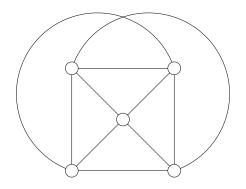
Principal Partition and the Matroid Secretary Problem

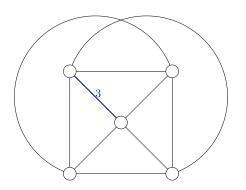
José A. Soto

Department of Mathematics M.I.T.

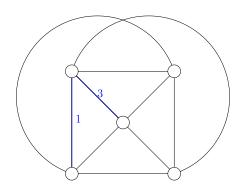
SIAM Conference on Optimization (OP11) May 17, 2011.



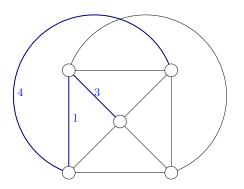
Given a matroid.



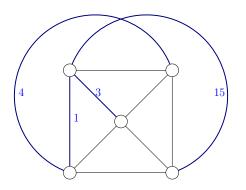
- Given a matroid.
- Elements' weights are revealed in certain (random) order.



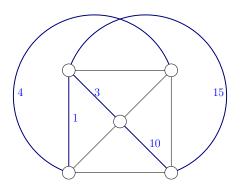
- Given a matroid.
- Elements' weights are revealed in certain (random) order.



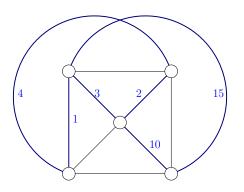
- Given a matroid.
- Elements' weights are revealed in certain (random) order.



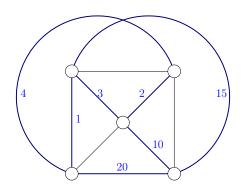
- Given a matroid.
- Elements' weights are revealed in certain (random) order.



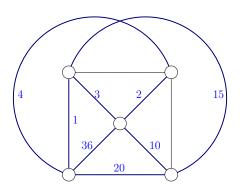
- Given a matroid.
- Elements' weights are revealed in certain (random) order.



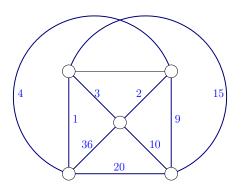
- Given a matroid.
- Elements' weights are revealed in certain (random) order.



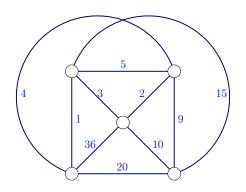
- Given a matroid.
- Elements' weights are revealed in certain (random) order.



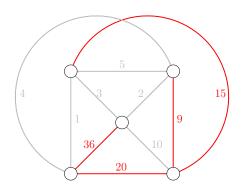
- Given a matroid.
- Elements' weights are revealed in certain (random) order.



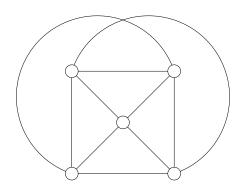
- Given a matroid.
- Elements' weights are revealed in certain (random) order.



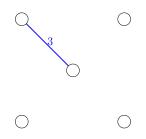
- Given a matroid.
- Elements' weights are revealed in certain (random) order.



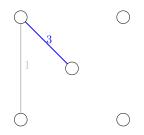
- Given a matroid.
- Elements' weights are revealed in certain (random) order.
- Want to select independent set of high weight. (In online way / secretary problem setting)



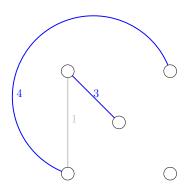
- We accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.



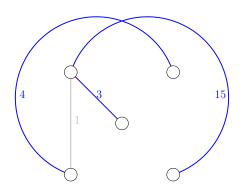
- We accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.



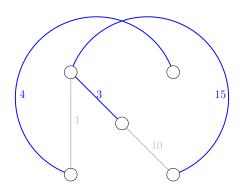
- We accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.



