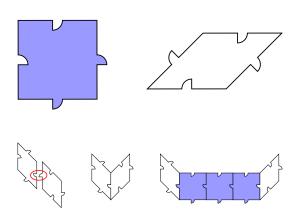
Infinity of planes solutions.

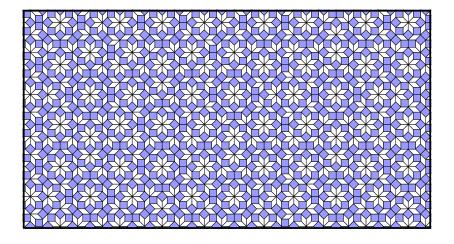
Subperiods thus characterize all the slopes (1, t, 1, 1, 2/t, 1), t > 0.

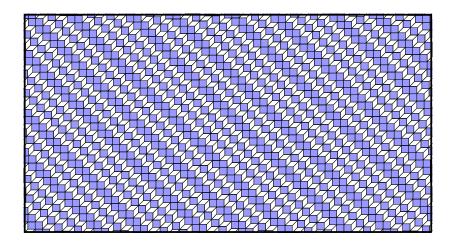
First theorem implies the planarity of these planes.

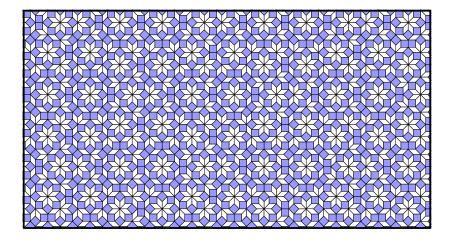
The AB tilings are those maximizing the rhombus frequencies.

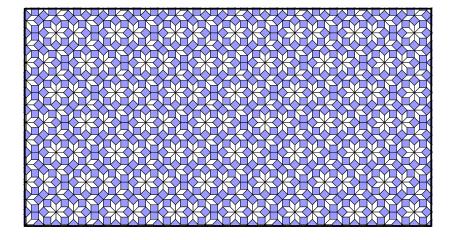
SFT and E_8

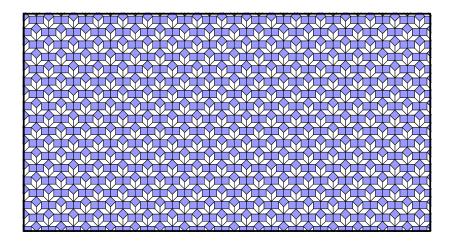












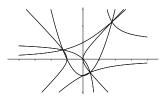
Example E_7

$$\begin{cases} G_{12} = G_{23} = G_{34} = G_{45} = G_{56} = G_{67} = G_{71} \\ G_{13} = G_{35} = G_{57} = G_{72} = G_{24} = G_{46} = G_{61} \\ G_{14} = G_{47} = G_{73} = G_{36} = G_{62} = G_{25} = G_{51} \end{cases}$$

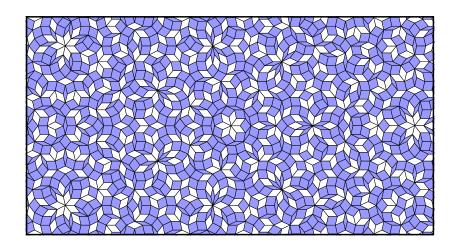
$$\begin{cases} G_{12}^2 = G_{13}^2 - G_{14}G_{12} \\ G_{12}G_{13} = G_{12}G_{14} + G_{13}G_{14} \\ G_{12}^2 = G_{14}^2 - G_{13}G_{14} \\ G_{14}^2 = G_{13}^2 - G_{13}G_{12} \end{cases}$$

$$X^3 - X^2 - 2X + 1 = 0.$$

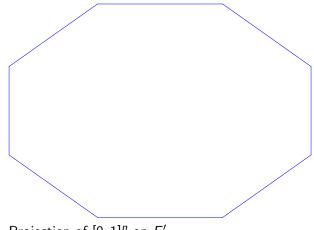
Finite number of solutions.



The plane E_7 admits local rules and $7 \neq 0[4]$.



Proof II: Window



Projection of $[0,1]^n$ on E'

Patch and window

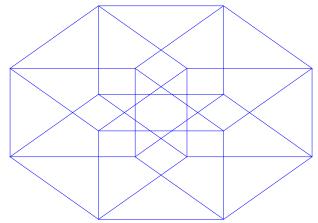
Let E be a 2 plane in \mathbb{R}^n .

The window is a polytope in \mathbb{R}^{n-2} .

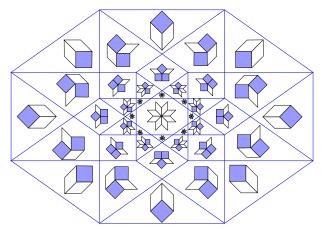
Partition of the window in polytopes with the projections of the faces of dimension n-3 of $[0,k]^n$ for $k \in \mathbb{N}$.

Lemma (Julien)

Bijection of the set of polytopes with the size k patches of the planar tiling of slope E and thickness 1.

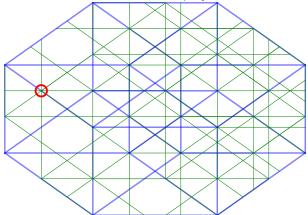


Partition of the window by the faces of dimension n-3 of the cube $[0,k]^n$



Bijection with the size k patches of the planar tiling of slope E and thickness $\mathbf{1}$

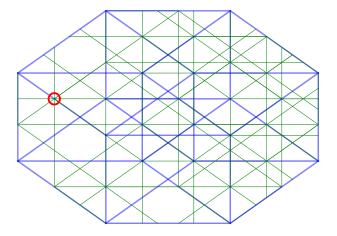
Intersection of at least n-1 projected faces of dimension n-3.

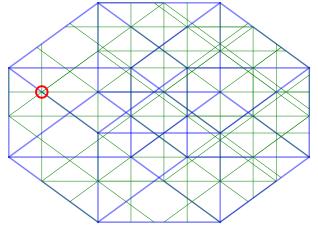


N-fold tilings

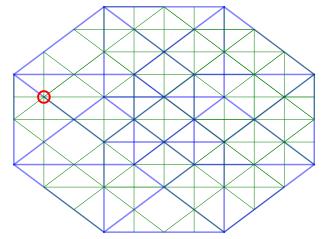
Now consider the SFT associated to E_n .

The plane moves inside this SFT.

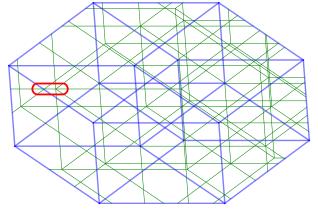




Coincidences preserved along the family



Coincidences preserved along the family



Coincidences not preserved outside the family

N-fold tilings

The proof is done. . .

N-fold tilings

The proof is done...

Lemma

Assume that E belongs to a curve such that any coincidence of E is also a coincidence of the points of this curve which are close enough to E. Then E does not admit weak local rules.

The proof is done...

Lemma

Assume that E belongs to a curve such that any coincidence of E is also a coincidence of the points of this curve which are close enough to E. Then E does not admit weak local rules.

If a pattern of size k appear in E_t and not in E, then a new coincidence appears for t=0: impossible. Any pattern of size k of E also appears in E_t . Then E does not admit weak local rules.

Questions

- ▶ Consider the SFT associated to E₈. Entropy ?
- ► Thickness of this SFT ?
- **•** ...