Pauta Control 3

Prof. Cátedra: M. Kiwi Prof. Auxiliar: R. Bricenño

PROBLEMA 1:

- (i.1).- Para demostrar que DAPATH es NL-duro, basta usar el mismo argumento utilizado para demostrar que PATH es NL-duro pero considerando máquinas de Turing aumentadas con relojes.
- (i.2).- Definamos el lenguaje DACICL como la colección de $\langle G, s, t \rangle$ tales que G es un digrafo acíclico. Observar que DAPATH = PATH \cap DACICL. Sabemos que PATH está en NL y es fácil ver que NL es cerrado bajo intersección. Para obtener la conclusión deseada, basta entonces demostrar que DACICL está en NL. Pero NL = coNL, por lo que es suficiente probar que DACICL está en coNL. Consideremos la máquina de Turing fuera de línea,

```
M = \operatorname{En} \langle G, s, t \rangle, (1).- De manera no-determinista, adivinar universalmente, un nodo s \in V(G). (2).- Hacer v \leftarrow s. (3).- Para i \in \{1, \dots, |V(G)|\} (4).- De manera no-determinista, adivinar universalmente, un nodo v' \in V(G). (5).- Si vv' \notin E(G), entonces Rechazar. (6).- Si v' = s, entonces Rechazar. (7).- Hacer v \leftarrow v'. (8).- Aceptar.
```

Dado que M sólo requiere almacenar los valores de $s, v, v' \in V(G)$ e $i \in \{1, ..., |V(G)|\}$, se tiene que M ocupa $O(\log |V(G)|)$ espacio, i.e. M es una máquina de Turing tipo coNL.

Por otro lado, si G no es acíclico, entonces posee un ciclo de largo a lo más |V(G)|. En este caso, M hara una secuencia de adivinanzas de nodos partiendo con un nodo en el cíclo y recorriendo secuencialmente el ciclo hasta volver al nodo inicial, en cuyo instante M rechazará. Si G es acíclico, es fácil ver que M no rechazará en los pasos (5) y (6), por lo que eventualmente aceptará. Sigue que M reconoce DACICL, y por lo tanto DACICL \in coNL = NL como se quería demostrar.

- (ii).- Para establecer el resultado, veremos que CIRC-VAL log-espacio reduce a LP. Sea $\langle C, \vec{a} \rangle$ tal que C es un cicuito Booleano en n entradas y $\vec{a} = (a_1, \dots, a_n) \in \{0, 1\}^n$. Supongamos que V es el conjunto de puertas lógicas de C, que $V' = \{v'_1, \dots, v'_n\}$ es el conjunto de n entradas, y que $o \in V$ es la salida del circuito. Constuiremos una intancia de LP con variables x_v donde $v \in V \cup V'$. Las desigualdades a considerar son:
 - Para todo $i \in \{1, ..., n\}, x_{v'_i} = a_i$.
 - Para todo $v \in V$, $0 \le x_v \le 1$.

■ Para todo $v \in V$ puerta lógica de negación con u la puerta lógica que alimenta v,

$$x_v = 1 - x_u$$
.

■ Para todo $v \in V$ puerta lógica de conjunción con u_1, \ldots, u_{k_v} puertas lógicas que alimentan a v,

$$x_{u_j} \geq x_v$$
, para todo $i \in \{1, \dots, k_v\}$, $x_v \geq \left(\sum_{j=1}^{k_v} x_{u_j}\right) - (k_v - 1)$.

■ Para todo $v \in V$ puerta lógica de disyunción con u_1, \dots, u_{k_v} puertas lógicas que alimentan a v,

$$x_{v} \geq x_{u_{j}}, \quad \text{para todo } i \in \{1, \dots, k_{v}\},$$

$$x_{v} \leq \sum_{j=1}^{k_{v}} x_{u_{j}}.$$

Finalmente, consideramos la función lineal a optimizar como x_o . Resumiendo, a la instancia $\langle C, \vec{a} \rangle$ de CIRC-VAL le hemos asociado una mátriz A a coordenadas enteras y vectores b y c también a coordenadas enteras.

