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Abstract—We study the measurement of the Internet according
to two graph parameters: treewidth and hyperbolicity. Both
tell how far from a tree a graph is. They are computed
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Second, graphs with low hyperbolicity offer more tractiail
enabling efficient algorithms for routing related problelike
compact routing, diameter estimation among others [5]—[8]

from snapshots of the Internet released by CAIDA, DIMES,
AQUALAB, UCLA, Rocketfuel and Strasbourg University, at the
AS or at the router level. On the one hand, the treewidth of the
Internet appears to be quite large and being far from a tree
with that respect, reflecting some high degree of connectivity.
This proves the existence of a well linked core in the Internet.
On the other hand, the hyperbolicity (as a graph parameter)
appears to be very low, reflecting a tree-like structure with
respect to distances. Additionally, we compute the treewidth and
hyperbolicity obtained for classical Internet models and compare
with the snapshots.

The tractability issues of Internet growth mainly concern
the AS-level routing. The global connectivity of the Intetn
is also mainly concerned with this graph: how many ASes a
cyber-attacker has to infect in order to significantly distect
the Internet?

The Internet can be seen either as a network of networks
(the AS-level Internet) or as a collection of networks. This
fact results in three types of graphs that are interestirty wi
respect to our parameter measures: the AS level graph where
each AS is viewed like a node and two different Ases are
connected if they interchange data traffic, the router Iguvabh
A. Motivation modeling the connections of all Internet routers and fintdiy

Understanding the structure of the Internet covers sevet@fluced graphs within an individual AS. These structures ar
aspects. One is to understand the building process of ﬂu\%t publicly available and represent and important re$earc
Internet, another is to design faithful models for simwafi field.

a third one is to measure its properties to better tune itsThe difficulty of obtain an accurate view of Internet graph
protocols. We are mostly concerned by this last point. oif well know and widely studied. We use existing different
approach was guided by finding properties that make Interrf@urces of data with varied techniques. Neverthelesegtest
tractable, but we are also interested in properties meggurff€ mainly based in the analyse of BGP routing tables or
how robust is the topology. Indeed, many graph problems ha¥@ceroute probes.

better algorithmic solutions when the input is a graph with This kind of snapshots are known to be incomplete and lack
some known properties rather than an arbitrary graph. Betgecuracy [12], [15]. However, this is the best data avadabl
knowing the Internet thus enables better algorithms. Wegocas far as we know. On the other side, our measures have
on two graph parameters known to bring tractability: treivi SOome robustness properties with respect to missing nodes an
and hyperbolicity. These two parameters measure how far i€@ges. More precisely, the treewidth of a graph is at least th
graph from a tree from the point of view of connectivity andreewidth of any of its subgraphs.

distances, respectively. The data comes from six different sources (detailed

The treewidth parameter is interesting for two reasonstFitn  Section 1), namely: CAIDA [9], DIMES [10],

a low treewidth is known to enable linear algorithms for marfQUALAB [11], UCLA (Internet Topology Collection) [12],
NP-hard problems [1]. Second it is a measure of connectivifgocketfuel project [13] and Strasbourg University (MRINFO
The treewidth of a graph is related to the number of nod&soject) [14].

required to significantly reduce the connectivity of thepra

as described later on. For example, a tree (which always H&as Contribution

reewidth | n n isconn removin . L . .
treewidth equal to one) can be disconnected by remo gOur first conclusion is that the treewidth of the Internet is

Eoﬁlnneg(lﬁvi?)?de A higher treewidth is the sign of a bemahrigh: all the snapshots have a treewidth comparable to that

- . f a square grid with same number of nodes (a grid is a
On the other hand, the hyperbolicity parameter is related gPassicaI example of sparse graph with high treewidth)nfro

dlstances_. a graph is close to a tree .'f routes betv_veen qer.t'?hat point of view, Internet is far from a tree: it is much leett
behave like in a tree. The reason is twofold. First, similar

onnected. This result gives an estimation of the conrigctiv

f the Internet: there exists a core that cannot be broken in
*INRIA Project-Team “GANG” joint with Université Paris Didet and two parts by removing less thm/2 ASes Wher&w is the

