Lecture 1: Symbolic Dynamics on f.g. groups: a computational approach.

Nathalie Aubrun

LIP, ENS de Lyon, CNRS

December 15, 2014

Mini-course divided into 4 lectures

- ▶ Lecture 1: SD on f.g. groups: a computational approach.
- ▶ Lecture 2: Domino Problem, Part I: Wang tiles.
- ▶ Lecture 3: Domino Problem, Part II: f.g. groups.
- Lecture 4: Effective subshifts.

Introduction

Mini-course divided into 4 lectures

- ▶ Lecture 1: SD on f.g. groups: a computational approach.
- ▶ Lecture 2: Domino Problem, Part I: Wang tiles.
- ▶ Lecture 3: Domino Problem, Part II: f.g. groups.
- Lecture 4: Effective subshifts.

- Symbolic Dynamics on Finitely Generated Groups
 - Generalities
 - Aperiodicity
 - Emptyness Problem
- Word Problem
 - Definition
 - Word Problem and the one-or-less subshift
- 3 Free groups and Virtually free groups
 - Aperiodicity
 - Emptyness Problem
- 4 Ends of a group
 - Definition and examples
 - Number of ends and soficness

Why subshifts on groups?

From a computer scientist point of view:

- $ightharpoonup \mathbb{Z}^2$ -subshifts as a computational model.
- ▶ Decidability gap between \mathbb{Z} -subshifts and \mathbb{Z}^2 -subshifts
- ▶ Understand where is the limit: study subshifts on other structures.
- ▶ Preserve the duality dynamical/combinatorial approach.

Why finitely generated groups?

Two restrictions: **finitely generated** (f.g.) and **recursively presented** (r.p.) groups.

- ▶ Understand computational properties of SFTs/sofic subshifts.
- ▶ We need a finite encoding/description of the group.
- ▶ How to encode computation inside SFTs ?

Ends of a group

Configurations and Subshits (I)

- ▶ Let *A* be a finite alphabet, *G* be a finitely generated group.
- ▶ Colorings $x : G \rightarrow A$ are called **configurations**.
- ► Endowed with the prodiscrete topology *A^G* is a **compact** and **metrizable** set.
- Cylinders form a clopen basis

$$[a]_g = \left\{ x \in A^G \mid x_g = a \right\}.$$

- ▶ A **pattern** is a finite intersection of cylinders, or equivalently a finite configuration $p: S \rightarrow A$
- A metric for the cylinder topology is

$$d(x,y) = 2^{-\inf\{|g| \mid g \in G: x_g \neq y_g\}},$$

where |g| is the length of the shortest path from 1_G to g in $\Gamma(G, S)$.

Configurations and Subshits (II)

The **shift** action $\sigma: G \times A^G \to A^G$ is given by

$$(\sigma_{\mathsf{g}}(\mathsf{x}))_{\mathsf{h}} = \mathsf{x}_{\mathsf{g}^{-1}\mathsf{h}}.$$

The dynamical system (A^G, σ) is called the *G*-fullshift over *A*.

Definition

A *G*-subshift is a closed and σ -invariant subset $X \subset A^G$.

The **shift** action $\sigma: G \times A^G \to A^G$ is given by

$$(\sigma_{g}(x))_{h} = x_{g^{-1}h}.$$

The dynamical system (A^G, σ) is called the *G*-fullshift over *A*.

Definition

A *G*-subshift is a closed and σ -invariant subset $X \subset A^G$.

A pattern $p \in A^S$ appears in a configuration $x \in A^G$ if $(\sigma_g(x))_S = p$ for some $g \in G$.

Proposition

X is a G-subshift iff there exists a set $\mathcal F$ of forbidden patterns s.t.

$$X = X_{\mathcal{F}} := \{ x \in A^G \mid \text{ no pattern of } \mathcal{F} \text{ appears in } x \}.$$

G-SFT, block maps and sofic G-subshifts

A **block map** $\phi: A^{\mathcal{G}} \to B^{\mathcal{G}}$ is a continuous and σ -commuting map.