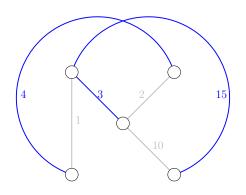
- We accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.



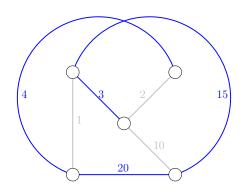
- We accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.



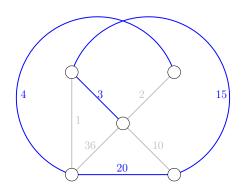
- We accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.



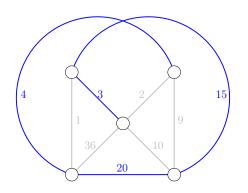
- We accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.



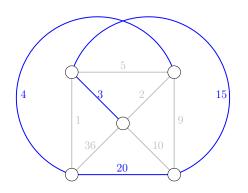
- We accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.



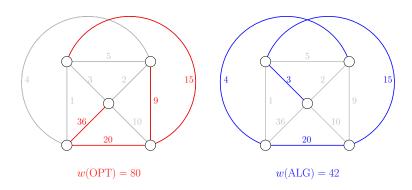
- We accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.



- We accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.



- We accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.



- We accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

Special Cases

Classical / Multiple choice

- Hire one person (or at most *r*).
- Sell one item to best bidder (or sell *r* identical items).

Opponent selects *n* weights.

$$w_1 \geq w_2 \geq \cdots \geq w_n \geq 0$$

then

The weights are assigned either: adversarially or at random.

and independently

The presentation order is chosen: adversarially or at random.

Opponent selects *n* weights.

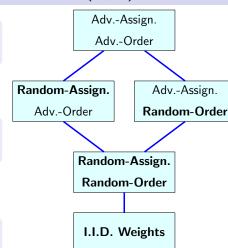
$$w_1 \geq w_2 \geq \cdots \geq w_n \geq 0$$

then

The weights are assigned either: adversarially or at random.

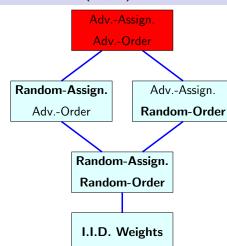
and independently

The presentation order is chosen: **adversarially** or at **random**.



(Adv.-Assign. Adv.-Order)
 Hard: n-competitive ratio

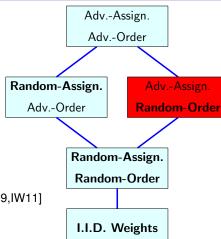
[Babaioff, Immorlica, Kleinberg 07] Conjecture: O(1)-competitive algorithm for all other models.



(Adv.-Assign. Adv.-Order)
 Hard: n-competitive ratio

[Babaioff, Immorlica, Kleinberg 07] Conjecture: O(1)-competitive algorithm for all other models.

 (Adv.-Assign. Random-Order)
 O(1) for partition, graphic, transversal, laminar.
 [L61,D63,K05,BIK07,DP08,KP09,BDGIT09,IW11]
 O(log rk(M)) for general matroids [BIK07].

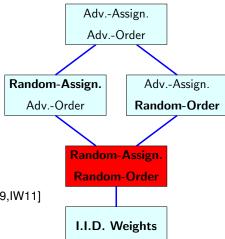


(Adv.-Assign. Adv.-Order)
 Hard: n-competitive ratio

[Babaioff, Immorlica, Kleinberg 07] Conjecture: O(1)-competitive algorithm for all other models.

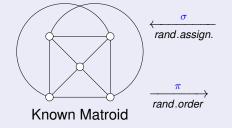
 (Adv.-Assign. Random-Order)
 O(1) for partition, graphic, transversal, laminar.
 [L61,D63,K05,BIK07,DP08,KP09,BDGIT09,IW11]
 O(log rk(ℳ)) for general matroids [BIK07].

