Minimization of Symmetric Submodular Functions under Hereditary Constraints

J.A. Soto (joint work with M. Goemans)

DIM, Univ. de Chile

April 4th, 2012

Outline

Background

Minimal Minimizers and Pendant Pairs

Algorithms

Queyranne's algorithm to find Pendant Pairs

Outline

Background

Minimal Minimizers and Pendant Pairs

Algorithms

Queyranne's algorithm to find Pendant Pairs

A set function $f \colon 2^V \to \mathbb{R}$ with ground set V is ...

Submodular if:

$$f(A \cup B) + f(A \cap B) \leq f(A) + f(B) + f(B)$$

Symmetric if:

We have access to a value oracle for f.

Typical Example of a Symmetric Submodular Function (SSF)

Cut function of a weighted undirected graph:

$$f(S) = w(\delta(S)) = \sum_{e: |e \cap S| = 1} w(e)$$

Hereditary families

Definition

A family $\mathcal{I} \subseteq 2^V$ is hereditary if it is closed under inclusion. $\mathcal{I}^* = \mathcal{I} \setminus \{\emptyset\}.$

Examples

- V = V(G): Graph properties closed under induced subgraphs (\mathcal{I}^* : stable sets, clique, k-colorable, etc.)
- V = E(G): Graph properties closed under subgraphs (\mathcal{I}^*) : matching, forest, etc.)
- Upper cardinality constraints, knapsack constraints, matroid constraints, etc.

We have access to a membership oracle for \mathcal{I} .

Problem:

Constrained SSF minimization

Find a nonempty set in \mathcal{I} minimizing f.

We exclude the empty set since:

$$2f(A) = f(A) + f(V \setminus A) \ge f(V) + f(\emptyset) = 2f(\emptyset).$$

Problem:

Constrained SSF minimization

Find a nonempty set in \mathcal{I} minimizing f.

We exclude the empty set since:

$$2f(A) = f(A) + f(V \setminus A) \ge f(V) + f(\emptyset) = 2f(\emptyset).$$

Example: Special mincuts.

Find a minimum cut $S \subseteq V$ such that $|S| \le k$ (or S is a clique, stable, etc.)

Our results

[GS]

 $O(n^3)$ -algorithm for minimizing SSF on hereditary families, where n=|V|. (In fact, we find all the Minimal Minimizers in $O(n^3)$ -time).

Compare to:

[Queyranne 98]

 $O(n^3)$ -algorithm for minimizing SSF.

[Svitkina-Fleischer 08]

Minimizing a general submodular function under upper cardinality constraints is NP-hard to approximate within $o(\sqrt{n/\log n})$.

Outline

Background

Minimal Minimizers and Pendant Pairs

Algorithms

Queyranne's algorithm to find Pendant Pairs

Tool: SSF are posimodular

$$f(A \setminus B) + f(B \setminus A) \le f(A) + f(B)$$

Proof.

Minimal Minimizers are disjoint (I)

Minimal Minimizers (MM)

$$S \text{ is a MM if: } \textbf{(i)} \ S \in \mathcal{I}^*, \ \textbf{(ii)} \ f(S) = \min_{X \in \mathcal{I}^*} f(X) = \mathrm{OPT},$$
 and
$$\textbf{(iii)} \ \forall \emptyset \subset Y \subset S, \ f(S) < f(Y).$$

Lemma

The MM of (f, \mathcal{I}) are disjoint.

Minimal Minimizers are disjoint (I)

Minimal Minimizers (MM)

$$S$$
 is a MM if: (i) $S \in \mathcal{I}^*$, (ii) $f(S) = \min_{X \in \mathcal{I}^*} f(X) = \mathrm{OPT}$, and (iii) $\forall \emptyset \subset Y \subset S, \ f(S) < f(Y)$.

Lemma

The MM of (f, \mathcal{I}) are disjoint.

Proof.

If A and B are intersecting MM, then $A \setminus B, B \setminus A \in \mathcal{I}^*$. By posimodularity

$$f(A \setminus B) + f(B \setminus A) \le f(A) + f(B) = 2OPT$$
,

then
$$f(A \setminus B) = f(B \setminus A) = OPT$$
.

Minimal Minimizers are disjoint (II)

- Family \mathcal{X} of MM has at most O(n) sets.
- \bullet Partition Π of V with at most one "bad" part.
- IDEA: Detect groups of elements inside the same part and fuse them together.

Fusions

We will iteratively fuse elements together.