CNRS. treewidth (see Theorem 1). This result holds independeritly

I. INTRODUCTION

properties have already been observed on the Internet4{]2]—[g



the accuracy of the measure of the graph: discovering moreGromov’s notion ofhyperbolicityis defined as a four point
nodes or links can only increase. condition and applies to graphs as well. Up to our knowledge,

Our second conclusion is that the hyperbolicity of ththis notion of hyperbolicity has not yet been measured on the
Internet is low, confirming previous results [2]-[4]. Corsely Internet. Narayan and Saniee study an alternative definitio
to this previous work, the hyperbolicity definition we useelying on é-thin triangles [4] and measure it on Rocketfuel
has algorithmic applications [5]-[7] such as enabling caotp data [13]. We obtain similar results based on Gromov’s orig-
routing with small additive stretch [8]. From that point aéw, inal definition.

Internet is close to a tree and far from a grid. The discovery ofheavy tailin the degree distribution has
Additionally, we observe an important churn at the AS$aised the question of designing adequate models for tee- Int
level. This can explain why the set of observed IP addressest. A first goal for modeling is to understand the emergence

increases with time in previous work [16]. of such heavy tail distributions. Preferential attachmeas
Finally, we compare these measurements with classigabposed by Barabasi and R. Albert [29] for explaining the

Internet models based on various type of random graph geveb graph structure, or social networks. Concerning therint

eration. These graphs present a slightly higher treewidth anet, a possible explanation concerns the optimizationaofetr

similar hyperbolicity. The closest models are those oleighinoffs [30]. Another reason for modeling is to generate large

from random generation with appropriate degree distrilouti network with similar properties as the Internet for simigat

Surprisingly, the structure of Internet seems to be faielyre- purposes. In that trend, generating a random graph with an

sented by such a model. This fact was already observed [1&ppropriate degree distribution surprisingly appearsttevéil

The fit is particularly true for hyperbolicity. This somehowwith regard to structural properties [17]. Our work givesaal

contradicts a possible interpretation of previous work—[2]credit to that point.

[4] stating that low hyperbolicity is a intrinsic propertyf o

the Internet. It happens to be a usual property among grapfrs Roadmap

with similar degree distribution. On the other hand, random Section Il describes the snapshots of the Internet we have

graphs appear to have slightly higher treewidth and thugbetused for our measurements and makes a comparison of the AS

connectivity than the Internet. Yet the connectivity of thenapshots over time. Section Ill gives the treewidth dédinit

Internet is not so far from that of a random graph. and its relationship with connectivity. Upper and lower bdsi
of the treewidth of the snapshots are given. Section IV intro
C. Related Work duces the hyperbolicity definition and describes the befnavi

Internet Topologywas studied by Pansiot and Grad [18bf the snapshots. Section V compares these results to what we
at the router level and Govindan and Reddy [19] at the A&btain for classical graph models.
level. Numerous work has focused on the degree distribution
observed at both levels. They are heavy tailed and can be
modeled with power laws [20] or Weibull distributions [13], Real Internet topology is unknown. Different techniques
[21], [22]. have been developed in order to obtain realistic snapshots.

Broido and claffy study theconnectivityof Internet [21]. the aim of bypassing the several deficiencies of data callect
More specifically they inspect how the giant strongly conwe use heterogeneous data sources with diverse inference
nected component behaves with regard to node removal. Tthehniques. For each data source we use snapshots collected
treewidth is a theoretical parameter for measuring suchaglo at different times to capture the graph dynamic.
connectivity. There exits different levels of granularity for Interneirsf,

The treewidth parameter was introduced by Robertson arttie router level corresponds to IP interconnection between
Seymour. [23]. It is related to tractability: many NP-coetel routers. Second, thAS levelcorresponds to the interconnec-
problems can be solved in linear time via dynamic progrartions between ASes (such links can be observed at the BGP
ming for any class of graphs with bounded treewidth [1]. routing level or at IP level). Finally, we look at the inner

