Advances on Matroid Secretary Problem: Free Order and Laminar Case

Patrick Jaillet
MIT

José A. Soto
U.Chile & TU-Berlin

Rico Zenklusen

Johns Hopkins University

May 16th, 2013

Matroid Secretary Problem: Outline

- Introduction
 - Classic Secretary Problem
 - Generalized Secretary Problem
 - Matroid Secretary Problem
- 2 Laminar matroids
- Free Order Model Variant

Matroid Secretary Problem: Outline

- Introduction
 - Classic Secretary Problem
 - Generalized Secretary Problem
 - Matroid Secretary Problem
- Laminar matroids
- 3 Free Order Model Variant

Secretary Problem

Classical Problem: Select top element of an *n*-stream.

- Hire one person from n candidates arriving in unif. random order.
- Each person reveals a hidden weight during interview.
- Rule: Must decide during the interview.

Secretary Problem

Classical Problem: Select top element of an *n*-stream.

- Hire one person from n candidates arriving in unif. random order.
- Each person reveals a hidden weight during interview.
- Rule: Must decide during the interview.

Best algorithm (variant of Lindley / Dynkin 60's)

- Wait until Bin(n, 1/e) elements have revealed its weight.
- Select the first record among remaining ones.

This return the top candidate with probability 1/e.

Generalizations

Generalized secretary problems (random order). [Babaioff, Immorlica, Kleinberg 2007]

- Select a subset of elements of a stream (one by one).
- Each element reveals a hidden weight during interview.
- Rule: Must decide during the interview.
- The selected subset must belong to a fixed family of feasible sets (closed for inclusion).

Example 1: Select at most *r* candidates.

- Want: High weight forest.
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form a forest at every moment.

- Want: High weight forest.
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form a forest at every moment.

- Want: High weight forest.
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form a forest at every moment.

- Want: High weight forest.
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form a forest at every moment.

- Want: High weight forest.
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form a forest at every moment.

- Want: High weight forest.
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form a forest at every moment.

- Want: High weight forest.
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form a forest at every moment.

- Want: High weight forest.
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form a forest at every moment.

- Want: High weight forest.
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form a forest at every moment.

- Want: High weight forest.
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form a forest at every moment.

- Want: High weight forest.
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form a forest at every moment.

- Want: High weight forest.
- Hidden weights are revealed in uniform random order.

Competitive ratio: $\frac{w(OPT)}{\mathbb{E}[w(ALG)]}$.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form a forest at every moment.

Example 3: Job offerings with quotas.

Want to hire 6 new professors with some quotas:

- Computer Science department can hire at most 2 new professors.
- Physics department can hire at most 1 new position.
- Math department can hire at most 4 new positions.
 - At most 1 of them can be a logician.
 - At most 2 of them can be probabilists.

Example 4: Communication Network

Can only serve clients via disjoint paths.

Matroid Secretary Problem

Generalized secretary problems in which the feasible sets are the independent sets of a matroid.

Matroid Secretary Problem

Generalized secretary problems in which the feasible sets are the independent sets of a matroid.

Reminder: Matroid $M = (E, \mathcal{I})$.

E: ground set of elements.

- \mathcal{I} : <u>independent sets</u> satisfying:
 - \bullet $\emptyset \in \mathcal{I}$.
 - If $A \in \mathcal{I}$ then every subset $A' \subseteq A$ is in \mathcal{I} .
 - If $A, B \in \mathcal{I}$ and |A| < |B| then $\exists y \in B : A \cup \{y\} \in \mathcal{I}$.

Matroid Secretary Problem

Generalized secretary problems in which the feasible sets are the independent sets of a matroid.

Reminder: Matroid $M = (E, \mathcal{I})$.

E: ground set of elements.

 \mathcal{I} : independent sets satisfying:

- \bullet $\emptyset \in \mathcal{I}$.
- If $A \in \mathcal{I}$ then every subset $A' \subseteq A$ is in \mathcal{I} .
- If $A, B \in \mathcal{I}$ and |A| < |B| then $\exists y \in B \colon A \cup \{y\} \in \mathcal{I}$.