- ▶ A *G*-subshift *X* is **of finite type** (*G*-SFT) if there exists a finite set of forbidden patterns \mathcal{F} that defines it: $X = X_{\mathcal{F}}$.
- A G-subshift X is **sofic** if there exists a G-SFT Y and a block map ϕ s.t. $X = \phi(Y)$.

G-SFT, block maps and sofic G-subshifts

A **block map** $\phi: A^G \to B^G$ is a continuous and σ -commuting map.

- ▶ A G-subshift X is of finite type (G-SFT) if there exists a finite set of forbidden patterns \mathcal{F} that defines it: $X = X_{\mathcal{F}}$.
- A G-subshift X is sofic if there exists a G-SFT Y and a block map ϕ s.t. $X = \phi(Y)$.

Proposition

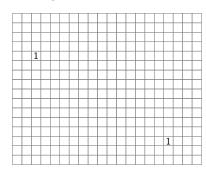
If a G-subshift X is sofic, then there exists a nearest neighbor SFT Y and a letter-to-letter block map ϕ s.t. $X = \phi(Y)$.

Remark: These notions of G-SFT and sofic G-subshifts do not depend on the presentation of the group G.

$$X_{\leq 1} = \{x \in \{0,1\}^G \mid |\{g \in G : x_g = 1\}| \leq 1\}$$

On which f.g. groups is the one-or-less subshift sofic?

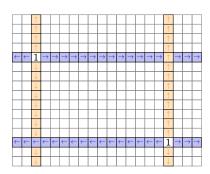
Sofic on multidimensional grids \mathbb{Z}^d



$$X_{\leq 1} = \{x \in \{0,1\}^G \mid |\{g \in G : x_g = 1\}| \leq 1\}$$

On which f.g. groups is the one-or-less subshift sofic ?

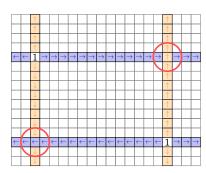
Sofic on multidimensional grids \mathbb{Z}^d



$$X_{\leq 1} = \{x \in \{0,1\}^G \mid |\{g \in G : x_g = 1\}| \leq 1\}$$

On which f.g. groups is the one-or-less subshift sofic ? \mathbb{Z}^d

Sofic on multidimensional grids \mathbb{Z}^d



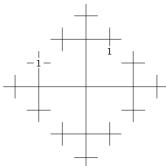
Example 1: the one-or-less subshift

$$X_{\leq 1} = \{x \in \{0,1\}^G \mid |\{g \in G : x_g = 1\}| \leq 1\}$$

Question

On which f.g. groups is the one-or-less subshift sofic ? \mathbb{Z}^d

Sofic on free groups \mathbb{F}_k



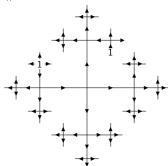
Example 1: the one-or-less subshift

$$X_{\leq 1} = \{x \in \{0,1\}^G \mid |\{g \in G : x_g = 1\}| \leq 1\}$$

Question

On which f.g. groups is the one-or-less subshift sofic? \mathbb{Z}^d

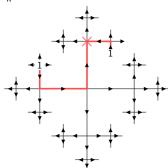
Sofic on free groups \mathbb{F}_k



$$X_{\leq 1} = \{x \in \{0,1\}^G \mid |\{g \in G : x_g = 1\}| \leq 1\}$$

On which f.g. groups is the one-or-less subshift sofic ? \mathbb{Z}^d , \mathbb{F}_k

Sofic on free groups \mathbb{F}_k

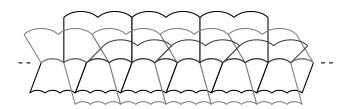


$X_{\leq 1} = \{x \in \{0,1\}^G \mid |\{g \in G : x_g = 1\}| \leq 1\}$

Question

On which f.g. groups is the one-or-less subshift sofic ? \mathbb{Z}^d , \mathbb{F}_k , BS(m,n)