(Random-Assign. Random-Order)
 [S11a] O(1) for general matroids.



Random-Assignment Random-Order.

Data



$$W\colon w_1\geq w_2\geq \cdots \geq w_n\geq 0.$$

Hidden weight list

Algorithm accepts of rejects.

Objective

Return an independent set $ALG \in \mathcal{I}$ such that:

$$\mathbb{E}_{\pi,\sigma}[w(\text{ALG})] \geq \Omega(1) \cdot \mathbb{E}_{\sigma}[w(\text{OPT})], \text{ where }$$

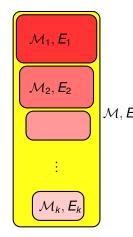
OPT is the optimum base of \mathcal{M} under assignment σ . (Greedy)

Divide and Conquer to get O(1)-competitive algorithm.

For a general matroid $\mathcal{M} = (E, \mathcal{I})$:

Find matroids $\mathcal{M}_i = (E_i, \mathcal{I}_i)$ with $E = \bigcup_{i=1}^k E_i$.

- \mathcal{M}_i admits O(1)-competitive algorithm (Easy parts).
- ② Union of independent sets in each \mathcal{M}_i is independent in \mathcal{M} . $\mathcal{I}(\bigoplus_{i=1}^k \mathcal{M}_i) \subseteq \mathcal{I}(\mathcal{M})$. (Combine nicely).
- Optimum in $\bigoplus_{i=1}^{k} \mathcal{M}_i$ is comparable with Optimum in \mathcal{M} . (Don't lose much).



(Easiest matroids): Uniform. [Independent sets = Sets of size $\leq r$.]

For r = 1: Dynkin's Algorithm

Observe n/e objects. Accept the first record after that.

Top weight is selected w.p. $\geq 1/e$.

(Easiest matroids): Uniform. [Independent sets = Sets of size $\leq r$.]

For r = 1: Dynkin's Algorithm

• Observe n/e objects. Accept the first record after that.

Top weight is selected w.p. $\geq 1/e$.

General r

Divide in r classes and apply Dynkin's algorithm in each class.

(Easiest matroids): Uniform. [Independent sets = Sets of size $\leq r$.]

For r = 1: Dynkin's Algorithm

• Observe *n*/*e* objects. Accept the first record after that.

Top weight is selected w.p. $\geq 1/e$.

General r

- Divide in *r* classes and apply Dynkin's algorithm in each class.
- Each of the r top weights is the best of its class with prob. $\geq (1 1/r)^{r-1} \geq C > 0$. Thus it is selected with prob. $\geq C/e$.

(Easiest matroids): Uniform. [Independent sets = Sets of size $\leq r$.]

For r = 1: Dynkin's Algorithm

• Observe n/e objects. Accept the first record after that.

Top weight is selected w.p. $\geq 1/e$.

General r

- Divide in *r* classes and apply Dynkin's algorithm in each class.
- Each of the r top weights is the best of its class with prob. $\geq (1 1/r)^{r-1} \geq C > 0$. Thus it is selected with prob. $\geq C/e$.
- *e/C* (constant) competitive algorithm.

(Easy matroids): Uniformly dense matroids are like Uniform

A loopless matroid is uniformly dense if

$$\frac{|F|}{\operatorname{rk}(F)} \le \frac{|E|}{\operatorname{rk}(E)}$$
, for all $F \ne \emptyset$.

(Easy matroids): Uniformly dense matroids are like Uniform

A loopless matroid is uniformly dense if

$$\frac{|F|}{\operatorname{rk}(F)} \le \frac{|E|}{\operatorname{rk}(E)}$$
, for all $F \ne \emptyset$.

