Pauta Control 1

Prof. Cátedra: M. Kiwi Prof. Auxiliar: R. Bricenño

PROBLEMA 1:

(i.1).- Afirmamos que L no es regular. Notar que $L = \Omega \setminus L'$ donde $\Omega = 0^*1^*$ y $L' = \{0^n1^n : n \in \mathbb{N}\}$. Luego, $L' = \Omega \setminus L$. Como Ω está definido a través de una expresión regular, se tiene que es un lenguaje regular. Dado que los lenguajes regulares son cerrados bajo intersección y complementación, para concluir que L no es regular bastará verificar que L' no es regular. Por contradicción, supongamos que L' es regular y que p es su constante de bombeo. Sea $\omega = 0^p1^p$. Por Lema del Bombeo, existen $u, s, v \in \{0, 1\}^*$ tales que $\omega = usv$, $|us| \leq p$, $|s| \geq 1$, y $us^tv \in L'$ cualquiera sea $t \in \mathbb{N}$. Tomando t = 0, sigue que $uv \in L'$. Notar además que $u \in \{0\}^*$ y $us \in \{0\}^* \setminus \{\epsilon\}$. Luego, el número de ocurrencias del $uv \in U$.

(i.2).- Afirmamos que D es regular. En efecto, basta oberservar que una vez que ha ocurrido un 01 (respectivamente 10) no puede volver a ocurrir otro 01 (respectivamente 10) sin que ocurra un 10 (respectivamente 01). Luego, dada una palabra ω , la diferencia entre el número de ocurrencias de 01 y 10 en cualquier prefijo de ω puede ser de a lo más 1. Esta diferencia puede ser calculada por un autómata finito A como el que se muestra la Figura 1, con 3 estados para el caso en que la secuencia de entrada comienze en 0 y otros 3 para cuando comienza en 1. Si al terminar de procesar la entrada la diferencia es 0, entonces el autómata acepta. Es fácil verificar que $L_A = D$.

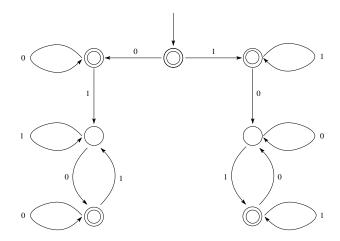


Figura 1: Diagrama de transiciones del autómata finito determinista A.

(ii.1).- Sea $\Sigma = \{a_1, a_2, \dots, a_k\}$. Construimos un autómata finito no-determinista $A = (\Sigma, Q, \delta, s, F)$ donde $Q = \{q_0, q_1, \dots, q_{k+1}\}$ y $F = \{q_0, q_{k+1}\}$. El estado q_i representa la situación en que el caracter α_i no ha

ocurrido entre los caracteres de la entrada leidos hasta el momento. El diagrama de transiciones de A se muestra en la Figura 2.

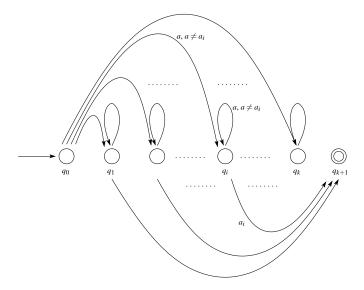


Figura 2: Diagrama de transiciones del autómata finito no-determinista A.

Afirmamos que $L_A = L$. En efecto, observar que cualquier sea ω tal que $|\omega| \le 1$ está tanto en L_A como en L. Supongamos que $\omega = \omega_1 \omega_2 \dots \omega_n \in L$, $|\omega| \ge 2$. Sea $\omega_n = a_j$. Por definición de L sigue que a_j no aparece en $\omega_1 \omega_2 \dots \omega_{n-1}$. Por definición de A, se tiene que $q_j \in \delta(q_0, \omega_1)$, $q_j \in \delta(q_j, \omega_2 \omega_3 \dots \omega_{n-1})$, y que $q_{k+1} \in \delta(q_j, \omega_n)$. Luego, $\omega \in L_A$. Hemos concluido que $L \subseteq L_A$. Supongamos ahora que $\omega \in L_A$ donde $|\omega| \ge 2$. Por definición de A, sabemos que A en la entrada ω debe alcanzar el estado q_{k+1} en el último paso. Para ello, en el pen-último paso el autómata debe estar en el estado q_{ω_n} . Por la forma en que fue construido A, esto es posible solo si ω_n no aparece en $\omega_1 \omega_2 \dots \omega_{n-1}$. Por definición de L, sigue que $\omega \in L$. Luego, $L_A \subseteq L$.

