Ma5201 Complejidad Computacional

09 de Agosto de 2013

Examen

Prof. Cátedra: M. Kiwi Prof. Auxiliar: P. Muñoz, D. Salas

TIEMPO: 4.5 HRS

PROBLEMA 1:

(i).- (2.0 pts) Sea Dense el conjunto de instancias $\langle G, m, n \rangle$ donde $m, n \in \mathbb{N}$ y G es un grafo que posee algún subgrafo H tal que $|E(H)| \ge m$ y $n \ge |V(H)|$. Pruebe que Dense es NP-completo.

(ii).- (2.0 pts) Sea Bombas el conjunto de instancias $\langle G, K, \ell, L \rangle$ donde G es un grafo, $\ell : E(G) \to \mathbb{N}$ es una función que indica el largo de cada arco de G, y $K, L \in \mathbb{N}$ son tales que existe un subconjunto S de nodos de G, $|S| \le K$, representando lugares donde instalar estaciones de bomberos, tal que para todo nodo V de G, representando lugares, exista un camino de largo a lo más L en G entre V y algún nodo perteneciente a S. Pruebe que Bombas es NP-completo.

Indicación: Bombas sigue siendo NP-completo, inclusive si se fija L = 1.

(iii).- Se dice que una claúsula C es de Horn si tiene a lo más un literal positivo, i.e. para algún $k \in \mathbb{N}$

$$C = \overline{x_1} \vee \overline{x_2} \vee \ldots \vee \overline{x_k} \vee y$$
, o $C = \overline{x_1} \vee \overline{x_2} \vee \ldots \vee \overline{x_k}$.

Sea HornSAT la familia de instancias $\langle \phi \rangle$ de SAT en que ϕ es una conjunción de claúsulas de Horn.

(iii.1).- (1.0 pts) Pruebe que $HornSAT \in P$.

<u>Indicación</u>: Observe primero que si todos las claúsuals de una instancia $\langle \phi \rangle$ de HornSAT tienen al menos dos literales, entonces ϕ se puede satisfacer.

(iii.2).- (1.0 pts) Pruebe que CircEval \leq_L HornSAT.

PROBLEMA 2:

(i).- (1.5 pts) Pruebe que si NP = coNP, entonces $P^{NP} = NP$.

(ii).- (1.5 pts) Sea D^P la clase de lenguajes L tales que existe $X \in NP$ e $Y \in coNP$ para los cuales $L = X \cap Y$. Pruebe que si $P^{NP} = NP \cup coNP$, entonces $D^P = NP \cup coNP$.

(iii).- Sea Iso el conjunto de instancias $\langle G_0, G_1 \rangle$ tales que G_0 y G_1 son grafos isomorfos. Considere el siguiente protocolo interactivo por medio del cual, en la entrada $\langle G_0, G_1 \rangle$, $V(G_0) = V(G_1) = [n]$, un probador P desea convencer a un verificador V que conoce una biyección $\pi \in S_n$ tal que $G_1 = \pi(G_0)$.

```
\begin{array}{ll} P: & \text{Elige } \sigma \in_R S_n \text{ y } b \in_R \{0,1\}. \text{ Calcula } H = \sigma(G_b). \\ P \to V: & H. \\ V: & b' \in_R \{0,1\}. \\ V \to P: & b'. \\ P: & \text{Calcula } \tau \text{ tal que } \tau = \sigma \text{ si } b = b', \, \tau = \sigma \circ \pi^{-1} \text{ si } b = 0 \text{ y } b' = 1, \, \text{y } \tau = \sigma \circ \pi \text{ si } b = 1 \text{ y } b' = 0. \\ P \to V: & \tau. \\ V: & \text{ACEPTA si y sólo si } H = \tau(G_{b'}). \end{array}
```

(iii.1).- (1.2 pts) Pruebe que

$$\langle G_0,G_1 \rangle \in \mathrm{Iso} \implies \mathbb{P}_{\sigma,b,b'}\left(\langle V \leftrightarrow P \rangle (\langle G_0,G_1 \rangle) = \mathrm{ACEPTA}\right) = 1,$$
 $\langle G_0,G_1 \rangle \not \in \mathrm{Iso} \implies \mathbb{P}_{\sigma,b,b'}\left(\langle V \leftrightarrow P \rangle (\langle G_0,G_1 \rangle) = \mathrm{ACEPTA}\right) \leq \frac{1}{2}, \; \mathrm{para} \; \mathrm{toda} \; \mathrm{estrategia} \; \mathrm{de} \; P,$

donde las probabilidades son sobre $b \in_R \{0,1\}$, $\sigma \in_R S_n$, y $b' \in_R \{0,1\}$.

(iii.2).- (1.8 pts) Sea (la variable aleatoria) VISTA $_V[(V \leftrightarrow P)(\langle G_0, G_1 \rangle)] = (H, b', \tau)$ donde la aleatoriedad esta dada por las opciones probabilistas de V y P. Sea un verificador "deshonesto" V^* que no necesariamente realiza la elección de b' como el protocolo establece. Sea $B(G_0, G_1, H)$ la elección de b' que hace V^* después de recibir H. Considere el siguiente algoritmo SIM:

```
input: G_0 y G_1 tales que V(G_0) = V(G_1) = [n].

1 Elegir \sigma \in_R S_n y b \in_R \{0,1\};

2 H \leftarrow \sigma(G_b);

3 b' \leftarrow B(G_0, G_1, H);

4 if b' = b then return((b', H, \sigma)) else Volver al Paso 1;
```

Probar que si $\langle G_0, G_1 \rangle \in$ Iso, entonces en tiempo esperado polinomial SIM, en la entrada $\langle G_0, G_1 \rangle$, genera una salida (H, b', σ) distribuida exactamente igual que VISTA $_{V^*}[(V^* \leftrightarrow P)(\langle G_0, G_1 \rangle)].^1$

 $^{^{1}}$ En palabras, se pide probar que si el verificador V^{*} se desvía del protocolo salvo por respetar el formato de los mensajes intercambiados, igual no obtiene información acerca de un isomorfismo entre G_{0} y G_{1} , pues un intercambio distribuido de la misma forma que el que obtiene V^{*} puede ser generado sin conocer tal isomorfismo.