Property: Sets of rk(E) elements have almost full rank.

$$\mathbb{E}_{(X:|X|=\mathrm{rk}(E))}[\mathrm{rk}(X)] \ge \mathrm{rk}(E)(1-1/e).$$

(Easy matroids): Uniformly dense matroids are like Uniform

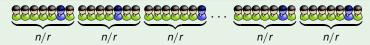
A loopless matroid is uniformly dense if

$$\frac{|F|}{\operatorname{rk}(F)} \le \frac{|E|}{\operatorname{rk}(E)}$$
, for all $F \ne \emptyset$.

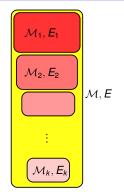
Property: Sets of rk(E) elements have almost full rank.

$$\mathbb{E}_{(X:|X|=\operatorname{rk}(E))}[\operatorname{rk}(X)] \geq \operatorname{rk}(E)(1-1/e).$$

Algorithm: Simulate e/C-comp. alg. for Uniform Matroids.



- Try to add each selected weight to the independent set.
- Selected elements have expected rank $\geq r(1-1/e)$.
- We recover $(1 1/e) \cdot C/e$ fraction of the top r weights.



Want:

Matroids $\mathcal{M}_1, \dots, \mathcal{M}_k$ such that:

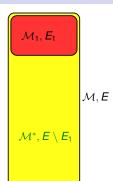
- Each \mathcal{M}_i is uniformly dense.
- ② If $I_i \in \mathcal{I}(\mathcal{M}_i)$, then $I_1 \cup I_2 \cup \cdots \cup I_k \in \mathcal{I}(\mathcal{M})$. (combine nicely)

Procedure.

• Let E_1 be the densest set of \mathcal{M} of maximum cardinality.

$$\gamma(\mathcal{M}) := \max_{F \subseteq E} \frac{|F|}{\operatorname{rk}_{\mathcal{M}}(F)} = \frac{|E_1|}{\operatorname{rk}_{\mathcal{M}}(E_1)}.$$

- $\mathcal{M}_1 = \mathcal{M}|_{E_1}$ is uniformly dense.
- $\mathcal{M}^* = \mathcal{M}/E_1$ loopless and combine nicely with \mathcal{M}_1 .



Want:

Matroids $\mathcal{M}_1, \dots, \mathcal{M}_k$ such that:

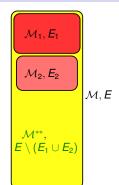
- **1** Each \mathcal{M}_i is uniformly dense.
- ② If $I_i \in \mathcal{I}(\mathcal{M}_i)$, then $I_1 \cup I_2 \cup \cdots \cup I_k \in \mathcal{I}(\mathcal{M})$. (combine nicely)

Procedure.

• Let E_1 be the densest set of \mathcal{M} of maximum cardinality.

$$\gamma(\mathcal{M}) := \max_{F \subseteq E} \frac{|F|}{\operatorname{rk}_{\mathcal{M}}(F)} = \frac{|E_1|}{\operatorname{rk}_{\mathcal{M}}(E_1)}.$$

- $\mathcal{M}_1 = \mathcal{M}|_{E_1}$ is uniformly dense.
- $\mathcal{M}^* = \mathcal{M}/E_1$ loopless and combine nicely with \mathcal{M}_1 .
- Iterate on \mathcal{M}^*



Want:

Matroids $\mathcal{M}_1, \dots, \mathcal{M}_k$ such that:

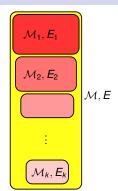
- **1** Each \mathcal{M}_i is uniformly dense.
- ② If $I_i \in \mathcal{I}(\mathcal{M}_i)$, then $I_1 \cup I_2 \cup \cdots \cup I_k \in \mathcal{I}(\mathcal{M})$. (combine nicely)

Procedure.

