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A set function f : 2V → R with ground set V is ...

Submodular if:

f(A ∪B) f(A ∩B)+

+

≤

≤ +

f(A) + f(B)

Symmetric if:
=

=

f(V \A)f(A) =

We have access to a value oracle for f .
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Typical Example of a Symmetric Submodular Function
(SSF)

Cut function of a weighted undirected graph:

f(S) = w(δ(S)) =
∑

e:|e∩S|=1

w(e)

S
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Hereditary families

Definition
A family I ⊆ 2V is hereditary if it is closed under inclusion.
I∗ = I \ {∅}.

Examples

• V = V (G): Graph properties closed under induced subgraphs
(I∗ : stable sets, clique, k-colorable, etc.)

• V = E(G): Graph properties closed under subgraphs
(I∗ : matching, forest, etc.)

• Upper cardinality constraints, knapsack constraints, matroid
constraints, etc.

We have access to a membership oracle for I.
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Problem:

Constrained SSF minimization
Find a nonempty set in I minimizing f .

We exclude the empty set since:

2f(A) = f(A) + f(V \A) ≥ f(V ) + f(∅) = 2f(∅).

Example: Special mincuts.

Find a minimum cut S ⊆ V such that |S| ≤ k (or S is a clique,
stable, etc.)

S
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Our results

[GS]

O(n3)-algorithm for minimizing SSF on hereditary families, where
n = |V |. (In fact, we find all the Minimal Minimizers in O(n3)-time).

Compare to:

[Queyranne 98]

O(n3)-algorithm for minimizing SSF.

[Svitkina-Fleischer 08]

Minimizing a general submodular function under upper cardinality
constraints is NP-hard to approximate within o(

√
n/ log n).
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Tool: SSF are posimodular

f(A \B) + f(B \A) ≤ f(A) + f(B)

Proof.

≥

≥

=f(A) + f(B)

=+ +

f(A) + f(V \B)

f(A ∪ (V \B)) + f(A ∩ (V \B))

+

= f(B \A) + f(A \B)

+=
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Minimal Minimizers are disjoint (I)

Minimal Minimizers (MM)

S is a MM if: (i) S ∈ I∗, (ii) f(S) = minX∈I∗f(X) = OPT,
and (iii) ∀∅ ⊂ Y ⊂ S, f(S) < f(Y ).

Lemma
The MM of (f, I) are disjoint.

Proof.
If A and B are intersecting MM, then A \B,B \A ∈ I∗.
By posimodularity

f(A \B) + f(B \A) ≤ f(A) + f(B) = 2OPT,

then f(A \B) = f(B \A) = OPT.
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Minimal Minimizers are disjoint (II)

• Family X of MM has at most O(n) sets.

• Partition Π of V with at most one “bad” part.

• IDEA: Detect groups of elements inside the same part and fuse
them together.
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Fusions

We will iteratively fuse elements together.

• Original system: (V, f, I).

• Modified systems: (V ′, f ′, I ′).

• For S ⊆ V ′, XS is the set of original elements fused into S.

• f ′(S) = f(XS) is a SSF.

• I ′ = {S : XS ∈ I} is hereditary.
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Pendant pairs

Definition
We say (t, u) is a Pendant Pair (PP) for f if {u} has the minimum
f -value among those sets separating t and u, i.e.

f({u}) = min{f(U) : |U ∩ {t, u}| = 1}.

• [Queyranne 98]: every SSF f admits PP.

• [Nagamochi Ibaraki 98]: given s ∈ V , we can find a PP (t, u) with
s 6∈ {t, u}.

t us
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A PP (t, u) and the partition Π

If S is a non-singleton MM
of (f, I) then we cannot
have:

t u

S

If t is in a MM S′ and u is in the bad part
then f({u}) ≤ f(S′). We conclude u is a
loop (i.e. {u} 6∈ I).

t u

S′

Theorem (One of the following holds:)

1. u and t are in the same part of Π.

2. {u} is a singleton MM.

3. u is a loop.

13 of 21



A PP (t, u) and the partition Π

If S is a non-singleton MM
of (f, I) then we cannot
have:

t u

S

If t is in a MM S′ and u is in the bad part
then f({u}) ≤ f(S′). We conclude u is a
loop (i.e. {u} 6∈ I).

t u

S′

Theorem (One of the following holds:)

1. u and t are in the same part of Π.

2. {u} is a singleton MM.

3. u is a loop.

13 of 21



A PP (t, u) and the partition Π

If S is a non-singleton MM
of (f, I) then we cannot
have:

t u

S

If t is in a MM S′ and u is in the bad part
then f({u}) ≤ f(S′). We conclude u is a
loop (i.e. {u} 6∈ I).

t u

S′

Theorem (One of the following holds:)

1. u and t are in the same part of Π.

2. {u} is a singleton MM.

3. u is a loop.

13 of 21



Outline

Background

Minimal Minimizers and Pendant Pairs

Algorithms

Queyranne’s algorithm to find Pendant Pairs



Warming up: Queyranne’s algorithm

Algorithm to find one MM of a SSF in 2V \ {V, ∅}
• While |V | ≥ 2,

1. Find (t, u) pendant pair.
2. Add X{u} as a candidate for minimum.
3. Fuse t and u as one vertex.

• Return the (first) best of the n− 1 candidates.

Correctness
Cannot create loops!
We fuse pairs in the same part of Π until {u} is a singleton MM (first
best candidate).