Generalize linear independence. For $X \subseteq E$:

- rk(X) is the size of largest independent set in X.
- $\operatorname{span}(X)$ is the largest set containing X with $\operatorname{rk}(X) = \operatorname{rk}(\operatorname{span}(X))$.

Examples

Linear matroids.

E: Finite family of vectors.

 \mathcal{I} : Linearly independent set.

Partition matroids.

 $E: E_1 \cup \cdots \cup E_k$.

 \mathcal{I} : $I \subseteq E$ with $|E_i \cap I| \leq b_i$.

Graphic matroids.

E: Edges of a graph.

 \mathcal{I} : Forests.

Laminar.

E: Leaves of a tree.

I: Sets satisfying internal node capacities

Gammoids.

E: Clients in a directed network.

I: Sets that can be connected to a given server on disjoint paths.

Offline Greedy algorithms

Sorted Greedy (incremental greedy)

16.05.2013

Offline Greedy algorithms

Sorted Greedy (incremental greedy)

Unsorted Greedy (swap greedy)

Offline Greedy algorithms

Sorted Greedy (incremental greedy)

Unsorted Greedy (swap greedy)

Previous work on Matroid Secretary Problem

 Conjecture [BIK07]: There is an O(1)-competitive algorithm for random order of MSP.

12

Previous work on Matroid Secretary Problem

- Conjecture [BIK07]: There is an O(1)-competitive algorithm for random order of MSP.
- [BIK07] $O(\log \operatorname{rk}(M))$ for general matroids.
- [CL12] $O(\sqrt{\log \operatorname{rk}(M)})$ for general matroids.
- O(1) for:
 - [K05] Partition.
 - [BIK07,KP09] Graphic.
 - [BIK07,DP08,KP09] Transversal.
 - [S11] Cographic.
 - [IW11, JSZ] Laminar.
 - [DK12] Regular.
 - Other cases (low density, sparse linear, truncations, parallel extensions).

12

Matroid Secretary Problem: Outline

- Introduction
 - Classic Secretary Problem
 - Generalized Secretary Problem
 - Matroid Secretary Problem
- 2 Laminar matroids
- Free Order Model Variant

Laminar Matroids

T: Rooted tree with positive capacities b(v) on internal nodes. E: Leaves.

 $I \subseteq E$ is independent iff $|I \cap L(v)| \le b(v)$, for every internal v.

Laminar Matroids

T: Rooted tree with positive capacities b(v) on internal nodes. E: Leaves.

 $I \subseteq E$ is independent iff $|I \cap L(v)| \le b(v)$, for every internal v.

Important: Each v correspond to a consecutive interval of E. These intervals form a laminar family.

14

Results.

There is a very involved algorithm by Im and Wu (2011) Large constant 16000/3-competitive.

Theorem [JSZ12]

There is a simple $3\sqrt{3}e \approx 14.12$ -competitive algorithm.

Here: I will show a 16*e*-competitive algorithm.

Laminar Matroid algorithm:

- **1** $A \leftarrow \text{first Bin}(n, 1/2)$ elements revealed. $\bigcirc \leftarrow A$.
- ② Use OPT(A) to divide $E \setminus A$ into intervals P_1, P_2, \dots, P_k .
- ullet Run e-competitive alg. to select top element of each interval in \mathcal{S} .

Laminar Matroid algorithm:

- **1** $A \leftarrow \text{first Bin}(n, 1/2)$ elements revealed. $\bigcirc \leftarrow A$.
- ② Use OPT(A) to divide $E \setminus A$ into intervals P_1, P_2, \dots, P_k .
- $\mathcal{S} = \begin{cases} \text{Even intervals}, & \text{with prob. 1/2.} \\ \text{Odd intervals}, & \text{with prob. 1/2.} \end{cases}$
- ullet Run e-competitive alg. to select top element of each interval in \mathcal{S} .

Laminar Matroid algorithm:

- **1** $A \leftarrow \text{first Bin}(n, 1/2)$ elements revealed. $\bigcirc \leftarrow A$.
- ② Use OPT(A) to divide $E \setminus A$ into intervals P_1, P_2, \ldots, P_k .
- $\mathcal{S} = \begin{cases} \text{Even intervals}, & \text{with prob. 1/2.} \\ \text{Odd intervals}, & \text{with prob. 1/2.} \end{cases}$
- ullet Run e-competitive alg. to select top element of each interval in \mathcal{S} .

