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A set function f: 2" — R with ground set V is ...

Submodular if:
f(AuB) + f(ANnB)

@

Symmetric if:
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We have access to a value oracle for f.
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Typical Example of a Symmetric Submodular Function

(SSF)

Cut function of a weighted undirected graph:
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Hereditary families

Definition

A family Z C 2V is hereditary if it is closed under inclusion.

I* =T\ {0}

Examples

e V =V(QG): Graph properties closed under induced subgraphs
(Z* : stable sets, clique, k-colorable, etc.)

e V = E(G): Graph properties closed under subgraphs
(Z* : matching, forest, etc.)

e Upper cardinality constraints, knapsack constraints, matroid
constraints, etc.
We have access to a membership oracle for Z.
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Problem:

Constrained SSF minimization
Find a nonempty set in Z minimizing f.

We exclude the empty set since:

2f(A) = fF(A) + F(VNA) = F(V) + F(0) = 2£(D).
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Problem:

Constrained SSF minimization
Find a nonempty set in Z minimizing f.

We exclude the empty set since:
2f(A) = f(A) + F(V\NA) = f(V) + f(0) = 2f(0).

Example: Special mincuts.
Find a minimum cut S C V such that |S| < k (or S is a clique,
stable, etc.)

#‘

‘\
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Our results

[GS]
O(n?)-algorithm for minimizing SSF on hereditary families, where
n = |V|. (In fact, we find all the Minimal Minimizers in O(n?3)-time).

Compare to:

[Queyranne 98]
O(n?)-algorithm for minimizing SSF.

[Svitkina-Fleischer 08]

Minimizing a general submodular function under upper cardinality
constraints is NP-hard to approximate within o(y/n/logn).
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Outline

Minimal Minimizers and Pendant Pairs



Tool: SSF are posimodular

fLANB) + f(B\ A) < f(A)+ f(B)
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Minimal Minimizers are disjoint (I)

Minimal Minimizers (MM)
Sisa MM if: (i) S € Z*, (ii) f(S) = minyer-f(X) = OPT,
and (i)VO CY C S, f(S) < f(Y).

Lemma
The MM of (f,Z) are disjoint.
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Minimal Minimizers are disjoint (I)

Minimal Minimizers (MM)
Sisa MM if: (i) S € Z*, (ii) f(S) = minyer-f(X) = OPT,
and (i)VO CY C S, f(S) < f(Y).

Lemma
The MM of (f,Z) are disjoint.

Proof.
If A and B are intersecting MM, then A\ B,B\ A € T*.
By posimodularity

f(A\B) + f(B\ A) < f(A) + f(B) = 20PT,
then f(A\ B) = f(B\ A) = OPT. O
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Minimal Minimizers are disjoint (I1)

e Family X of MM has at most O(n) sets.
e Partition II of V' with at most one “bad” part.

e |IDEA: Detect groups of elements inside the same part and fuse
them together.
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Fusions

We will iteratively fuse elements together.

e Original system: (V, f,7).

Modified systems: (V', f/, 7).

For S C V', Xg is the set of original elements fused into S.
1(S) = f(Xg) is a SSF.

I' ={S: Xg € T} is hereditary.
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Pendant pairs

Definition
We say (t,u) is a Pendant Pair (PP) for f if {u} has the minimum
f-value among those sets separating t and u, i.e.

J({u}) = min{f(0): [U N {t,u}| = 1},

* [Queyranne 98]: every SSF f admits PP.
e [Nagamochi Ibaraki 98]: given s € V, we can find a PP (¢, u) with
s & {t,u}.

N A
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A PP (t,u) and the partition II

S

If S is a non-singleton MM
of (f,Z) then we cannot
have:
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A PP (t,u) and the partition II

S

If S is a non-singleton MM
of (f,Z) then we cannot
have:

S/

If tisina MM S’ and w is in the bad part
then f({u}) < f(S"). We conclude u is a o
loop (i.e. {u} ¢ 7).
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A PP (t,u) and the partition II

If S is a non-singleton MM
of (f,Z) then we cannot
have:

If tisina MM S’ and w is in the bad part
then f({u}) < f(S"). We conclude u is a
loop (i.e. {u} ¢ 7).

Theorem (One of the following holds:)

1. wandt are in the same part of 11.
2. {u} is a singleton MM.

3. w is a loop.
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Warming up: Queyranne's algorithm

Algorithm to find one MM of a SSF in 2V \ {V, 0}

e While |V\ > 2,
1. Find (¢,u) pendant pair.
2. Add Xy, as a candidate for minimum.
3. Fuse t and u as one vertex.

e Return the (first) best of the n — 1 candidates.

Correctness

Cannot create loops!

We fuse pairs in the same part of II until {u} is a singleton MM (first
best candidate).
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Algorithm to find one MM in constrained version

Assume Z has exactly one loop s. (If many, fuse them together)

Algorithm

e While |V| > 3,
1. Find (t,u) pendant pair avoiding s.
2. Add Xy, as a candidate for minimum.
3. If {t,u} € Z, Fuse t and u as one vertex.
Else, Fuse s, t and u as one loop vertex (call it s).

e If [V]| =2, add the only non-loop as a candidate.
e Return the (first) best candidate.