14 of 21



Algorithm to find one MM in constrained version

Assume I has exactly one loop s. (If many, fuse them together)

Algorithm

• While |V | ≥ 3,

1. Find (t, u) pendant pair avoiding s.
2. Add X{u} as a candidate for minimum.
3. If {t, u} ∈ I, Fuse t and u as one vertex.

Else, Fuse s, t and u as one loop vertex (call it s).

• If |V | = 2, add the only non-loop as a candidate.

• Return the (first) best candidate.

Notes:
• u is never a loop!

• If no loop in I, use any pendant pair in instruction 1.
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Algorithm to find the family X of all the MM

• Find one MM S. Let OPT = f(S), X = {S}.
• Add all singleton MM to X .

• Fuse sets in X and loops together in a single element s.

• While |V | ≥ 3,

1. Find (t, u) pendant pair avoiding s. [{t, u} is INSIDE a part.]
2. If {t, u} 6∈ I, Fuse s, t and u as one loop vertex as s.
3. Else if f ′({t, u}) = OPT, Add X{t,u} to X and Fuse s, t and u

together as s.
4. Else Fuse t and u as one vertex.

• If |V | = 2, check if the only non-loop is optimum.

• Return X .
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Conclusions.

• Can find all the MM of (f, I) by using ≤ 2n calls to a PP finder
procedure.

• Queyranne’s PP procedure finds pendant pairs in O(n2)
time/oracle calls.

• All together: O(n3)-algorithm.
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Rizzi’s Degree Function

Let f be a SSF on V with f(∅) = 0.
Define the function d(·, :) on pairs of disjoint subsets of V as

d(A,B) =
1

2
(f(A) + f(B)− f(A ∪B)) .

E.g., If f(·) = w(δ(·)) is the cut function of a weighted graph, then

d(A,B) = w(A : B) =
∑

uv:u∈A,v∈B
w(uv)

is the associated degree function.
Note: f(A) = d(A, V \A).
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Maximum Adjacency (MA) order

The sequence (v1, . . . , vn) is a MA order of (V, f) if

d(vi, {v1, . . . , vi−1}) ≥ d(vj , {v1, . . . , vi−1}).

We get a MA order by setting v1 arbitrarily and selecting the next
vertex as the one with MAX. ADJACENCY to the ones already
selected.

Lemma [Queyranne 98, Rizzi 00]

The last two elements (vn−1, vn) of a MA order are a pendant pair.

Remark:
If |V | ≥ 3, we can always find a pendant pair avoiding one vertex.
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MA order yields PP

S Symmetric: d(A,B) = d(B,A).
M Monotone: d(A,B) ≤ d(A,B ∪ C).
C Consistent: d(A,C) ≤ d(B,C)⇒ d(A,B ∪ C) ≤ d(B,A ∪ C).

Proof that MA yields PP

If n = 2, trivial.

If n = 3, the only sets separating v2 and v3 are {v3}, {v1, v3} and
their complements.

MA implies d(v2, v1) ≥ d(v3, v1).

C implies d(v2, {v1, v3}) ≥ d(v3, {v1, v2}),

i.e. f(v3) ≤ f({v1, v3}).

21 of 21



MA order yields PP

S Symmetric: d(A,B) = d(B,A).
M Monotone: d(A,B) ≤ d(A,B ∪ C).
C Consistent: d(A,C) ≤ d(B,C)⇒ d(A,B ∪ C) ≤ d(B,A ∪ C).

Proof that MA yields PP

If n ≥ 4, let S be a set separating vn−1 and vn.

Case 1: S does not separate v1 and v2.

Then: ({v1, v2}, v3, . . . , vn−1, vn) is a MA order.

So: f(vn) ≤ f(S).

21 of 21



MA order yields PP

S Symmetric: d(A,B) = d(B,A).
M Monotone: d(A,B) ≤ d(A,B ∪ C).
C Consistent: d(A,C) ≤ d(B,C)⇒ d(A,B ∪ C) ≤ d(B,A ∪ C).

Proof that MA yields PP

If n ≥ 4, let S be a set separating vn−1 and vn.

Case 2: S does not separate v2 and v3.

M implies (v1, {v2, v3}, . . . , vn−1, vn) is a MA order.

( d(vj , v1) ≤ d(v2, v1) ≤M d({v2, v3}, v1) )

So: f(vn) ≤ f(S).

21 of 21



MA order yields PP

S Symmetric: d(A,B) = d(B,A).
M Monotone: d(A,B) ≤ d(A,B ∪ C).
C Consistent: d(A,C) ≤ d(B,C)⇒ d(A,B ∪ C) ≤ d(B,A ∪ C).

Proof that MA yields PP

If n ≥ 4, let S be a set separating vn−1 and vn.

Case 3: S does not separate v1 and v3.

C+M implies (v2, {v1, v3}, . . . , vn−1, vn) is a MA order.

If not: ∃j, d({v1, v3}, v2) < d(vj , v2) ≤M d(vj , {v1, v2}),

by C: d(v2, {v1, v3}) ≥ d(v3, {v1, v2}), then:

d(v3, {v1, v2}) ≥ d(vj , {v1, v2}) > d({v1, v3}, v2) ≥ d(v3, {v1, v2}).

21 of 21


	Background
	Minimal Minimizers and Pendant Pairs
	Algorithms
	Queyranne's algorithm to find Pendant Pairs