16

Laminar Matroid algorithm:

- **1** $A \leftarrow \text{first Bin}(n, 1/2)$ elements revealed. $\bigcirc \leftarrow A$.
- Use OPT(A) to divide $E \setminus A$ into intervals P_1, P_2, \ldots, P_k .
- ullet Run e-competitive alg. to select top element of each interval in \mathcal{S} .

Correctness

Let $I \subseteq \bigcup S$ and $|I \cap P| \le 1$ for each $P \in S$ then I is independent.

Correctness

Let $I \subseteq \bigcup S$ and $|I \cap P| \le 1$ for each $P \in S$ then I is independent.

Proof: Let v be an internal node.

- If $|I \cap L(v)| \leq 1$, we are OK.
- If $|I \cap L(v)| \ge 2$. Between every pair of I there are ≥ 2 elements of OPT(A). Then: $|I \cap L(v)| \le |OPT(A) \cap L(v)| \le b(v)$.

Analysis sketch: Let f_- , f, f_+ consecutive in OPT.

16.05.2013

Analysis sketch: Let f_- , f, f_+ consecutive in OPT.

• With prob 1/8: $f_- \in A$, $f \notin A$, $f_+ \in A$.

Analysis sketch: Let f_- , f_+ consecutive in OPT.

• With prob 1/8: $f_- \in A$, $f \notin A$, $f_+ \in A$. $\Rightarrow f_-, f_+ \in OPT(A)$; $P(f) \in (f_- \dots f_+)$; $P(f) \cap OPT = \{f\}$.

Analysis sketch: Let f_- , f_+ consecutive in OPT.

- With prob 1/8: $f_- \in A$, $f \notin A$, $f_+ \in A$. $\Rightarrow f_-, f_+ \in OPT(A)$; $P(f) \in (f_- \dots f_+)$; $P(f) \cap OPT = \{f\}$.
- With prob 1/2: $P(f) \in \mathcal{S}$ (good parity).

16.05.2013

Analysis sketch: Let f_- , f_+ consecutive in OPT.

- With prob 1/8: $f_- \in A$, $f \notin A$, $f_+ \in A$. $\Rightarrow f_-, f_+ \in OPT(A)$; $P(f) \in (f_- \dots f_+)$; $P(f) \cap OPT = \{f\}$.
- With prob 1/2: $P(f) \in \mathcal{S}$ (good parity).
- With probability 1/e, in P(f) we recover weight $\geq w(f)$.

Analysis sketch: Let f_- , f, f_+ consecutive in OPT.

- With prob 1/8: $f_- \in A$, $f \notin A$, $f_+ \in A$. $\Rightarrow f_-, f_+ \in OPT(A)$; $P(f) \in (f_- \dots f_+)$; $P(f) \cap OPT = \{f\}$.
- With prob 1/2: $P(f) \in \mathcal{S}$ (good parity).
- With probability 1/e, in P(f) we recover weight $\geq w(f)$.

 $\mathbb{E}[w(ALG)] \ge \mathbb{E}[w(OPT)]/(16e)$

Matroid Secretary Problem: Outline

- Introduction
 - Classic Secretary Problem
 - Generalized Secretary Problem
 - Matroid Secretary Problem
- Laminar matroids
- Free Order Model Variant

Free Order Model

We can choose the order in which elements reveal their weight.

Theorem [JSZ12]

There is a simple 9-competitive algorithm for any matroid in FOM.

Plan: Try to accept each $x \in \text{OPT}$ with constant probability $(\geq 1/9)$.

Free Order Model

We can choose the order in which elements reveal their weight.

Theorem [JSZ12]

There is a simple 9-competitive algorithm for any matroid in FOM.

Plan: Try to accept each $x \in \text{OPT}$ with constant probability $(\geq 1/9)$.

Good elements

An element e is good for $X \subseteq E \setminus \{e\}$ if $e \in OPT(X \cup \{e\})$.