Afirmamos que $\langle C, \vec{a} \rangle \in \text{CIRC-VAL}$ si y solo si $\langle A, b, c, 1 \rangle \in \text{LP}$. En efecto, supongamos que $\langle C, \vec{a} \rangle \in \text{CIRC-VAL}$. Definimos $x_v \in \{0,1\}$ como el valor que toma la puerta lógica v de C cuando lo evaluamos en \vec{a} , y hacemos $x_{v_i'} = a_i$ para cada v_i' entrada de C. Es fácil ver que $x = (x_v)_{v \in V \cup V'}$ es tal que $Ax \leq b$ y $c^T x = x_o = 1$. Luego, $\langle A, b, c, 1 \rangle \in \text{LP}$. Por otro lado, si $\langle A, b, c, 1 \rangle \in \text{LP}$, sigue que existe $x = (x_v)_{v \in V \cup V'}$ que satisface $Ax \leq b$ y tal que $x_o \geq 1$. No es difícil verificar que el valor x_v corresponde al valor de verdad que toma la puerta v del circuito C evaluado en \vec{a} . Sigue que $C(\vec{a}) = x_o \geq 1$, es decir $\langle C, \vec{a} \rangle \in \text{CIRC-VAL}$.

La característica local de la reducción que le asocia $\langle A,b,c,1\rangle$ a $\langle C,\vec{a}\rangle$ permite que la reducción pueda ser calculada por una máquina a log-espacio. En resumen, $CIRCVAL \leq_L LP$ por lo que LP es NL-duro.

PROBLEMA 2:

(i).- Sean $C(\cdot,\cdot)$ y S_C como en el enunciado. Afirmamos que $VC(S_C) \le \ell$. Por contradicción, supongamos que existe un X de cardinal $\ell' > \ell$. Sigue que

$$2^{\ell'} = \left| 2^X \right| = \left| \left\{ S_{\alpha} \cap X \, : \, \alpha \in \{0,1\}^{\ell} \right\} \right| \leq 2^{\ell} \, ,$$

i.e. $\ell' \leq \ell$, contradicción. Esto concluye la demostración de la afirmación.

Sigue que $\omega = \langle C(\cdot, \cdot), k \rangle \in VC$ –DIM si y solo si

$$(k \le \ell) \land \left(\exists x_1, \dots, x_k \in \{0, 1\}^m, \forall I \subseteq \{1, \dots, k\}, \exists \alpha \in \{0, 1\}^\ell, (\forall i \in \{1, \dots, k\}, C(\alpha, x_i) = 1 \Leftrightarrow i \in I)\right). \tag{1}$$

Notar que dado $\omega = \langle C(\cdot, \cdot), k \rangle$ tal que $k \leq \ell$, la afirmación $\forall i \in \{1, \dots, k\}, C(\alpha, x_i) = 1 \Leftrightarrow i \in I$ puede ser decidida en tiempo polinomial en $|\omega|$ (dado que $\ell \leq |\omega|$ y que la evaluación de $C(\cdot, \cdot)$ puede ser realizada en tiempo polinomial en $|\omega|$). Sigue facilmente que el valor de verdad de la expresión en (1) puede ser decidida por una máquina de Turing alternante del tipo Σ_3^P .

(ii).- Bastará verificar que una asignación $\vec{a} = (a_1, \dots, a_n)$ elegida al azar uniformemente en $\{0, 1\}^n$ tiene una probabilidad positiva de satisfacer una fórmula Booleana φ con las características del enunciado. En efecto, sea $\varphi = \wedge_{i=1}^m C_i(x_1, \dots, x_n)$ donde cada C_i es un claúsula con $k_i \ge t \log_2 n$ literales distintos. Notar que por desigualdad de Boole,

$$\mathbb{P}_{\vec{a} \in_{R}\{0,1\}^{n}} (\varphi(a_{1},\ldots,a_{n}) = 0) = \mathbb{P}_{\vec{a} \in_{R}\{0,1\}^{n}} (\exists i \in \{1,\ldots,m\}, C_{i}(a_{1},\ldots,a_{n}) = 0)$$

$$\leq \sum_{i=1}^{m} \mathbb{P}_{\vec{a} \in_{R}\{0,1\}^{n}} (C_{i}(a_{1},\ldots,a_{n}) = 0) .$$

Pero, $C_i(a_1,...,a_n) = 0$ si y solo si cada uno de los literales que aparecen en la claúsula C_i evaluan a 0 en $(a_1,...,a_n)$. Esto ocurre con probabilidad a lo más $2^{-k_i} \le n^{-t}$ cuando $(a_1,...,a_n)$ está elegido al azar uniformemente en $\{0,1\}^n$. Como $m < n^t$, sigue que

$$\mathbb{P}_{\vec{a} \in_R \{0,1\}^n} \left(\varphi(a_1, \dots, a_n) = 0 \right) \le \frac{m}{n^t} < 1.$$

Luego, $\mathbb{P}_{\vec{a} \in \mathbb{R}^{\{0,1\}^n}}(\varphi(a_1,\ldots,a_n)=1) > 0$, i.e. existe $(a_1,\ldots,a_n) \in \{0,1\}^n$ tal que $\varphi(a_1,\ldots,a_n)=1$.

