Ma31a Elementos de Álgebra

06 de Octubre, 2007

Pauta Control 2

Prof. Cátedra: M. Kiwi Prof. Auxiliar: R. Cortez

Problema 1:

- (i).- Lo único que le falta a R para ser cuerpo es que todo elemento no nulo de R sea invertible. Como $R \setminus \{0\}$ es finito, entonces para todo $r \in R$, $r \neq 0$, existen $i, j \geq 1$ tales que $r^{i+j} = r^i$. Como R es dominio de integridad, r es cancelable, luego $r^j = 1$. Si $r \neq 1$, necesariamente se debe tener que j > 1 y por lo tanto $rr^{j-1} = r^{j-1}r = 1$, i.e. r es invertible.
- (ii).- Sea I un dip en R. Si $I = \{0\}$, entonces es obviamente un ideal principal. Supongamos entonces que existe $b \in I$, $b \neq 0$, minimal con respecto a d(b). Afirmamos que I = (b). En efecto, como $b \in I$, ciertamente que $(b) \subseteq I$. Supongamos que existe $a \in I \setminus (b)$. Notar en particular que b no es divisor de a. Como R es Euclideano, existen $t, r \in R$ tales que a = tb + r donde r = 0 o d(r) < d(b). Pero $r \neq 0$ pues en caso contrario tendríamos que b|a. Sigue, dado que a y b estan en I, que $r = a tb \in I$, contradiciendo la minimalidad de d(b).
- (iii).- Hay muchas maneras probar el isomorfismo, en particular exhibiendo un isomorfismo. Aquí seguiremos otro camino. Específicamente, demostraremos la isomorfia como una aplicación del Teorema del Factor para anillos. Sea $f:R\to R/(\beta)$ tal que $f(r)=[\alpha r]\in R/(\beta)$. Se verifica facilmente que f es un morfismo de anillos. Luego, por Teorema del Factor para anillos, $\mathrm{Im}\,(f)\cong R/\mathrm{Ker}\,(f)$ (isomorfismo de anillos). Claramente $\mathrm{Im}\,(f)=\alpha R/(\beta)$. Sea δ un máximo común divisor de α y β . Veamos entonces que $\mathrm{Ker}\,(f)=(\beta/\delta)$. En efecto, si $r\in\mathrm{Ker}\,(f)$, entonces existe $r'\in R$ tal que $\alpha r=\beta r'$. Sabemos que existen $s,t\in R$ tales que $s\alpha+t\beta=\delta$. Sigue que $r\delta=(sr'+tr)\beta$. Luego $r\in(\beta/\delta)$. Por otro lado, $f(\beta/\delta)=\beta(\alpha/\delta)\in(\beta)$, i.e. $\beta/\delta\in\mathrm{Ker}\,(f)$ y por lo tanto $(\beta/\delta)\subseteq\mathrm{Ker}\,(f)$.

Problema 2:

(i).- Sea M el módulo de torsión de V. Sabemos que $V \cong M \oplus L$ donde L es un módulo libre de rango finito. En particular, como V es un $\mathbb{F}[t]$ módulo, $L \cong (\mathbb{F}[t])^s$ para algún entero no–negativo s. Pero, V es un espacio vectorial sobre \mathbb{F} de dimensión finita,

mientras que $(\mathbb{F}[t])^s$ es un espacio vectorial sobre \mathbb{F} de dimensión infinita si $s \geq 1$. Sigue que la única posibilidad es que s = 0, i.e., $L \cong \{0\}$. Esto último es equivalente a decir que $V \cong M$, i.e., V es de torsión.

Por resultado visto, y como V es en particular $\mathbb{F}[t]$ -módulo de torsión finitamente generado (por ser de dimensión finita), sabemos que existen p_1, \ldots, p_r primos en $\mathbb{F}[t]$ (no necesariamente distintos) y enteros no-negativos e_1, \ldots, e_r tales que

$$V \cong \mathbb{F}[t]/(p_i^{e_i}) \oplus \ldots \oplus \mathbb{F}[t]/(p_r^{e_r})$$
.

(ii).- Sea φ el morfismo cuya existencia esta garantizada por la parte (i). Sea W_i la pre-imágen de $\mathbb{F}[t]/(p_i^{e_i})$ vía φ . Es fácil ver que W_i es un $\mathbb{F}[t]$ -módulo cíclico generado por $\varphi^{-1}(\widehat{x}_i)$ donde \widehat{x}_i denota el elemento de $\mathbb{F}[t]/(p_i^{e_i}) \oplus \ldots \oplus \mathbb{F}[t]/(p_r^{e_r})$ que se obtiene como la suma de $x_j \in \mathbb{F}[t]/(p_j^{e_j})$ donde x_j es igual a 1 si j = i y 0 en caso contrario.

Finalmente, dado que W_i es un $\mathbb{F}[t]$ -sub-módulo de V, sabemos que W_i es estable bajo T, i.e., $T(W_i) \subseteq W_i$.

(iii).- Sea $n_i = |\beta_i|$ y supongamos que $\beta_i = \{b_{i,j} : j = 1, \dots, n_i\}$.