Elements in OPT are Good for any set!

First attempt

(Incorrect) Algorithm:

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning *E* into *A* and *B*. Observe *A*.

For every e of B in random order: If (e is good for A) and $(ALG + e \in \mathcal{I})$ Then add e to ALG.

First attempt

(Incorrect) Algorithm:

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning *E* into *A* and *B*. Observe *A*.

For every e of B in random order: If (e is good for A) and $(ALG + e \in \mathcal{I})$ Then add e to ALG.

Problem:

Might accept low-weight good elements that later block high-weight good elements.

First attempt

(Incorrect) Algorithm:

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning E into A and B. Observe A.

For every *e* of *B* in random order: If (e is good for A) and (ALG $+ e \in \mathcal{I}$) Then add e to ALG.

Problem:

Might accept low-weight good elements that later block high-weight good elements.

Idea:

Let $A_i = \{a_1, \dots, a_i\}$ be the top *i* weights in *A*.

• Good elements for A_i in $B \cap \text{span}(A_i)$ have weight at least $w(a_i)$.

Simplifying assumption: $\forall f \colon \Pr(f \in \operatorname{span}(A - f)) \approx 1.$

Online.

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning E into A and B.

Observe and sort $A = \{a_1, \dots, a_s\}$ by weight.

For i = 1 to s.

For every $e \in (B \cap \text{span}(A_i))$ not yet seen If $(ALG + e \in \mathcal{I})$ and $(w(e) > w(a_i))$ then add e to ALG.

Seen: Blue + Span(blue elements before line)

 a_{10}

Simplifying assumption: $\forall f : \Pr(f \in \text{span}(A - f)) \approx 1.$

Online.

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning *E* into *A* and *B*.

Observe and sort $A = \{a_1, \dots, a_s\}$ by weight.

For i = 1 to s.

For every $e \in (B \cap \text{span}(A_i))$ not yet seen If $(ALG + e \in \mathcal{I})$ and $(w(e) > w(a_i))$ then add e to ALG.

Seen: Blue + Span(blue elements before line)

May accept a seen element from B heavier than a_8

Simplifying assumption: $\forall f : \Pr(f \in \operatorname{span}(A - f)) \approx 1.$

Offline simulation.

Every element flips a coin partitioning *E* into *A* and *B*.

Sort
$$E = \{e_1, \dots, e_n\}$$
 by weight. "See" A .

For i = 1 to n.

 $ALG \leftarrow \emptyset$.

For every $e \in (B \cap \text{span}(A \cap E_i))$ not yet seen.

If
$$(ALG + e \in \mathcal{I})$$
 and $(w(e) > w(e_i))$ then add e to ALG .

Seen: Blue + Span(blue elements before line)

Simplifying assumption:

Offline simulation.

 $\forall f \colon \Pr(f \in \operatorname{span}(A - f)) \approx 1.$

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning *E* into *A* and *B*.

Sort
$$E = \{e_1, \dots, e_n\}$$
 by weight. "See" A .

For i = 1 to n.

For every $e \in (B \cap \operatorname{span}(A \cap E_i))$ not yet seen.

If
$$(ALG + e \in \mathcal{I})$$
 and $(w(e) > w(e_i))$ then add e to ALG .

Seen: Blue + Span(blue elements before line)

May accept a seen element from B heavier than e_{13}

Analysis (1): Let $f \in OPT$.

Let $E = \{e_1, e_2, \dots, e_n\}$ sorted by weights, and $E_i = \{e_1, \dots, e_i\}$.

Let $p_i(f) = \Pr(f \in \operatorname{span}(A \cap E_i - f))$.

- $p_n(f) \approx 1$.
- $p_0(f) = 0$
- $p_i(f) \leq p_{i+1}(f)$.

Analysis (1): Let $f \in OPT$.

Let $E = \{e_1, e_2, \dots, e_n\}$ sorted by weights, and $E_i = \{e_1, \dots, e_i\}$.

Let
$$p_i(f) = \Pr(f \in \operatorname{span}(A \cap E_i - f))$$
.

- $p_n(f) \approx 1$.
- $p_0(f) = 0$
- $p_i(f) \leq p_{i+1}(f)$.

