Ma31a Elementos de Álgebra

10 de Noviembre, 2007

Control 3

Prof. Cátedra: M. Kiwi Prof. Auxiliar: R. Cortez

TIEMPO 5.0 HRS.

PROBLEMA 1: Sea $n \in \mathbb{N} \setminus \{0\}$. Sea $\mathcal{P}_n(\mathbb{F}_2)$ el conjunto de polinomios en $\mathbb{F}_2[x]$ de grado estrictamente menor que n. Observar (no lo pruebe) que $\mathcal{P}_n(\mathbb{F}_2)$ con la suma usual en $\mathbb{F}_2[x]$ y la multiplicación en $\mathbb{F}_2[x]$ módulo el polinomio $x^n - 1$ es un anillo conmutativo unitario. En lo que sigue, sea $\mathcal{C} \subseteq \mathcal{P}_n(\mathbb{F}_2)$, $\mathcal{C} \neq \{0\}$, un código cíclico, i.e. un ideal de $\mathcal{P}_n(\mathbb{F}_2)$.

- (i).- (2.0 pts) Pruebe que existe un único polinomio g generador de \mathcal{C} , es decir tal que $\mathcal{C} = (g(x))$.
- (ii).- (2.0 pts) Pruebe que el polinomio generador g de \mathcal{C} divide a $x^n 1$.
- (iii).- (2.0 pts) Exprese $x^3 1$ como producto de polinomios irreducibles en $\mathbb{F}_2[x]$ y concluya que hay 2 códigos cíclicos no triviales en $\mathcal{P}_3(\mathbb{F}_2)$. Para cada uno de estos dos códigos cíclicos haga una tabla donde cada fila corresponda a un polinomio p en el código y la i-ésima columna corresponda al coeficiente que acompaña x^i en p, donde $i \in \{0, 1, 2\}$.

Problema 2:

- (i).- (3.0 pts) Construya un cuerpo de característica 2 con 8 elementos (explicite su tabla de multiplicar).
- (ii).- Considere la extensión $\mathbb{Q}(u)$ de \mathbb{Q} generada por una raíz real u de $P(x)=x^3-6x^2+9x+3\in\mathbb{Q}[x].$
 - (ii.1).- (1.0 pts) Pruebe que u no puede ser racional, i.e. no puede tener la forma a/b con a y b primos relativos.
 - (ii.2).- (1.0 pts) Pruebe que P es irreducible en $\mathbb{Q}[x]$.

Indicación: No necesita determinar el valor de u de manera exacta.

(ii.3).- (1.0 pts) Exprese u^4 , $(u+1)^{-1} \in Q(u)$ como combinacion lineal de los elementos de la base $\{1, u, u^2\}$ de $\mathbb{Q}(u)$.

PROBLEMA 3:

(i).- (3.0 pts) Sean m y n primos relativos. Sea \mathbb{K} una extension de \mathbb{F} y $\alpha, \beta \in \mathbb{K}$ de grado algebráico m y n respectivamente. Pruebe que $[\mathbb{F}(\alpha, \beta) : \mathbb{F}] = m \cdot n$.

Indicación: Considere argumentos puramente dimensionales.

- (ii).- Sea $P \in \mathbb{F}[x]$ un polinomio irreducible de grado 6 y sea \mathbb{K} un extensión de \mathbb{F} tal que $[\mathbb{K}:\mathbb{F}]=2$.
 - (ii.1).- (1.5 pts) Suponga que existe $Q \in \mathbb{K}[x]$ irreducible de grado 2. Pruebe que existe una extensión \mathbb{L} de \mathbb{K} tal que $[\mathbb{L}:\mathbb{F}]=4$ y un $\alpha \in \mathbb{L}$ de grado algebráico 4 sobre \mathbb{F} .
 - (ii.2).- (1.5 pts) Pruebe que P es irreducible en $\mathbb{K}[x]$ o P es el producto de dos polinomios irreducibles en $\mathbb{K}[x]$ ambos de grado 3.