 Let E₁ be the densest set of M of maximum cardinality.

$$\gamma(\mathcal{M}) := \max_{F \subseteq E} \frac{|F|}{\operatorname{rk}_{\mathcal{M}}(F)} = \frac{|E_1|}{\operatorname{rk}_{\mathcal{M}}(E_1)}.$$

- $\mathcal{M}_1 = \mathcal{M}|_{E_1}$ is uniformly dense.
- $\mathcal{M}^* = \mathcal{M}/E_1$ loopless and combine nicely with \mathcal{M}_1 .
- Iterate on \mathcal{M}^*



Theorem (Principal Partition / Minors) [Tomizawa, Narayanan]

There exists a partition $E = \bigcup_{i=1}^{k} E_i$ such that

- **1** Each principal minor $\mathcal{M}_i = (\mathcal{M}/E_{i-1})|_{E_i}$ is uniformly dense.
- ② If $I_i \in \mathcal{I}(\mathcal{M}_i)$, then $I_1 \cup I_2 \cup \cdots \cup I_k \in \mathcal{I}(\mathcal{M})$.

Algorithm for a General Matroid $\mathcal M$

Algorithm

- **1** Let $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k$ be the principal minors.
- In each \mathcal{M}_i use the O(1)-competitive algorithm for uniformly dense matroids to obtain an independent set I_i .

Algorithm for a General Matroid $\mathcal M$

Algorithm

- **①** Let $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k$ be the principal minors.
- ② In each \mathcal{M}_i use the O(1)-competitive algorithm for uniformly dense matroids to obtain an independent set I_i .

Algorithm for a General Matroid \mathcal{M}

Algorithm

- Let $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k$ be the principal minors.
- In each \mathcal{M}_i use the O(1)-competitive algorithm for uniformly dense matroids to obtain an independent set I_i .
- 3 Return ALG = $I_1 \cup I_2 \cup \cdots \cup I_k$.

We have:

$$\mathbb{E}_{\pi,\sigma}[w(\text{ALG})] \geq \Omega(1)\mathbb{E}_{\sigma}[w(\text{OPT}_{\bigoplus \mathcal{M}_i})].$$

Also show $\mathbb{E}_{\sigma}[w(\overrightarrow{OPT}_{\bigoplus \mathcal{M}_i})] \geq 1/(1-1/e)\mathbb{E}_{\sigma}[w(\overrightarrow{OPT}_{\mathcal{M}})].$

Summary of results.

Summary

- First constant competitive algorithm for Matroid Secretary Problem in Random-Assign. Random-Order Model.
- [OG-V] uses the same ideas for Random-Assign. Adv.-Order Model.
- Algorithm only makes comparisons.

Results

		Order	
		ADV.	RAND.
	ADV.	n	$O(\log r)$
Assign.	RAND.	40/(1 – 1/ <i>e</i>) [OG-V11]	2e/(1 – 1/e) [S11a]
Assign.	INAIND.	16/(1 – 1/ <i>e</i>) [S11b]	5.7187 [S11b]

[Bruno, Weiberg, Tomizawa, Narayanan, Iri, Nakamura, Fujishige,...]

PP. of a matroid $\mathcal{M} = (E, \mathcal{I})$

[Bruno, Weiberg, Tomizawa, Narayanan, Iri, Nakamura, Fujishige,...]

PP. of a matroid $\mathcal{M} = (E, \mathcal{I})$

For $\lambda \geq 0$, let $f_{\lambda}(X) = \lambda r(X) + |E \setminus X|$ and \mathcal{D}_{λ} , the minimizers of f_{λ} .

• f_{λ} is submodular.

[Bruno, Weiberg, Tomizawa, Narayanan, Iri, Nakamura, Fujishige,...]

PP. of a matroid $\mathcal{M} = (E, \mathcal{I})$

- **1** f_{λ} is submodular.
- ② \mathcal{D}_{λ} is a distributive lattice: Unique minimal F_{λ}^{-} and maximal F_{λ}^{+} .

[Bruno, Weiberg, Tomizawa, Narayanan, Iri, Nakamura, Fujishige,...]