Can show that there is *j* such that $1/3 \le p_i(f) \le 2/3$.

Analysis (2)

$$1/3 \leq \underbrace{\frac{\text{Let } f \in \text{OPT, and } j \text{ s.t.}}_{P_j(f)}}_{\text{p}_j(f)} \leq 2/3.$$

Offline simulation.

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning *E* into *A* and *B*.

Sort
$$E = \{e_1, \dots, e_n\}$$
 by weight. "See" A .

For i = 1 to n.

For every $e \in (B \cap \operatorname{span}(A \cap E_i))$ not yet seen.

If
$$(ALG + e \in \mathcal{I})$$
 and $(w(e) > w(e_i))$ then add e to ALG .

Analysis (2)

$$1/3 \leq \underbrace{\frac{\text{Let } f \in \text{OPT, and } j \text{ s.t.}}_{p_j(f)}}_{\text{Let } f \in \text{span}(A \cap E_j - f))}_{p_j(f)} \leq 2/3.$$

Offline simulation.

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning *E* into *A* and *B*.

Sort
$$E = \{e_1, \dots, e_n\}$$
 by weight. "See" A .

For i = 1 to n.

For every $e \in (B \cap \text{span}(A \cap E_i))$ not yet seen.

If
$$(ALG + e \in \mathcal{I})$$
 and $(w(e) > w(e_i))$

then add e to ALG.

Consider the events:

$$\mathcal{E}_1$$
 $f \in \mathcal{B}$.

$$\mathcal{E}_2 \ \mathbf{f} \in \operatorname{span}(\mathbf{A} \cap \mathbf{E}_j - \mathbf{f}). \Rightarrow$$

$$\mathcal{E}_3 \not f \notin \operatorname{span}(B \cap E_j - f).$$

- f is not "sampled".
- f is "called" on some iteration $i \leq j$.
- f is not in the span of ALG when called.

16.05.2013

Analysis (2)

1/3
$$\leq \underbrace{\Pr(f \in \text{OPT, and } j \text{ s.t.}}_{p_j(f)} \leq 2/3.$$

Offline simulation.

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning *E* into *A* and *B*.

Sort
$$E = \{e_1, \dots, e_n\}$$
 by weight. "See" A .

For i = 1 to n.

For every $e \in (B \cap \operatorname{span}(A \cap E_i))$ not yet seen.

If
$$(ALG + e \in \mathcal{I})$$
 and $(w(e) > w(e_i))$ then add e to ALG .

Consider the events:

$$\mathcal{E}_1$$
 $f \in \mathcal{B}$.

$$\mathcal{E}_2$$
 $\mathbf{f} \in \operatorname{span}(A \cap E_j - \mathbf{f}). \Rightarrow$

$$\mathcal{E}_3 \not\in \operatorname{span}(B \cap E_j - f).$$

$$\begin{array}{ll} \Pr[\mathcal{E}_{1} \cap \mathcal{E}_{2} \cap \mathcal{E}_{3}] \\ &= & \Pr[\mathcal{E}_{1}] \cdot \Pr[\mathcal{E}_{2} \cap \mathcal{E}_{3}] \\ & \geq & \Pr[\mathcal{E}_{1}] \cdot \Pr[\mathcal{E}_{2}] \cdot \Pr[\mathcal{E}_{3}] \\ & = & (1/2) \cdot p_{j}(f) \cdot (1 - p_{j}(f)) \geq 1/9. \end{array}$$

Conclusion

Our algorithm returns a set ALG such that

$$\forall f \in \text{OPT}, \ \text{Pr}(f \in \text{ALG}) \ge 1/9.$$

In particular,

$$\mathbb{E}[w(ALG)] \geq \frac{1}{9}w(OPT).$$

9-competitive algorithm for Free Order Model!

Final Words

- Simple constant competitive algorithm for Laminar Matroids on Random Order Model.
- Constant competitive algorithm for Free Order Model.

Open

- Free order generalized secretary problem? (special cases, e.g. matroid intersections, etc.)
- Use ideas of free order to get constant in random order?
- Random Order for Gammoids and general matroids.