Notes:
e v is never a loop!
e If no loop in Z, use any pendant pair in instruction 1.
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Algorithm to find the family X of all the MM

e Find one MM S. Let OPT = f(S), X = {S}.
e Add all singleton MM to X.

e Fuse sets in X and loops together in a single element s.

e While |V| > 3,
1. Find (t,u) pendant pair avoiding s. [{t,u} is INSIDE a part.]
2. If {t,u} ¢ I, Fuse s, t and u as one loop vertex as s.
3. Else if f'({t,u}) = OPT, Add X{; .} to X and Fuse s, t and u
together as s.
4. Else Fuse t and u as one vertex.

e If |V| =2, check if the only non-loop is optimum.
* Return X.
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Conclusions.

e Can find all the MM of (f,Z) by using < 2n calls to a PP finder
procedure.

* Queyranne's PP procedure finds pendant pairs in O(n?)
time/oracle calls.

o All together: O(n?)-algorithm.
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Queyranne's algorithm to find Pendant Pairs



Rizzi's Degree Function

Let f be a SSF on V with f(()) = 0.
Define the function d(-,:) on pairs of disjoint subsets of V" as

A(A,B) = 3 (F(A) + f(B) - (AU B)).

E.g., If f(-) =w(d(-)) is the cut function of a weighted graph, then

d(A,B)=w(A:B)= >  w(u)

uv:u€A,veB

is the associated degree function.
Note: f(A) =d(A,V \ A).

18 of 21




Maximum Adjacency (MA) order

The sequence (v1,...,v,) is a MA order of (V, f) if
d(vi, {v1, ..., vi1}) = d(vs, {v1, .. vi1}).

We get a MA order by setting vy arbitrarily and selecting the next
vertex as the one with MAX. ADJACENCY to the ones already

selected.
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Maximum Adjacency (MA) order

The sequence (v1,...,v,) is a MA order of (V, f) if
d(vi, {v1, ..., vi1}) = d(vs, {v1, .. vi1}).

We get a MA order by setting vy arbitrarily and selecting the next
vertex as the one with MAX. ADJACENCY to the ones already
selected.

Lemma [Queyranne 98, Rizzi 00]

The last two elements (vj,—1,v,) of a MA order are a pendant pair.

Remark:
If [V'| > 3, we can always find a pendant pair avoiding one vertex.
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MA order yields PP

S Symmetric: d(A, B) = d(B, A).
M Monotone: d(A, B) < d(A,BUC).
C Consistent: d(A,C) <d(B,C) = d(A,BUC) <d(B,AUC).

Proof that MA vyields PP

If n =2, trivial.

If n = 3, the only sets separating vy and vz are {v3}, {v1,v3} and
their complements.

MA implies d(ve,v1) > d(vs, v1).
C |mp||es d(v27 {vla 1}3}) > d(’Ug, {vly U?})'
e Flus) < F({or,vs)).
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MA order yields PP

S Symmetric: d(A, B) = d(B, A).

M Monotone: d(A, B) < d(A,BUC).

C Consistent: d(A,C) <d(B,C) = d(A,BUC) <d(B,AUC).
Proof that MA vyields PP

If n >4, let S be a set separating v,_1 and v,.

Case 1: S does not separate v1 and vs.

Then: ({vi,ve},v3,...,0h-1,v,) is a MA order.

So: f(vyn) < f(9).
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MA order yields PP

S Symmetric: d(A, B) = d(B, A).

M Monotone: d(A, B) < d(A,BUC).

C Consistent: d(A,C) <d(B,C) = d(A,BUC) <d(B,AUC).
Proof that MA vyields PP

If n >4, let S be a set separating v,_1 and v,.

Case 2: S does not separate v9 and v3.

M implies (v1,{va,v3}, ..., Un_1,0y) is @ MA order.
(d(vj,v1) < d(va,v1) <pr d({ve,v3},v1) )
So: f(vyn) < f(9).

21 of 21



.
MA order yields PP

S Symmetric: d(A, B) = d(B, A).
M Monotone: d(A, B) < d(A,BUC).
C Consistent: d(A,C) <d(B,C) = d(A,BUC) <d(B,AUC).

Proof that MA vyields PP

If n >4, let S be a set separating v,_1 and v,.

Case 3: S does not separate v1 and v3.
C+M implies (va, {v1,v3},...,vn—1,vy) is a MA order.

If not: 3j,  d({v1,vs},v2) < d(vj,v2) <ar d(vj, {v1,v2}),

by C: d(vg, {v1,v3}) > d(vs,{v1,v2}), then:

d(vg, {’Ul, ’Uz}) Z d(’l)j, {1)1, 1)2}) > d({’Ul, ’1)3}, 1}2) Z d(’U3, {1)1, 1}2}).
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