PROBLEMA 3:

(i).- Sea $L \in BPP$ decidido por una máquina de Turing probabilista R a tiempo polinomial $q(\cdot)$ tal que

$$\begin{split} & \omega \in L & \implies & \mathbb{P}_{\rho \in_{R}\{0,1\}^{q(|\omega|)}}\left(R(\omega,\rho) = 1\right) \geq \frac{2}{3}\,, \\ & \omega \not\in L & \implies & \mathbb{P}_{\rho \in_{R}\{0,1\}^{q(|\omega|)}}\left(R(\omega,\rho) = 1\right) \leq \frac{1}{3}\,. \end{split}$$

Sea M la maquina de Turing a tiempo polinomial $q'(\cdot)$ como la del enunciado cuya existencia está garantizada por la del generador de bits pseudo-aleatorio. Sea $\varepsilon > 0$ y c suficientemente grande tal que si $p(n) = (n+2)^c$ se tiene que $p(n^{\varepsilon}) \geq q(n)$ para todo $n \in \mathbb{N}$. Sin pérdida de generalidad podemos modificar R y asumir que usa exactamente $p(n^{\varepsilon})$ bits aleatorios en todas las entradas de largo n. Consideremos la siguiente máquina de Turing:

$$D = \operatorname{En} \omega,$$

$$(1).-\operatorname{Hacer} n \leftarrow |\omega|.$$

$$(2).-\operatorname{Hacer} cont \leftarrow 0.$$

$$(3).-\operatorname{For} \rho \in \{0,1\}^{n^{\varepsilon}}$$

$$(4).-\operatorname{Simular} M \text{ en } \langle p(\cdot), \rho \rangle \text{ y obtener } \widetilde{\rho} = G_{n^{\varepsilon}, p(\cdot)}(\rho).$$

$$(5).-\operatorname{Simular} R \text{ en } \omega \text{ utilizando } \widetilde{\rho} \text{ en vez de bits aleatorios.}$$

$$(6).-\operatorname{Si} R \text{ acepta, hacer } cont \leftarrow cont + 1.$$

$$(7).-\operatorname{Si} cont/2^{q(n)} > 1/2, \text{ entonces } Aceptar, \text{ de lo contrario } Rechazar.$$

Observar que *D* es a tiempo $O(2^{n^{\varepsilon}}(q'(n^{\varepsilon}) + q(n))) = O(2^{n^{\varepsilon}}).$

Veamos que D decide L. Por resultado visto, se tiene que existe una familia de circuitos Booleanos log-espacio uniforme $(C_n)_{n\in\mathbb{N}}$ tal que C_n actúa en $n+p(n^{\varepsilon})$ entradas y si $n=|\omega|$, entonces

$$R(\omega, \rho) = 1 \iff C_n(\omega, \rho) = 1$$
.

Además, existe un polinomio $q''(\cdot)$ tal que $|C_n| \le q''(\cdot)$. Sea n_0 suficientemente grande tal que para todo $n \ge n_0$ se tiene que $S(n) > \max\{q''(n), 6\}$ (notar que n_0 existe dado que $S(n) > n^{\omega(1)}$). Sigue que si ω es una instancia de L de largo $n > n_0$,

$$\begin{split} \left| \mathbb{P}_{\rho \in_{R} \{0,1\}^{n^{\varepsilon}}} \left(R(\omega, G_{n^{\varepsilon}, p(\cdot)}(\rho)) = 1 \right) - \mathbb{P}_{\rho'' \in_{R} \{0,1\}^{p(n^{\varepsilon})}} \left(R(\omega, \rho'') = 1 \right) \right| \\ &= \left| \mathbb{P}_{\rho \in_{R} \{0,1\}^{n^{\varepsilon}}} \left(C_{n}(\omega, G_{n^{\varepsilon}, p(\cdot)}(\rho)) = 1 \right) - \mathbb{P}_{\rho'' \in_{R} \{0,1\}^{p(n^{\varepsilon})}} \left(R(\omega, \rho'') = 1 \right) \right| \\ &\leq \left| \mathbb{P}_{\rho' \in_{R} \{0,1\}^{p(n^{\varepsilon})}} \left(C_{n}(\omega, \rho') = 1 \right) - \mathbb{P}_{\rho'' \in_{R} \{0,1\}^{p(n^{\varepsilon})}} \left(R(\omega, \rho'') = 1 \right) \right| + \frac{1}{S(n)} \\ &= \frac{1}{S(n)} \,. \end{split}$$