A large literature concerns the understandinglmernet topology (at router level) of certain ASes.
delay spaceEmbedding Internet delay space in an Euclidean Data sets combine passive and active measurement tech-
space allows to build virtual coordinate systems [24], [25hiques. BGP data collected passively (by dumping BGP
It has also been noted that embedding in an hyperbolic spaoating tables at some routers) or actively through looking
rather than an euclidean space could give better resultblj2] glasses is a main source of inter AS connectivity. For router
perbolicity can generally be measured on a metric or a gralgvel, tracerouteis the widely used tool to discover router
according to the definition of Gromov [26]. Ramasubramanianterconnections. Traceroute discover IP paths followgd b
et al. show that a relaxed version of this definition callegrobe packets sent from monitot routers to a list of destinat
the four point condition matches Internet delays [3]. Thi8dditionally, the IP interconnections between two IP addes
property can be used for predicting Internet delays thraugh can be used to infer an AS interconnection between the ASes
embedding in a tree. Other notions of dimension have beeho advertise IP prefixes. Internet snapshots used in this
tested on Internet delays such as fractal dimension [27] work come from the sources of data described below. The
doubling dimension [28]. Table | shows, for each graph, its size, average degreeizthe s

II. DATA SETS



Graphs parameters Largest bi-connected component
V] Avg. Degree B V] Avg. Degree B
AQUALAB 12/2007-09/2008| 31847 9.00 2.18 25341 10.80 2.18
AS graphs| CAIDA 12/2010 29797 5.31 2.16 17559 7.49 2.16
DIMES 12/2010 29542 6.84 2.12 21296 8.72 2.12
UCLA 12/2010 37450 6.65 2.14 25271 8.73 2.14
CAIDA router  04/2003 192,244 6.36 (2.93) | 132,367 8.17 (2.96)
router graphs| CAIDA router 07/2010 3,360,982 2.93 2.27 | 1,644,761 3.84 2.18
mrinfo 09/2008 8,636 2.72 3.26 1705 3.60 3.71
1221 Telstra (2669) Australia 2.38 2.45 246 6.07 2.46
1239 Sprintlink (US) 7337 2.70 2.37 1054 6.70 2.77
1755 Ebone (Europe) 295 3.68 2.86 178 4.76 3.24
2914 Verio (US) 4670 3.26 2.59 1644 5.54 2.76
routers within AS #| 3257 Tiscali (Europe) 411 3.18 2.77 166 4.81 2.97
3356 Level3 (US) 1620 8.32 2.39 729 16.03 2.43
3967 Exodus (US) 375 4.53 2.85 254 5.33 3.22
4755 VSNL (India) 41 3.32 2.29 22 391 2.33
7018 AT&T (US) 9430 2.48 2,65 1199 5.54 2.89

TABLE I: Basic statistics of snapshots.

of largest bi-connected component (the graph part sufficidny sending IGMPASK_NEI GHBORS messages, which are
for computing treewidth and-hyperbolicity, see below), and replied with the list of interfaces of a router. This method
the exponeng of a regression of the degree distribution on discovers all interfaces of replying hosts and avoids alias
power law. This exponent is obtained via a linear regression resolution process. However, replies are obtain only ifesu
the complementary cumulative distribution function of deg with IPv4 multicast enabled which reduce the set of probed
distribution. nodes. For details see [14].

A. AS graphs e CAIDA also providesRouter levelgraphs from the

Internet topology data Kit Two snapshots are analyzed here,
Vertex-set is the AS-set and edges are inter-AS links. We Uggade in April 2003 and July 2010 respectively.

e CAIDA, the Cooperative Association for Internet Data .
Analysis. Its infrastructure consists in about twenty marsi C. Comparison of AS level snapshots

that daily collect traceroute probes to destination in full Asillustrated by Figure 1(a), the size of the AS level graph
routed address space subdivided into /24’s. Alelevel data sjowly increases over time. Each point corresponds to tke da
set [9], periodically constructed from probes and IP to Agollected during one month. The DIMES curve seems more
mapping, gives us snapshots. erratic, this may come from changes in the monitor set used.

e AQUALAB [11] uses peer-to-peer clients to collect To see the influence of the aggregation window, we plot
traceroute paths which are use to infer AS interconnectiong Figure 1(b) the number of ASe§V|) and links (E|)
Probes were made between December 2007 and Septengdfiected between January 1st 2010 and the end of each month
2008 from approximate 992,000 P2P user IPs placed in 3,7§0that year. The size of the aggregated AS graph increases
ASes. surprisingly denoting a high churn of reconnection at the AS

e DIMES [10] project performs traceroute from ajevel. A similar linear increase was already noticed at the |
volunteer community of about 1000 agents. A weekly Afevel [16] where new IP addresses are continuously diseaver
shapshot is available. when probing the same destination set from the same monitor

o UCLA (Internet Topology Collectiof [31] collects inter ith traceroute-like measurements. The churn we obseme he
AS links by combining different BGP sources both passivgt AS level provides an explanation for this : as connections
(Route Views, RIPE-RIS, Abilene, CERNET BGP View) anthetween ASes change, new routers become exposed in the
active (Packet Clearing House, UCR, traceroute.org, Royt® probes. A possible explanation for this AS churn is that