- (i.2).- Para efectos de obtener una contradicción, supongamos que A es un autómata finito determinista con menos de $2^{|\Sigma|+1}-1$ estados. Consideremos el conjunto Ω de palabras de la indicación. Como $|\Omega|=2^{|\Sigma|+1}-1$, deben existir dos palabras ω_0 y ω_1 que hacen que el autómata termine en el mismo estado (luego A acepta ambas palabras o las rechaza a las dos). Consideramos los siguientes casos:
 - Caso $\omega_0 = \varepsilon$ y $\omega_1 \neq \varepsilon$: Notar que $\omega_0 \sigma = \sigma$ hace que el autómta A acepte. Por otro lado, la entrada $\omega_1 \sigma$, donde σ es un caracter en ω_1 , debería hacer que el autómata A rechaze, contradicción.
 - Caso $\omega_0 \neq \epsilon$ y $\omega_1 = \epsilon$: Similar al caso anterior.
 - Caso $\omega_0 = \omega_a^S$ y $\omega_1 = \omega_b^{S'}$, donde $S \neq S'$ y $a, b \in \{0, 1\}$: Sea $\sigma \in S\Delta S'$. Observa que una de las secuencias $\omega_0 \sigma$ y $\omega_1 \sigma$ es aceptada y la otra rechazada, contradicción.
 - Caso $\omega_0 = \omega_0^S$ y $\omega_1 = \omega_1^S$: Se tiene que ω_1 debiese ser aceptada y ω_0 no.

PROBLEMA 2:

- (i.1).- Sean α y $\overline{\alpha}$ palabras fijas en B y \overline{B} respectivamente. Define $f(\omega) = \alpha$ si $\omega \in A$ y $f(\omega) = \overline{\alpha}$ si $\omega \notin A$. Claramente $\omega \in A$ si y solo si $f(\omega) \in B$. Ahora verifica que la función f la puede calcular una máquina de Turing. En efecto, sea M la máquina de Turing que decide A (observa que M existe dado que A es decidible). Construye la máquina de Turing T que en la entrada ω simula M en ω . Si M acepta, entonces la máquina de Turing T imprime $\overline{\alpha}$ en su cinta de salida. Si M rechaza, entonces la máquina de Turing T imprime $\overline{\alpha}$ en su cinta de salida. Es fácil ver que $f_T = f$.
- (i.2).- Usa la misma notación que en la parte anterior. Define ahora $g(\omega) = \alpha$ si $\omega \in A \setminus B$, $g(\omega) = \overline{\alpha}$ si $\omega \in B \setminus A$, y $g(\omega) = \omega$ si $\omega \notin A \Delta B$. Como $A \setminus B$ y $B \setminus A$ son decidibles, es fácil construir una máquina de Turing que calcule g. Ahora verifica que $\omega \in A$ si y solo si $f(\omega) \in B$. Para ello, primero observa que $\omega \in A$ si y solo si $\omega \in A \setminus B$ o $\omega \in A \cap B$, o equivalentemente $g(\omega) = \alpha \in B$ o $g(\omega) = \omega \in A \cap B \subseteq B$. En cualquier caso, se tiene que $g(\omega) \in B$. Ahora observa que si $g(\omega) \in B$, entonces $\omega \in A \setminus B$ o $\omega \in A \cap B$. En cualquier caso, se tiene que $\omega \in A$. Hemos concluido que $A \leq_m B$.
- (ii).- Supongamos que L es regular, entonces es aceptado por una autómata finito determinista A. Pero dicho autómata puede verse como una máquina de Turing que en cada paso mueve su cabeza lectora una celda a la derecha. En particular, como una máquina de Turing cuya cabeza lectora puede quedarse parada sobre una celda o moverse una celda a la derecha. Sigue que L puede ser reconocido por una máquina de Turing con las características descritas en el enunciado.

Supongamos ahora que M es un máquina de Turing del tipo descrita en el enunciado que reconoce L.