- Original system: (V, f, \mathcal{I}) .
- Modified systems: (V', f', \mathcal{I}') .
- For $S \subseteq V'$, X_S is the set of original elements fused into S.
- $f'(S) = f(X_S)$ is a SSF.
- $\mathcal{I}' = \{S \colon X_S \in \mathcal{I}\}$ is hereditary.

Pendant pairs

Definition

We say (t,u) is a Pendant Pair (PP) for f if $\{u\}$ has the minimum f-value among those sets separating t and u, i.e.

$$f(\{u\}) = \min\{f(U) \colon |U \cap \{t, u\}| = 1\}.$$

- [Queyranne 98]: every SSF f admits PP.
- [Nagamochi Ibaraki 98]: given $s \in V$, we can find a PP (t,u) with $s \notin \{t,u\}$.

A PP (t, u) and the partition Π

If S is a non-singleton MM of (f,\mathcal{I}) then we cannot have:

A PP (t, u) and the partition Π

If S is a non-singleton MM of (f,\mathcal{I}) then we cannot have:

If t is in a MM S' and u is in the bad part then $f(\{u\}) \leq f(S')$. We conclude u is a loop (i.e. $\{u\} \notin \mathcal{I}$).

A PP (t, u) and the partition Π

If S is a non-singleton MM of (f,\mathcal{I}) then we cannot have:

If t is in a MM S' and u is in the bad part then $f(\{u\}) \leq f(S')$. We conclude u is a loop (i.e. $\{u\} \not\in \mathcal{I}$).

Theorem (One of the following holds:)

- 1. u and t are in the same part of Π .
- 2. $\{u\}$ is a singleton MM.
- 3. u is a loop.

Outline

Background

Minimal Minimizers and Pendant Pairs

Algorithms

Queyranne's algorithm to find Pendant Pairs

Warming up: Queyranne's algorithm

Algorithm to find one MM of a SSF in $2^V \setminus \{V, \emptyset\}$

- While $|V| \ge 2$,
 - 1. Find (t, u) pendant pair.
 - 2. Add $X_{\{u\}}$ as a candidate for minimum.
 - 3. Fuse t and u as one vertex.
- Return the (first) best of the n-1 candidates.

Correctness

Cannot create loops!

We fuse pairs in the same part of Π until $\{u\}$ is a singleton MM (first best candidate).

Algorithm to find one MM in constrained version

Assume $\mathcal I$ has exactly one loop s. (If many, fuse them together) Algorithm

- While $|V| \ge 3$,
 - 1. Find (t, u) pendant pair avoiding s.
 - 2. Add $X_{\{u\}}$ as a candidate for minimum.
 - 3. If $\{t, u\} \in \mathcal{I}$, Fuse t and u as one vertex. Else, Fuse s, t and u as one loop vertex (call it s).
- If |V|=2, add the only non-loop as a candidate.
- Return the (first) best candidate.

Notes:

- *u* is never a loop!
- If no loop in \mathcal{I} , use any pendant pair in instruction 1.

15 of 21

Algorithm to find the family ${\mathcal X}$ of all the MM

- Find one MM S. Let OPT = f(S), $\mathcal{X} = \{S\}$.
- Add all singleton MM to \mathcal{X} .
- Fuse sets in $\mathcal X$ and loops together in a single element s.
- While $|V| \ge 3$,
 - 1. Find (t, u) pendant pair avoiding s. $[\{t, u\}]$ is INSIDE a part.
 - 2. If $\{t, u\} \notin \mathcal{I}$, Fuse s, t and u as one loop vertex as s.
 - 3. Else if $f'(\{t,u\}) = \text{OPT}$, Add $X_{\{t,u\}}$ to \mathcal{X} and Fuse s, t and u together as s.
 - 4. Else Fuse t and u as one vertex.
- If |V|=2, check if the only non-loop is optimum.
- Return \mathcal{X} .

Conclusions.

- Can find all the MM of (f, \mathcal{I}) by using $\leq 2n$ calls to a PP finder procedure.
- Queyranne's PP procedure finds pendant pairs in $O(n^2)$ time/oracle calls.
- All together: $O(n^3)$ -algorithm.

Outline

Background

Minimal Minimizers and Pendant Pairs

Algorithms

Queyranne's algorithm to find Pendant Pairs

Rizzi's Degree Function

Let f be a SSF on V with $f(\emptyset) = 0$. Define the function $d(\cdot, :)$ on pairs of disjoint subsets of V as

$$d(A, B) = \frac{1}{2} (f(A) + f(B) - f(A \cup B)).$$

E.g., If $f(\cdot) = w(\delta(\cdot))$ is the cut function of a weighted graph, then

$$d(A,B) = w(A:B) = \sum_{uv:u \in A, v \in B} w(uv)$$

is the associated degree function.