Server Wiki). BGP routing policies are frequently updated (at the pace of
commercial interactions).
B. router graphs From now on, we use snapshots aggregated over one month

. . except for AQUALAB for which we only have a snapshot
The vertex-set is a set of routers and edges are their kno%bregated over 10 months

links at the IP level. We use data from:
¢ Rocketfuel project [13], user acer out e tool. Probes [1l. TREEWIDTH
are made from public servers and alias resololution is P&l Definition
formed from BGP tables. - )
 MRINFO project from Strasbourg University. Using A tree decompositionf G = (V, E) consists of a tre&’ (on
mri nf 0, an IGMP multicast tool, the topology is discovered different node set tha@), and a subset; C V' associated
with each node of T' (called a “bag”.) The tred” and the
http:/firl.cs.ucla.edu/topology/
2http://svnet.u-strasbg.fr/mrinfo/index.html Shttp://www.caida.org/data/active/internet-topolodagta- kit/
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Computing the treewidth of a graph is NP-hard [32]. How-

U 1 ever there exists heuristics for computing lower and upper
1 bounds of the treewidti. We used them on our data: the

results are given below. The treewidth of a graph is the
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B. Treewidth of the AS Graphs (snapshots)

We have computed treewidth lower bounds for the Internet
snapshots we have of the inter-AS links (tR& graph.
Figure 2 plot the lower bound computed for each December
shapshot (except in 2011 where the February snapshot i used
; We have two special graphs: INTER is the links that appear in
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2o | EIYCER 2 ] all sources and UNION the links that appearsiomesource

150000 |VIOCLA o ] (at a given date, any AS graph is thus a supergraph of INTER
e and a subgraph of UNION). As seen in Table I, UCLA has

T S more ASes and so without surprise has higher treewidth. Most

oo e R 1 notably, we see that the treewidth increases over time weate

20000 | * 1 source we consider (UCLA, DIMES or CAIDA). This may be

00000 |- | explained by the fact that the AS graph itself increases as

shown by Figure 1(a).
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Fig. 1: Size evolution of AS snapshots in 2010.

tw Lower Bound

120 | X

collection of bag{V; | t € T'} must satisfy the following three ;| - 7/77 |

properties: ] /

e Every node ofG belongs to at least one bag of

e For every edge of G, there is some baly; containing sor 2 o . s ¢
both ends of. 10 ‘ ? ‘ ‘
. .. . 2004 2005 2006 2007 2008 2009 2010 2011
e The collection of bags containing a given node @f ) ] )
induces a connected subtreeof Fig. 2: Treewidth of the AS graph over time.

The width of the tree decompositiof¥’, {V;}) is defined to be

one less than the maXif"“m size_of a bag:_Mfz]tk{V?}) ~ _ C. Treewidth of the AS Graphs (long time measurement)
max; |V;| — 1. Thetreewidth of G is the minimum width of

a tree decomposition off (taken over all possibles trees). AS links change over time and some data, especially from

A connected graph has treewidth 1 if and only if it is 4&'QUALAB, are aggregate of a long period of measurement.

tree. A tree decomposition off naturally induces a tree !N Order to show how different snapshots are from long-

decomposition of any subgrapH of G. This implies that period aggregations, we compgted, for each month of 2010,

treewidthi H) < treewidti{G). In particular, any lower bound the number of ASeg|V/|) and of links (E]) collected between

on the treewidth of a subgraph 6f is also valid forG. January 1st and the end of that month, and the corresponding
Sparse graphsn(vertices butO(n) edges) may have atreewidth (Figure 3). The number of discovered edges seems

treewidth either low (it is 1 for a tree) or high (a square gri&O linearly increase (but the ”F‘mbef of .actually used edges
has treewidthy/7). evolves more slowly) so treewidth also increases. Theeefor