Ahora, vamos a construir un autómata con ε -transiciones A como sigue y veremos que este acepta L. El conjunto de estados de A es $Q \times (\Gamma \cup \{\#\})$ donde $\# \not\in \Gamma$. El estar en el estado (q,#) representa que M acaba de desplazar su cabeza lectora a la derecha. Estar en el estado (q,γ) , $\gamma \in \Gamma$, representa que M está en el estado q y que su cabeza lectora acaba de escribir γ en la celda sobre la que se encuentra quedandose sobre dicha celda. El estado inicial de A es $(s_M,\#)$. Sus estados de aceptación son $F_M \times (\Gamma \cup \{\#\})$. La función de transición de A esta dada por:

- Para $q \in Q$ y $\gamma \in \Gamma$, si $\delta_M(q,\gamma) = (q',\gamma',R)$ (es decir, si M lee el caracter γ , escribe γ' , y desplaza su cabeza lectora a la derecha), entonces $\delta_A((q,\#),\gamma) = (q',\#)$, y si $\delta_M(q,\gamma) = (q',\gamma',S)$ (es decir, si M lee el caracter γ , escribe γ' , y no desplaza su cabeza lectora), entonces $\delta_A((q,\#),\gamma) = (q',\gamma')$.
- Para $q \in Q$ y $\gamma \in \Gamma$, si $\delta_M(q,\gamma) = (q',\gamma',R)$ (es decir, si M lee el caracter γ , escribe γ' y desplaza su cabeza lectora a la derecha), entonces $\delta_A((q,\gamma),\epsilon) = (q',\#)$, y si $\delta_M(q,\gamma) = (q',\gamma',S)$ (es decir, si M lee el caracter γ , escribe γ' y no desplaza su cabeza lectora), entonces $\delta_A((q,\gamma),\epsilon) = (q',\gamma')$.

Es fácil verificar que M acepta ω si y solo si A acepta ω (inclusive se M no para en ω se tiene que A determina correctamente la pertenencia de ω en L). Luego, L es regular.

PROBLEMA 3:

(i).- Sea M un máquina de Turing que reconoce L. Sea S el conjunto de entradas en que M no se detiene. Para efectos de obtener una contradicción, supón que S es finito. Observa que S tiene que ser decidible. Sea D la máquina de Turing que decide D. Ahora construye la siguiente máquina de Turing:

 $T = \operatorname{En} \omega$,

- (1).- Simular D en ω . Si D acepta, entonces rechazar.
- (2).- Simular M en ω . Aceptar si M acepta y rechazar si M rechaza.

Como D siempre se detiene, y M siempre para en las entradas en que D acepta, se tiene que T siempre para. Verifica ahora que $L_T = L$. En efecto, si $\omega \in L$, entonces D rechaza ω en el paso (1) de la descripción de T. En el paso (2), la máquina M acepta ω . Luego, $\omega \in L_T$. Por otro lado, si $\omega \in L_T$, entonces se debe tener que M acepta ω en el paso (2) de la descripción de T, es decir $\omega \in L$. Se concluye que L es decidible, contradicción.

(ii).- Sea E un enumerador para L. Para $n \in \mathbb{N}$, sea ω_n la primera palabra de largo al menos n generada por E. Notar que ω_n existe pues en caso contrario se tiene que no hay en L ninguna palabra de largo al menos n, es decir L sería finito, contradicción. Sea $D = \{\omega_n : n \in \mathbb{N}\}$. Falta verificar que D es decidible. Sea M la máquina de Turing multi-cintas que en la entrada ω simula el enumerador E en una de sus cintas de trabajo. Si E imprime una palabra ω' entres dos #'s, la máquina M acepta si $\omega' = \omega$, y rechaza si $|\omega'| \ge |\omega|$ y $\omega \ne \omega'$, y continúa la simulación en caso contrario.

Claramente $L_M \subseteq L_E \subseteq L$. Además, afirmamos que $L_M = D$. En efecto, ω es aceptada por M si y solo si ω es la primera palabra de largo al menos $|\omega|$ que genera E. Equivalentement, $\omega \in L_M$ si y solo si $\omega \in D$.

Veamos ahora que M decide D. Dado que L es infinito, el enumerador E eventualmente genera una palabra ω' de largo al menos $|\omega|$ lo que hace que la máquina, después de realizar algunas comparaciones entre ω y ω' , se detenga, ya sea aceptando o rechazando Sigue que M se detiene cualquiera que sea su entrada.