Sofic on BS(m,n)



Example 1: the one-or-less subshift

$$X_{\leq 1} = \{x \in \{0,1\}^G \mid |\{g \in G : x_g = 1\}| \leq 1\}$$

Question

On which f.g. groups is the one-or-less subshift sofic ? \mathbb{Z}^d , \mathbb{F}_k , BS(m,n)

Proposition (Dahmani & Yaman, 2002)

- ▶ If $X_{\leq 1}$ is sofic for G_1 and G_2 , then it is also sofic for $G_1 \otimes G_2$.
- ▶ Let $H \leq G$ be a subgroup with $[G:H] < \infty$, then $X_{\leq 1}$ is sofic for Gif and only if it is sofic for H.
- ▶ If G is an hyperbolic group, then $X_{\leq 1}$ is sofic for G.

Question

Does there exists a f.g. group on which $X_{\leq 1}$ is not sofic ?

Example 2: the even shift

 $X_{\text{even}} = \{x \in \{0,1\}^G | \text{ finite CC of 1's have even size } \}.$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Proof: Consider the *G*-SFT X_k , where $k = |B_1|$, with alphabet

$$A_3 = \left\{ \left(\right), \left(\right), \left(\right), \right) + \text{rotations} \right\}$$

$$A_4 = \left\{ \left[\right], \left[\right], \right] + \text{rotations} \right\}$$

$$A_5 = \left\{ \left(\right), \left(\right), \left(\right), \left(\right), \left(\right) \right\} + \text{rotations} \right\}$$

$$A_6 = \left\{ \left(\right), \left(\right), \left(\right), \left(\right), \left(\right) \right\} + \text{rotations and reflections} \right\}$$

etc...

Example 2: the even shift

 $X_{\text{even}} = \{x \in \{0,1\}^G | \text{ finite CC of 1's have even size } \}.$

Proposition

The even shift X_{even} is sofic for every f.g. group G.

Proof: Take for instance k = 4 (for \mathbb{Z}^2 or BS(m, n))

$$A_4 = \left\{ \left[\right], \left[\right], \left[\right] \right\} + \text{rotations} \right\}$$

and chose the letter-to-letter map

Example 2: the even shift

 $X_{\text{even}} = \{x \in \{0,1\}^G | \text{ finite CC of 1's have even size } \}.$

Proposition

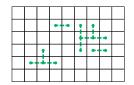
The even shift X_{even} is sofic for every f.g. group G.

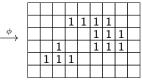
Proof: Take for instance k = 4 (for \mathbb{Z}^2 or BS(m, n))

$$A_4 = \left\{ \left[\right], \left[\right], \right] + \text{rotations} \right\}$$

and chose the letter-to-letter map

Green components have even size (handshaking lemma) $\Rightarrow \phi(X_k) \subseteq X_{\text{even}}$





Proposition

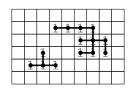
The even shift X_{even} is sofic for every f.g. group G.

			1	1	1	1		
					1	1	1	
		1			1	1	1	
	1	1	1					

Proposition '

The even shift X_{even} is sofic for every f.g. group G.

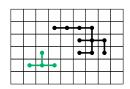
Conversely, for some $x \in X_{\mathtt{even}}$, consider $\mathcal C$ a maximal CC of 1.



lacktriangle Chose ${\mathcal T}$ a tree covering of ${\mathcal C}.$

Proposition

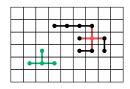
The even shift X_{even} is sofic for every f.g. group G.



- ▶ Chose \mathcal{T} a tree covering of \mathcal{C} .
- ightharpoonup If all vertices in $\mathcal T$ have odd degree, then we are done.

Proposition

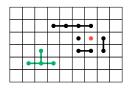
The even shift X_{even} is sofic for every f.g. group G.



- ▶ Chose \mathcal{T} a tree covering of \mathcal{C} .
- ightharpoonup If all vertices in $\mathcal T$ have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.