Note that the removal of all vertices from the same internil thi previous sr:ectlon we us%? aggregatlo.nhof at most one
bag of T' disconnects the grapty. Efficient algorithms use month on time whenever possible (ie, nOt.W't AQUALAB)'
this property by removing a bag and working recursively on Table Il shows the lower bound of treewidth for the various
the remaining connected components. The treewidth can asfg@pshots gathered. We compare with the square root of the
be seen as a measure of global connectivity in the graphye ,se software from Bodlaender team available at
(see llI-E). http:/Avww.treewidth.com/



200 [ ; ; ; ; ; ; ; ; : Graph Ib<tw<ub | Grid
DIMES router level 03/2004 372 - 363
zor P 1 mrinfo (router) 09/2008| 11 48 41
200 | it g 1221 Telstra (Austr.) 9 10 15
I 1239 Sprintlink (US) 29 55 32
wor 1 1755 Ebone (Europe) | 7 8 13
wl 7 i 2914 Verio (US) 24 35 40
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oy 3356 Level3 (US) 54 137 11
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100 - T 1 7018 AT&T (US) 18 26 34
80 // 4 380 T T —f T —
60 i A
40 L . . 360 -
0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Fig. 3: Evolution of treewidth for different aggregations: - 3
y = treewidth(links known from January 1st to Month) £ W e
. 40 |
o . o iy it
number of vertices, ie the treewidth of a grid with the same ol " ot o 2T
number of vertices. The two figures appear to have compa- _. -
rable value. The ratigreewidth(G)/+/n especially remains NS ‘ ‘ . ‘
a constant (about 1) for each data source independently from ° * o * *
time.

Fig. 4: Treewidth bounds for router graphs. Bottom, plothwit

comparison to /n

Graph tw | \/|V] P n
AQUALAB  12/2007-09/2008| 236 178
CAIDA 12/2010 113 162
DIMES 12/2010 135 156 P
UCLA 1212010 7 177 E. Conclusion: a Core of the Network
UNION 12/2010 195 179 . .
INTERS. 12/2010 63 146 The treewidth parameter captures how well the graph is

globally connected in the following sense. It is linked to
the number of nodes required to significantly reduce the
connectivity of G. More precisely, a subsef of nodes in
G is k-linked if for any subsetX with fewer thank nodes,
D. Treewidth of the Router Graphs some connected component@f— X contains more than half

f the nodes ofS. In other words, the removal of less than

Figure 4 shows treewidth bognds for router Ievellgraphs. Vzenodes cannot drastically disconnett The linkedness of a
compute the values for both, inner ASes topologies (Rocket-

f ; . aph is the maximunk such that there exists falinked set.

uel data) and complete router views (MRINFO Project a _ i

CAIDA). The table compares the bounds with the treewidth 1€ SEtS can be seen as a core in the network which cannot

of a grid with the same number of nodes (a gridrohodes be globally disconnected by the removal of.fewerthem)des:

has treewidth,/7 . Notice that X-axis is,/7). more than _half of the core always remains connected. The
Almost all our snapshots appear to have a treewidth Whignkedness IS @ measure of fgult tolerance of the core. Both

is close to the treewidth of a square grid with same numb@{;\rameters are linked according to the following theorem.

of nodes as shown by Figure 4. This proves a high degréf€orem 1{33] For any grapht, _

of connectivity of Internet. A noticeable exception is Adinkednes§G) < treewidth(G) + 1 < 2linkednes$().

3356 (Level3), which appears to have a very high treewidth. We have chosen to estimate the treewidth rather than the

This certainly comes from virtual circuits enabled throughnkedness because there exists efficient heuristics fanto

Multiprotocol Label Switching (MPLS), a technology in whic ing the former. Another reason is that our lower bounds of the

this AS is a leader. Another exception is the MRINF@reewidth of our snapshots hold for the Internet as long as ou

snapshot which appears to have a lower treewidth than @ieapshots are subgraphs of it.

other snapshots. This certainly comes from the sparsity ofLower bounds on the on the linkedness of our snapshots can

this graph. This can be explained by the fact that we kebe deduced for the table of Figure 4 (divide by 2 the lower

in this graph only nodes responding IGMP queries and onbpund of treewidth ans add one). For example, the linkedness

edges between these nodes. It happens that few neighborsfdhie AS snapshot of UCLA (2011) is at least 86. This means

a responding node do respond to IGMP queries. Althoughat there exists a core of ASes that globally remains cdedec

snapshots represent induced subgraph of the Internet i@ roeven under the failure of 85 ASes or less. This gives a measure

level graph, treewidth observed is still reasonably high.  of the fault tolerance of the Internet.