Si $v \in V$, entonces existen $w_i \in W_i$ para i = 1, ..., r, tales que $v = w_1 + w_2 + ... + w_r$. Como V es un espacio vectorial sobre \mathbb{F} , se tiene que existen también $\alpha_{i,j}$'s en \mathbb{F} tales que $w_i = \sum_j \alpha_{i,j} b_{i,j}$ Sigue facilmente que β genera V.

Por otro lado, supongamos que $\sum_{i,j} \alpha_{i,j} b_{i,j} = 0$ donde los $\alpha_{i,j} \in \mathbb{F}$. Como V es suma directa de los W_i y $\sum_j \alpha_{i,j} b_{i,j} \in W_i$, sigue que $\sum_j \alpha_{i,j} b_{i,j} = 0$ para todo i. Como β_i es base de W_i , se concluye que $\alpha_{i,j} = 0$ para todo $i \in \{1, \ldots, r\}$ y $j \in \{1, \ldots, n_i\}$. Luego, β es una familia linealmente independiente en V. Esto concluye la demostración de que β es base V.

Como $T(W_i) \subseteq W_i$ se tiene que $T(b_{i,j})$ puede expresarse como combinación lineal de los elementos en β_i . Se concluye facilmente que $[T]_{\beta,\beta}$ es una matriz diagonal por bloques donde cada bloque tiene tamaño $n_i \times n_i$.

(iv).- Veamos primero que β es base. Como $\{(t-\alpha)^n : n \in \mathbb{N}\}$ es una base de $\mathbb{F}[t]$, sigue que $\beta_i = \{[(t-\alpha)^n]_I : n \in \{0, \dots, m-1\}\} = \{[(t-\alpha)^n : n \in \mathbb{N}\}$ genera $\mathbb{F}[t]/((t-\alpha)^m)$.

Falta establecer que β es una colección linealmente independiente. En efecto, sean $q_0, \ldots, q_{m-1} \in \mathbb{F}[t]$ tales que

$$0 = \sum_{i=0}^{m-1} q_i [(t-\alpha)^i]_I = [\sum_{i=0}^{m-1} q_i (t-\alpha)^i]_I.$$

Notar que sin pérdida de generalidad podemos asumir que el grado de $\sum_{i=0}^{m-1} q_i(t-\alpha)^i$ es estrictamente menor que m. Sigue que existe $q \in \mathbb{F}[t]$ tal que

$$\sum_{i=0}^{m-1} q_i(t-\alpha)^i = q(t-\alpha)^m.$$

El polinomio a la izquierda de la igualdad tiene grado menor que m. El que está a la derecha, tiene grado múltiplo de m. Luego, necesariamente que ambos son nulos, en particular $q_0 = \ldots = q_{m-1} = q = 0$. Esto concluye la demostración de independencia.

Sea entonces la transformación L como en el enunciado. Observemos que para todo i,

$$L\left((t-\alpha)^i\right) = \left[t(t-\alpha)^i\right]_I = \alpha \left[(t-\alpha)^i\right]_I + \left[(t-\alpha)^{i+1}\right]_I \,.$$

Luego, de la definición de matriz representante sigue inmediatamente que $[L]_{\beta,\beta}$ es un bloque de Jordan como el del enunciado.

(v).- En $\mathbb{C}[x]$ los polinomios irreducibles son los de grado 1. Luego, si V es un espacio vectorial sobre \mathbb{C} de dimensión n, se tiene que como $\mathbb{F}[t]$ -módulos

$$V \cong \mathbb{F}[t]/((x-\alpha_1)^{e_1}) \oplus \ldots \oplus \mathbb{F}[t]/((x-\alpha_r)^{e_r})$$
,

donde $e_1, \ldots, e_r \in \mathbb{N}$ y $e_1 + \ldots + e_r = n$. Sea φ el morfismo cuya existencia acabamos de establecer. Sea $\beta = \beta_1 \cup \ldots \cup \beta_r$ donde $\beta_i = \{[(t-\alpha_i)^j]_{I_i} : j = 0, \ldots, e_i - 1\}$ e $I_i = ((t-\alpha_i)^{e_i})$ para $i = 1, \ldots, r$. De la parte (iii) tenemos que β es base de $\mathbb{F}[t]/((x-\alpha_1)^{e_1}) \oplus \ldots \oplus \mathbb{F}[t]/((x-\alpha_r)^{e_r})$ y que $[\varphi^{-1} \circ L \circ \varphi]_{\beta,\beta}$ es una matriz diagonal por bloques de tamaños $e_i \times e_i$, $i = 1, \ldots, r$. De la parte (iv) sabemos que el i-ésimo de estos bloques es un bloque de Jordan, específicamente

$$\left(\begin{array}{cccc}
\alpha_i & & & \\
1 & \alpha_i & & & \\
& \ddots & \ddots & \\
& & 1 & \alpha_i
\end{array}\right).$$

El resultado deseado sigue del hecho que $[L]_{\beta',\beta'} = [\varphi^{-1} \circ L \circ \varphi]_{\beta,\beta}$ donde $\beta' = \varphi(\beta)$.