Proposition

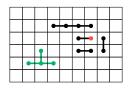
The even shift X_{even} is sofic for every f.g. group G.



- ▶ Chose \mathcal{T} a tree covering of \mathcal{C} .
- ightharpoonup If all vertices in $\mathcal T$ have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.

Proposition

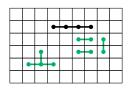
The even shift X_{even} is sofic for every f.g. group G.



- ▶ Chose \mathcal{T} a tree covering of \mathcal{C} .
- ightharpoonup If all vertices in $\mathcal T$ have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.
- ▶ In $\mathcal{T} \setminus \{v\}$, odd number of trees with odd cardinality: connect v to them.

Proposition

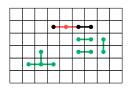
The even shift X_{even} is sofic for every f.g. group G.



- ▶ Chose \mathcal{T} a tree covering of \mathcal{C} .
- ightharpoonup If all vertices in $\mathcal T$ have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.
- ▶ In $\mathcal{T} \setminus \{v\}$, odd number of trees with odd cardinality: connect v to them.
- ▶ Iterate the process to get rid of all vertices with even degree, and conclude by compactness.

Proposition

The even shift X_{even} is sofic for every f.g. group G.



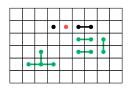
- ightharpoonup Chose $\mathcal T$ a tree covering of $\mathcal C$.
- ightharpoonup If all vertices in $\mathcal T$ have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.
- ▶ In $\mathcal{T} \setminus \{v\}$, odd number of trees with odd cardinality: connect v to them.
- ▶ Iterate the process to get rid of all vertices with even degree, and conclude by compactness.

Example 2: the even shift

 $X_{\text{even}} = \{x \in \{0,1\}^G | \text{ finite CC of 1's have even size } \}.$

Proposition

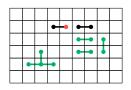
The even shift X_{even} is sofic for every f.g. group G.



- ightharpoonup Chose $\mathcal T$ a tree covering of $\mathcal C$.
- ightharpoonup If all vertices in $\mathcal T$ have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.
- ▶ In $\mathcal{T} \setminus \{v\}$, odd number of trees with odd cardinality: connect v to them.
- ▶ Iterate the process to get rid of all vertices with even degree, and conclude by compactness.

Proposition

The even shift X_{even} is sofic for every f.g. group G.



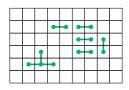
- ightharpoonup Chose $\mathcal T$ a tree covering of $\mathcal C$.
- ightharpoonup If all vertices in $\mathcal T$ have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.
- ▶ In $\mathcal{T} \setminus \{v\}$, odd number of trees with odd cardinality: connect v to them.
- ▶ Iterate the process to get rid of all vertices with even degree, and conclude by compactness.

Example 2: the even shift

 $X_{\text{even}} = \{x \in \{0,1\}^G | \text{ finite CC of 1's have even size } \}.$

Proposition

The even shift X_{even} is sofic for every f.g. group G.



- ightharpoonup Chose $\mathcal T$ a tree covering of $\mathcal C$.
- ightharpoonup If all vertices in $\mathcal T$ have odd degree, then we are done.
- ▶ Otherwise, delete a vertex v with even degree \Rightarrow forest of CC of 1.
- ▶ In $\mathcal{T} \setminus \{v\}$, odd number of trees with odd cardinality: connect v to them.
- ▶ Iterate the process to get rid of all vertices with even degree, and conclude by compactness.