TABLE II: Treewidth lower bound for AS graphs.



IV. HYPERBOLICITY n x m-grid has both treewidth angthyperbolicity min(n, m)
A. Definition and is far from a tree in both measures.
S . . It follows from its definition thatsé-hyperbolicity can be
Mikhail Gromov introduced and developed hyperbolic mputed in polynomial time. But the(n?) naive imple-

groups in the 1980’s. In a seminal paper from 1987 [2 S - .

. . o entation is slow and we use heuristics to obtain faster (and
he proposed a wide-ranging research program. Aiming g)Eact) computation
studying groups through their Cayley graph, he defined P )

= . ; Many problems can be solved efficiently férhyperbolic
_hyperbohmty. This notion may however be used apart frorgraphs (classes of boundé&dhyperbolicity). Let us cite fast di-
its group theory context.

ameter and center heuristics approximation (using two BFSs

L ‘ ‘ - and small stretch spanning tree computation [5]. Covering b
T CAIDA - balls and k-center, two NP-complete problems for general
il : w2 graphs, are addressed in [6]. A compact distance labeling

0.01 |

(enabling to compute the distance between two nodes as a
function of their labels) is given in [7]. Finally small-stch
additive spanners and compact routing computation areettea

in [8].
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Fig. 5: Distribution of the value of the hyperbolicity
§(xz,y, z,t) of quadruplets for the AS graphs (Top: 10-month
aggregation. bottom: 2010/12 month snapshot)

Avg Hyperbolicity
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Let x,y, z,t be four vertices. Letd;, do and ds; be the - =
three sumslist(x, y) + dist(z,t), dist(x, z) + dist(y,t) and °s 1z s 4 5 & 1 s s
dist(z,t) + dist(y, z) non-ircllcgasingly sortedl, > dy > d3.  Fig. 6: Average hyperbolicity of a quadruplet with respext t
Then defined(z, y, 2,t) = “5%. The hyperbolicity (or 6-  the minimum distancel; in the quadrupletds is defined in

hyperbolicity) of a graplG, denoted(G) or justs when not - section 1) Top: AS graphs. Bottom: router graphs.
ambiguous, isnax, , - tev () (2, ¥, 2, 1).

Like treewidth, 5-hyperbolicity indeed measures how far & Results
graph is from a tree. Trees has hyperbolicity equal to zeroWe measuredd-hyperbolicity on various data. The-
and conversely any graph with hyperbolicity equal to zerdwyperbolicity of a graph is maximum over biconnected com-
can be isometrically embedded into a tree. Chordal grapimnents ob-hyperbolicity so we also worked only on the giant
which have a tree-like structure, has hyperbolicity eqo@rte. biconnected component to increase computation speed.
However, there is no relationship between the treewidth andWhile classical definition involves only giving thmaximum
hyperbolicity distance-to-tree measures. For instancera-c hyperbolicity over all quadruplets, we found that ttistri-
plete graph has large treewidth but is O-hyperbolic. Caelgr bution also is interesting, since it appears to exponentially
an-cycle isn/4 -hyperbolic but has treewidth equal to two. Adecrease with) and maximum can be deduced easily (see
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Figure 5). One can observe that, for almost all quadru- — ‘ ‘ ‘ AS Defgee Dist ——
plets (z,y, z,t), we haved(z,y,z,t) < 1. Notice that if il

d(z,y, z,t) = 0 the shortest routes between these four points
can be mapped on a tree. The ASes from Rocketfuel have all  °r
a similar behavior.

