Ma3101 Elementos de Álgebra

13 de Septiembre, 2014

Control 1

Prof. Cátedra: M. Kiwi Prof. Auxiliar: B. Ruiz, A. Turkieltaub

TIEMPO 4.5 HRS.

PROBLEMA 1:

(i).- (1.5 pts) Pruebe que si G es grupo de orden 45, entonces G es abeliano.

(ii).- (2.5 pts) Determine (salvo isomorfismos) todos los grupos de orden 20.

<u>Indicación</u>: Puede usar sin demostrar que $D_{10} = D_5 \times \mathbb{Z}_2$.

(iii).- (2.0 pts) Asumiendo los resultados generales vistos en clases relativos a acciones de grupos sobre conjuntos, rehacer la demostración del siguiente resultado visto en clases:

Lema 1 (Fórmula de las Clases) Si G es un grupo finito, entonces

$$|G| = |Z(G)| + \sum_{\lambda \in \Lambda} [G : Z(x_{\lambda})],$$

donde $Z(x_{\lambda}) \subsetneq G$ para todo $\lambda \in \Lambda$ y $\{\operatorname{Conj}(x_{\lambda})\}_{\lambda \in \Lambda}$ es partición de $G \setminus Z(G)$, con $\operatorname{Conj}(x) = \{gxg^{-1} : g \in G\}$.

PROBLEMA 2: Un grupo finito H se dice soluble si existe $\{H_i\}_{i=1}^r \subseteq H$ que satisface: (1) $H = H_0 \triangleright H_1 \triangleright ... \triangleright H_r = \{1_G\}$, y (2) H_i/H_{i+1} es abeliano para todo $i \in \{0, ..., r-1\}$.

Se sabe (visto en auxiliar) que si $N \triangleleft G$, entonces G es soluble ssi G/N y N son solubles.

Pruebe que:

(i).- (1.0 pts) Un producto directo de grupos $G_1 \times G_2$ es soluble ssi G_1 y G_2 son solubles.

(ii).- (1.0 pts) Un grupo producto semidirecto $K \times_{\Phi} L$ es soluble ssi K y L son solubles.

(iii).- (2.0 pts) Si $K, L \triangleleft G$ son tales que G/K y G/L son solubles, entonces $G/(K \cap L)$ es soluble.

(iv).- (2.0 pts) Los siguientes grupos son solubles: S_3 , A_4 , D_n , todo p-grupo P finito (p primo).