Soficness on f.g. groups

Two previous examples:

- Exhibit the SFT cover to prove soficness...
- ...and actually it is almost the only technique known!
- ➤ One-or-less subshift: illustrates how information can flow inside the group by local rules.

criodic configurations and apenduic substituts (1

The **stabilizer** of a configuration $x \in A^G$ is the set of translations that leave it unchanged

$$\mathsf{Stab}(x) = \{ g \in G \mid \sigma_g(x) = x \} \leqslant G.$$

Periodic configurations and aperiodic subshifts (I)

The **stabilizer** of a configuration $x \in A^G$ is the set of translations that leave it unchanged

$$\mathsf{Stab}(x) = \{ g \in G \mid \sigma_g(x) = x \} \leqslant G.$$

- ▶ A configuration $x \in A^G$ is **weakly periodic** if its stabilizer is infinite. A configuration $x \in A^G$ is **strongly aperiodic** if x is not weakly periodic.
- A configuration x ∈ A^G is strongly periodic if its stabilizer is of finite index in G

$$[G: \operatorname{Stab}(x)] < \infty.$$

A configuration $x \in A^{\mathbf{G}}$ is weakly aperiodic if x is not strongly periodic.

Remark: x strongly (a)periodic $\Rightarrow x$ weakly (a)periodic

Periodic configurations and aperiodic subshifts (II)

A non-empty subshift is

- **weakly aperiodic** if it contains no strongly periodic configuration.
- strongly aperiodic if it contains no weakly periodic configuration.

Remark 1: X strongly aperiodic \Rightarrow X weakly aperiodic.

Remark 2: On \mathbb{Z} and \mathbb{Z}^2 the notions are equivalent (see Lecture 2).

Examples:

- ➤ On Z there exists no (weakly/strongly) aperiodic SFT.
- ▶ On \mathbb{Z}^2 there exists (weakly/strongly) aperiodic SFT.

Aperiodic SFT

Questions

- ▶ Which f.g. groups admit weakly aperiodic SFT ?
- ▶ Which f.g. groups admit weakly aperiodic SFT but no strongly aperiodic SFT?
- Which f.g. groups admit strongly aperiodic SFT ?

More about this on **Wednesday**:

Ayse Sahin (12:10) and David Cohen (14:30)

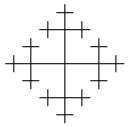
▶ Let $k \in \mathbb{N}^*$ and A a finite alphabet

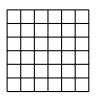
$$A_1 = \{ \, \blacksquare \, , \, \blacksquare \, \} \, .$$

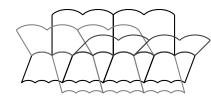
 \blacktriangleright Let \mathcal{F} be a set of nearest neighbors rules.

$$\overline{\mathcal{F}_1} = \left\{ \begin{array}{c} \blacksquare \end{array} \right\}$$

▶ Let G be a group generated by k generators.







▶ Does the G-SFT $X_{\mathcal{F}}$ contain a configuration ?

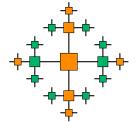
▶ Let $k \in \mathbb{N}^*$ and A a finite alphabet

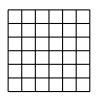
$$A_1 = \{ \blacksquare, \blacksquare \}$$
.

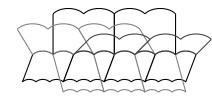
 \blacktriangleright Let \mathcal{F} be a set of nearest neighbors rules.

$$\overline{\mathcal{F}_1} = \left\{ \begin{array}{c} \blacksquare \end{array} \right\}$$

▶ Let G be a group generated by k generators.







▶ Does the G-SFT X_F contain a configuration ?

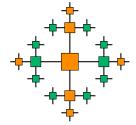
▶ Let $k \in \mathbb{N}^*$ and A a finite alphabet

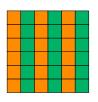
$$A_1 = \{ \blacksquare, \blacksquare \}$$
.

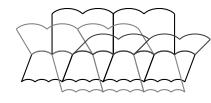
 \blacktriangleright Let \mathcal{F} be a set of nearest neighbors rules.

$$\overline{\mathcal{F}_1} = \left\{ \begin{array}{c} \blacksquare \end{array} \right\}$$

▶ Let G be a group generated by k generators.







▶ Does the G-SFT X_F contain a configuration ?