The distribution of hyperbolicity of the quadruplets sedms
be relatively independent from the minimum distance betwee
two points of the quadruplet for most of the snapshots studie
(Figure 6), while in a grid it linearly depends from that
distance. This is however consistent with a tree-like dista 1o06 |

While observed maximum-hyperbolicity is never more
than 2 for other graphs, MRINFO data behave very differently ~ *”, 05 1 s 2 25
0.8% of quaduplets havé = 2.5 and the maximum of the ‘ i B
graph isd = 5. This imply the existence of longsometric el Babarast |
cycles[5] but we can not explain why. R |

The conclusion is then that the distances (in hop count)
between any four vertices (routers or ASes) in the Internet
is, on average, like in a tree, exactly or with and additive
error of 1. Furthermore, as hyperbolicity is low, for any ifou
vertices, their distances are always like in a tree with allsma
error. This allows efficient routing schemes to be used [8].
Krioukov et al. [34], [35] already noticed it was possible
in the Internet, thanks to its scale-free structure (degree
and distances distribution), using a modified Thorup-Zwick ‘ ‘ ‘ ‘
scheme. ’ ' ’ I ? ’ '

Power-Law ---%---
Erdos-Renyi & |
AS
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b

Fig. 8: Internet models. Top: percentage of quadruplets having a
given hyperbolicity. Bottom: mean hyperbolicity of a quadruplet with
We compare our results with various generated graphsspect to the minimum distance between vertices in the quadruplet.

aiming at modeling the AS graphs. They have the same
number of nodes than the largest bi-connected component of
the CAIDA AS graph. They are:

e An Erdds-Rényi (ER) random graph with same average
degree (6.3) than CAIDA AS graph.

e A random graph whose degree distribution follows

V. INTERNET MODELS

Our conclusion meets Tangmunarunkit et al. work [17].
om both tree-likeness measurements point of view, the sim
gler (random) “degree based” generators produce even more
X . ccurate simulation than the more sophisticated “strattur
p?;/vir (Ii?v(\:la\rl1w£)he thgng?;?: d ixspi)r?ne[gg]t)hat in the CAIDA ASJgenerators like Barabasi-Albert. Especially, for the hippé

grap 9 9 ' icity, random graphs are so close to the Internet data theyn th

e A random graph (called “AS Degree Dist”) with exactly ; .
the same degree distribution than the CAIDA AS graph [36:11_re a valid model of the Internet with respect to that paramet

: . \
e A graph generated using the Barabasi-Albert (BA}grapn Avg. deg. | Maxdeg.| 5 | Fiyp. W
model [29]. CAIDA AS 01/09 6.31 1,815 | 219 | 20 | 82-473
Table Il shows the value of parameters studied for ea:rgrdbz-'Rényi g-gg 21883 oo ég - igg -

. arapasi . . .0 - -
model_. The Ipwer bounds for theeewidth of these graphs _AS degree dist. 6.31 1815 | 219 | 1.5-| 110-
are slightly bigger than the bound of the AS graphs and stillower Law 8.97 1507 | 219 | 1.5-| 150-

comparable to the treewidth of a square grid of the same size
(107). That leads us to the conclusion that the treewidth of
the Internet is slightly lower than the treewidth of a random
graph of the same size and density. A graph generated to
follow exactly the same distribution (by random matching)
has a treewidth a bit nearer, but it is not relevant enouglk. Th We have observed that AS level snapshots exhibit an impor-
BA graph has treewidth of the same magnitude as the othiant churn over time. This can explain previous observation
random graphs. at the IP level.

Figure 8 gives the observeuyperbolicity for these gen-  We have established that the Internet has a high treewidth
erated graphs compared with the AS graphs. One can notic#h at the AS level and the router level, i.e. a treewidth
that randoms graphs with the same distribution (exactly, oomparable to a square grid. This result holds independentl
power-law of same exponent) are very close to the AS grapif.the accuracy of the data available. A better accuracy can
BA graph is however closer to ER graph. only result in a higher treewidth.

TABLE lllI: Statistics for Internet models.

VI. CONCLUSION
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Fig. 7: Variation (or the lack of!) from year to year of hypelicity distribution of AS graphs (CAIDA, DIMES and UCLA).

As seen in [4], we observe that the hyperbolicity of almogts] w. willinger, D. Alderson, and J. C. Doyle, “Mathematiesd the

all Internet snapshots is low. As we use a different hypécbol

ity measure, our work comes as a confirmation of this fact. A[Hes]
AS graphs have roughly the same hyperbolicity distribution

for almost all quadruplets it is O or 1. However, we point out

that this is not the case for MRINFO data, but we canngtﬂ
conclude whether it is an artifact of the measurement method
Additionally, we observe that low hyperbolicity is a naturall8l
property of power law random graphs which appear again as)
a simple model capturing many structural properties of the
Internet.
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