Como $S(n) \geq 6$, sigue que $P_{ac} = \mathbb{P}_{\rho \in_R \{0,1\}^{n^{\epsilon}}} \left(R(\omega, G_{n^{\epsilon}, p(\cdot)}(\rho)) = 1 \right)$ es mayor que 1/2 si $\omega \in L$, y menor que 1/2 si $\omega \notin L$. Pero en el paso (7), el valor $cont/2^{q(n)}$ que calcula la máquina de Turing D es justamente P_{ac} . Se concluye que D decide L. Sigue que para todo $\varepsilon > 0$, se tiene que $L \in DTIEMPO(2^{n^{\epsilon}})$, luego $L \in \cap_{\varepsilon > 0} DTIEMPO(2^{n^{\varepsilon}})$.

(ii).- Sean M y $G_{n,p(\cdot)}$ como en el enunciado. Fijamos el polinomio p(n)=2n y definimos $L_{p(\cdot)}=\cup_n G_{n,p(\cdot)}(\{0,1\}^n)$. Veremos que $L_{p(\cdot)}\in \operatorname{NP}\setminus \operatorname{P}$.

Para probar que $L_{p(\cdot)} \in NP$, consideremos la siguiente máquina de Turing no-determinista

 $N = \operatorname{En} \omega$,

(1).- Si $n = |\omega|$ es impar, entonces *Rechazar*.

(2).- De manera no-determinista adivina $\rho \in \{0,1\}^{n/2}$.

(3).- Simula M en la entrada $\langle p(\cdot), \rho \rangle$ y obtiene $\sigma = G_{n,p(\cdot)}(\rho)$.

(4).- Si $\sigma = \omega$, entonces *Aceptar*. En caso contrario, *Rechazar*.

Dado que M es a tiempo polinomial, sigue facilmente que N es a tiempo no-determinista polinomial. Observar además, que N acepta ω si y solo si existe $n=|\omega|/2\in\mathbb{N}$ y $\rho\in\{0,1\}^n$ tal que $\omega=G_{n,p(\cdot)}(\rho)$. Es decir, N acepta L. Resumiendo, $L_{p(\cdot)}\in NP$.

Para efectos de obtener una contradicción, supongamos ahora que $L_{p(\cdot)} \in P$. Por resultado visto, existe una familia de circuitos Booleanos log-espacio uniforme $(C_n)_{n\in\mathbb{N}}$ tal que para todo $\omega \in \{0,1\}^n$,

$$\omega \in L_{n(\cdot)} \iff C_n(\omega) = 1$$
.

Además, existe un polinomio $q(\cdot)$ tal que $|C_n| \leq q(n)$ cualquiera sea $n \in \mathbb{N}$.

Observar que

$$\mathbb{P}_{x \in_R \{0,1\}^n} \left(C(G_{n,p(\cdot)}(x)) = 1 \right) = 1.$$

Por otro lado,

$$\mathbb{P}_{y \in_{R}\{0,1\}^{2n}}\left(C(y)=1\right) = \mathbb{P}_{y \in_{R}\{0,1\}^{2n}}\left(y \in L_{p(\cdot)}\right) = \frac{\left|\left\{G_{n,p(\cdot)}(x) : x \in \{0,1\}^{n}\right\}\right|}{2^{2n}} \leq \frac{2^{n}}{2^{2n}} = \frac{1}{2^{n}}.$$

Sea $n \ge 1$ sufficientemente grande tal que $S(n) > \max\{2, q(n)\}$ (observar que n existe porque $S(n) > n^{\omega(1)}$). Sigue que,

$$\left| \mathbb{P}_{x \in_{R}\{0,1\}^{n}} \left(C(G_{n,p(\cdot)}(x)) = 1 \right) - \mathbb{P}_{y \in_{R}\{0,1\}^{p(n)}} \left(C(y) = 1 \right) \right| \ge 1 - \frac{1}{2^{n}} \ge \frac{1}{2} > \frac{1}{S(n)},$$

contradiciendo la existencia del generador de bits pseudo-aleatorio criptográficamente seguro.