Emptyness Problem (I)

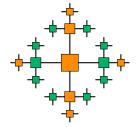
▶ Let $k \in \mathbb{N}^*$ and A a finite alphabet

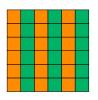
$$A_1 = \{ \, \blacksquare \, , \, \blacksquare \, \} \, .$$

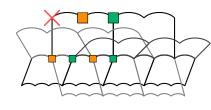
 \blacktriangleright Let \mathcal{F} be a set of nearest neighbors rules.

$$\overline{\mathcal{F}_1} = \left\{ \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array} \right\}$$

▶ Let G be a group generated by k generators.







▶ Does the G-SFT X_F contain a configuration ?

Emptyness Problem (II)

Fix G a f.g. group and S a generating set for G.

Emptyness Problem for G-SFTs

Input: F a finite set of forbidden patterns on S.

Output: Yes if there exists a configuration in X_F , No otherwise.

Fix G a f.g. group and S a generating set for G.

Emptyness Problem for *G*-SFTs

Input: F a finite set of forbidden patterns on S.

Output: Yes if there exists a configuration in X_F , No otherwise.

Question

Which f.g. groups have decidable Emptyness Problem?

More about this on **Tuesday** (\mathbb{Z}^2) and **Thursday**:

Lecture 2 (11:00) and Lecture 3 (09:30)

- Symbolic Dynamics on Finitely Generated Groups
 - Generalities
 - Aperiodicity
 - Emptyness Problem
- Word Problem
 - Definition
 - Word Problem and the one-or-less subshift
- Free groups and Virtually free groups
 - Aperiodicity
 - Emptyness Problem
- 4 Ends of a group
 - Definition and examples
 - Number of ends and soficness

Word Problem for f.g. groups (I)

Does there exist an algorithm that decides whether two words w_1 and w_2 on the generators and their inverses represent the same element in G ($w_1 =_G w_2$)?

$$WP(G) = \left\{ w \in \left(S \cup S^{-1} \right)^* \mid w =_G 1_G \right\}.$$

Definition

A f.g. group G has **decidable WP** if there exists an algorithm that take two words w_1 and w_2 as input and outputs **Yes** if $w_1 =_G w_2$ and **No** if $w_1 \neq_G w_2$.

Remark: Decidability of WP does not depend on the choice of *S*.

Ends of a group

Word Problem for f.g. groups (II)

Theorem

The word problem is decidable for the following classes

- ▶ f.g. groups defined by a single relator (Magnus, 1932)
- ▶ f.p. simple groups (Simmons, 1973)
- ▶ f.p. residually finite groups
- **.** . . .

Word Problem for f.g. groups (II)

Theorem

The word problem is decidable for the following classes

- ▶ f.g. groups defined by a single relator (Magnus, 1932)
- ▶ f.p. simple groups (Simmons, 1973)
- ▶ f.p. residually finite groups
- **.** . . .

Proposition

The word problem for a f.g. group G is **recognizable** iff G is recursively presented.

Word Problem for f.g. groups (II)

Theorem

The word problem is decidable for the following classes

- f.g. groups defined by a single relator (Magnus, 1932)
- f.p. simple groups (Simmons, 1973)
- ▶ f.p. residually finite groups

Proposition

The word problem for a f.g. group G is **recognizable** iff G is recursively presented.

Theorem (Novikov, 1955 and Boone, 1958)

There exist f.p. groups with undecidable word problem.

Why? \approx Encode Turing machine inside the presentation of the group.

Word Problem and soficness of $X_{<1}$

Proposition

If G has undecidable Word Problem, then $X_{\leq 1}$ cannot be sofic.

Proof: Wait for Lecture 4

Ends of a group

Proposition

If G has undecidable Word Problem, then $X_{\leq 1}$ cannot be sofic.

Proof: Wait for Lecture 4

Questions

- ▶ Does there exists a f.g. group with decidable WP on which $X_{<1}$ is not sofic?
- \blacktriangleright $X_{\leq 1}$ is sofic on G iff G has decidable WP?