Note: $f(A) = d(A, V \setminus A)$.

Maximum Adjacency (MA) order

The sequence (v_1, \ldots, v_n) is a MA order of (V, f) if

$$d(v_i, \{v_1, \dots, v_{i-1}\}) \ge d(v_j, \{v_1, \dots, v_{i-1}\}).$$

We get a MA order by setting v_1 arbitrarily and selecting the next vertex as the one with MAX. ADJACENCY to the ones already selected.

Maximum Adjacency (MA) order

The sequence (v_1, \ldots, v_n) is a MA order of (V, f) if

$$d(v_i, \{v_1, \dots, v_{i-1}\}) \ge d(v_j, \{v_1, \dots, v_{i-1}\}).$$

We get a MA order by setting v_1 arbitrarily and selecting the next vertex as the one with MAX. ADJACENCY to the ones already selected.

Lemma [Queyranne 98, Rizzi 00]

The last two elements (v_{n-1}, v_n) of a MA order are a pendant pair.

Remark:

If $|V| \ge 3$, we can always find a pendant pair **avoiding** one vertex.

- S Symmetric: d(A,B) = d(B,A).
- M Monotone: $d(A, B) \leq d(A, B \cup C)$.
- C Consistent: $d(A,C) \leq d(B,C) \Rightarrow d(A,B \cup C) \leq d(B,A \cup C)$.

Proof that MA yields PP

If n=2, trivial.

If n=3, the only sets separating v_2 and v_3 are $\{v_3\}$, $\{v_1,v_3\}$ and their complements.

MA implies $d(v_2, v_1) \ge d(v_3, v_1)$.

C implies $d(v_2, \{v_1, v_3\}) \ge d(v_3, \{v_1, v_2\})$,

i.e. $f(v_3) \leq f(\{v_1, v_3\})$.

- S Symmetric: d(A,B) = d(B,A).
- M Monotone: $d(A, B) \leq d(A, B \cup C)$.
- C Consistent: $d(A,C) \le d(B,C) \Rightarrow d(A,B \cup C) \le d(B,A \cup C)$.

Proof that MA yields PP

If $n \geq 4$, let S be a set separating v_{n-1} and v_n .

Case 1: S does not separate v_1 and v_2 .

Then: $(\{v_1, v_2\}, v_3, \dots, v_{n-1}, v_n)$ is a MA order.

So: $f(v_n) \leq f(S)$.

- S Symmetric: d(A,B) = d(B,A).
- M Monotone: $d(A, B) \leq d(A, B \cup C)$.
- C Consistent: $d(A,C) \leq d(B,C) \Rightarrow d(A,B \cup C) \leq d(B,A \cup C)$.

Proof that MA yields PP

If $n \geq 4$, let S be a set separating v_{n-1} and v_n .

Case 2: S does not separate v_2 and v_3 .

M implies $(v_1, \{v_2, v_3\}, \dots, v_{n-1}, v_n)$ is a MA order.

$$(d(v_j, v_1) \le d(v_2, v_1) \le_M d(\{v_2, v_3\}, v_1))$$

So:
$$f(v_n) \leq f(S)$$
.

- S Symmetric: d(A,B) = d(B,A).
- M Monotone: $d(A, B) \leq d(A, B \cup C)$.
- C Consistent: $d(A,C) \leq d(B,C) \Rightarrow d(A,B \cup C) \leq d(B,A \cup C)$.

Proof that MA yields PP

If $n \geq 4$, let S be a set separating v_{n-1} and v_n .

Case 3: S does not separate v_1 and v_3 .

C+M implies $(v_2, \{v_1, v_3\}, \dots, v_{n-1}, v_n)$ is a MA order.

If not:
$$\exists j$$
, $d(\{v_1, v_3\}, v_2) < d(v_j, v_2) \leq_M d(v_j, \{v_1, v_2\})$,

by
$$C$$
: $d(v_2, \{v_1, v_3\}) \ge d(v_3, \{v_1, v_2\})$, then:

$$d(v_3, \{v_1, v_2\}) \ge d(v_j, \{v_1, v_2\}) > d(\{v_1, v_3\}, v_2) \ge d(v_3, \{v_1, v_2\}).$$