- Symbolic Dynamics on Finitely Generated Groups
 - Generalities
 - Aperiodicity
 - Emptyness Problem
- Word Problem
 - Definition
 - Word Problem and the one-or-less subshift
- 3 Free groups and Virtually free groups
 - Aperiodicity
 - Emptyness Problem
- 4 Ends of a group
 - Definition and examples
 - Number of ends and soficness

Free groups $F_S = \langle S | \emptyset \rangle$

A f.g. group G is **virtually free** if it has a free subgroup of finite index.

Examples:

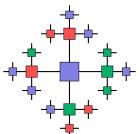
- ▶ The *twisted* free group $\langle a, b, c | bc = ca, ac = b^{-1}c \rangle$.
- ▶ Every semi-direct product $F \times N$ with F free and N finite.
- ▶ \mathbb{F}_2 is virtually \mathbb{F}_n for every $n \geq 2$.

Consider the free group $\mathbb{F}_2 = \langle a, b | \emptyset \rangle$.

Theorem (Piantadossi, 2006)

Every non empty \mathbb{F}_2 -SFT X contains a weakly periodic configuration.

Proof: Take a configuration $x \in X$.

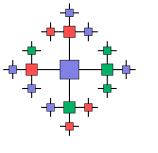


Consider the free group $\mathbb{F}_2 = \langle a, b | \emptyset \rangle$.

Theorem (Piantadossi, 2006)

Every non empty \mathbb{F}_2 -SFT X contains a weakly periodic configuration.

Proof: Take a configuration $x \in X$.

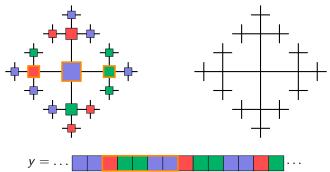


Consider the free group $\mathbb{F}_2 = \langle a, b | \emptyset \rangle$.

Theorem (Piantadossi, 2006)

Every non empty \mathbb{F}_2 -SFT X contains a weakly periodic configuration.

Proof: Take a configuration $x \in X$. Construct $x' \in X$ with period a^p .

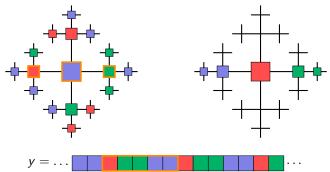


Consider the free group $\mathbb{F}_2 = \langle a, b | \emptyset \rangle$.

Theorem (Piantadossi, 2006)

Every non empty \mathbb{F}_2 -SFT X contains a weakly periodic configuration.

Proof: Take a configuration $x \in X$. Construct $x' \in X$ with period a^p .

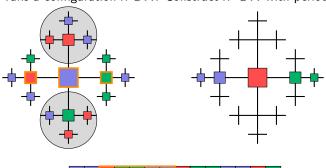


Consider the free group $\mathbb{F}_2 = \langle a, b | \emptyset \rangle$.

Theorem (Piantadossi, 2006)

Every non empty \mathbb{F}_2 -SFT X contains a weakly periodic configuration.

Proof: Take a configuration $x \in X$. Construct $x' \in X$ with period a^p .

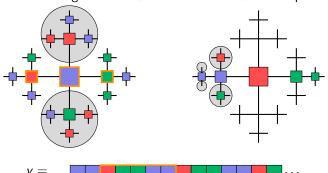


Consider the free group $\mathbb{F}_2 = \langle a, b | \emptyset \rangle$.

Theorem (Piantadossi, 2006)

Every non empty \mathbb{F}_2 -SFT X contains a weakly periodic configuration.

Proof: Take a configuration $x \in X$. Construct $x' \in X$ with period a^p .

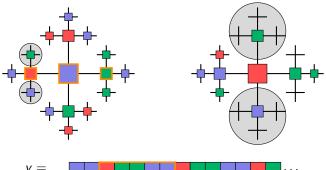


Consider the free group $\mathbb{F}_2 = \langle a, b | \emptyset \rangle$.

Theorem (Piantadossi, 2006)

Every non empty \mathbb{F}_2 -SFT X contains a weakly periodic configuration.

Proof: Take a configuration $x \in X$. Construct $x' \in X$ with period a^p .

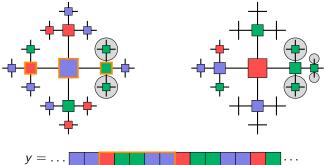


Consider the free group $\mathbb{F}_2 = \langle a, b | \emptyset \rangle$.

Theorem (Piantadossi, 2006)

Every non empty \mathbb{F}_2 -SFT X contains a weakly periodic configuration.

Proof: Take a configuration $x \in X$. Construct $x' \in X$ with period a^p .

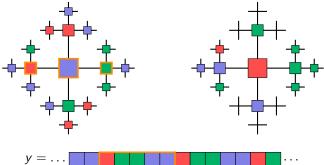


Consider the free group $\mathbb{F}_2 = \langle a, b | \emptyset \rangle$.

Theorem (Piantadossi, 2006)

Every non empty \mathbb{F}_2 -SFT X contains a weakly periodic configuration.

Proof: Take a configuration $x \in X$. Construct $x' \in X$ with period a^p .

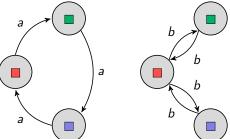


Symbolic Dynamics on f.g. groups

Theorem (Piantadossi, 2006)

There exists weakly aperiodic \mathbb{F}_2 -SFTs.

Proof: Consider the following \mathbb{F}_2 -SFT X.



There can be a period p for $x \in X$ only if $p = a^{3n}$ or $p = b^{2m}$ (but not both !).

Emptyness Problem on \mathbb{F}_2

Theorem

The Emptyness Problem is decidable on \mathbb{F}_2 .

Proof: Take a n.n. SFT X on \mathbb{F}_2 with alphabet A.

- Erase from A all symbols that cannot be extend to a locally admissible pattern of size 1.
- Iterate until you cannot erase symbol.
- Then $A \neq \emptyset$ iff $X \neq \emptyset$.

- Symbolic Dynamics on Finitely Generated Groups
 - Generalities
 - Aperiodicity
 - Emptyness Problem
- 2 Word Problem
 - Definition
 - Word Problem and the one-or-less subshift
- 3 Free groups and Virtually free groups
 - Aperiodicity
 - Emptyness Problem
- Ends of a group
 - Definition and examples
 - Number of ends and soficness

Definition

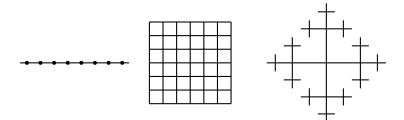
Symbolic Dynamics on f.g. groups

The **number of ends** of a f.g. group G is the limit

$$\lim_{n\to\infty} |CC(\Gamma_G \setminus B_n)|$$

Free groups and Virtually free groups

Remark: The number of ends does not depend on the choice of Γ_G .



Proposition

A f.g. group has 0,1,2 or infinitely many ends.

Stallings theorem and consequences

Let G be a f.g. group. Then

- ightharpoonup e(G) = 0 iff G is finite,
- ▶ if G is virtually free then $e(G) \ge 2$,
- e(G) = 2 iff G is virtually cyclic,
- ▶ if $e(G) = \infty$ then G contains a non-abelian free subgroup.

Number of ends and soficness

Groups with more than two ends can be disconnected by a finite set.

- ▶ In sofic subshifts, only a *finite amount of information* can go through this disconnecting set.
 - ⇒ use Communication Complexity to formalize this notion ? (see Emmanuel Jeandel's talk)
- ▶ Can be used to prove some subshifts with highly non-local conditions are not sofic on groups G with $e(G) \ge 2$. (see Sebastián Barbieri's poster)

- ▶ Sofic subshifts: information flow through the group.
- ▶ Computational resctriction: groups with decidable Word Problem.
- ▶ Free groups: *easy* case.

Tomorrow: more about Domino Problem on \mathbb{Z}^2 .

Thank you for your attention !!