PP. of a matroid $\mathcal{M} = (E, \mathcal{I})$

- **1** f_{λ} is submodular.
- ② \mathcal{D}_{λ} is a distributive lattice: Unique minimal F_{λ}^{-} and maximal F_{λ}^{+} .
- **3** P.P.: Union of all \mathcal{D}_{λ} .

[Bruno, Weiberg, Tomizawa, Narayanan, Iri, Nakamura, Fujishige,...]

PP. of a matroid $\mathcal{M} = (E, \mathcal{I})$

- **1** f_{λ} is submodular.
- ② \mathcal{D}_{λ} is a distributive lattice: Unique minimal F_{λ}^{-} and maximal F_{λ}^{+} .
- **3** P.P.: Union of all \mathcal{D}_{λ} .
- Let $\lambda_1 > \cdots > \lambda_k \geq 0$ be the *critical values* s.t. $F_{\lambda}^- \neq F_{\lambda}^+$, then:

$$\emptyset = F_{\lambda_1}^- \subset (F_{\lambda_1}^+ = F_{\lambda_2}^-) \subset \cdots \subset (F_{\lambda_{k-1}}^+ = F_{\lambda_k}^-) \subset F_{\lambda_k}^+ = E.$$

[Bruno, Weiberg, Tomizawa, Narayanan, Iri, Nakamura, Fujishige,...]

PP. of a matroid $\mathcal{M} = (E, \mathcal{I})$

For $\lambda \geq 0$, let $f_{\lambda}(X) = \lambda r(X) + |E \setminus X|$ and \mathcal{D}_{λ} , the minimizers of f_{λ} .

- **1** f_{λ} is submodular.
- ② \mathcal{D}_{λ} is a distributive lattice: Unique minimal F_{λ}^{-} and maximal F_{λ}^{+} .
- **3** P.P.: Union of all \mathcal{D}_{λ} .
- 4 Let $\lambda_1 > \cdots > \lambda_k \geq 0$ be the *critical values* s.t. $F_{\lambda}^- \neq F_{\lambda}^+$, then:

$$\emptyset = F_{\lambda_1}^- \subset (F_{\lambda_1}^+ = F_{\lambda_2}^-) \subset \cdots \subset (F_{\lambda_{k-1}}^+ = F_{\lambda_k}^-) \subset F_{\lambda_k}^+ = E.$$

[Bruno, Weiberg, Tomizawa, Narayanan, Iri, Nakamura, Fujishige,...]

PP. of a matroid $\mathcal{M} = (E, \mathcal{I})$

For $\lambda \geq 0$, let $f_{\lambda}(X) = \lambda r(X) + |E \setminus X|$ and \mathcal{D}_{λ} , the minimizers of f_{λ} .

- **1** f_{λ} is submodular.
- ② \mathcal{D}_{λ} is a distributive lattice: Unique minimal F_{λ}^{-} and maximal F_{λ}^{+} .
- **3** P.P.: Union of all \mathcal{D}_{λ} .
- 4 Let $\lambda_1 > \cdots > \lambda_k \geq 0$ be the *critical values* s.t. $F_{\lambda}^- \neq F_{\lambda}^+$, then:

$$\emptyset = F_{\lambda_1}^- \subset (F_{\lambda_1}^+ = F_{\lambda_2}^-) \subset \cdots \subset (F_{\lambda_{k-1}}^+ = F_{\lambda_k}^-) \subset F_{\lambda_k}^+ = E.$$

Extension: Similar partition is obtained for

 $f_{\lambda}(X) = \lambda \rho_1(X) + \rho_2(E \setminus X)$, where ρ_i are polymatroid rank fns.

Open problems

Matroid Secretary Problems

- Find O(1)-comp. algorithm for Adv.-Assign. Random-Order Model.
- (Weaker) What if one can choose the next element being revealed?

Principal Partition (and general secretary problems)

- [BIK07]: Generalized secretary problem for hereditary domains.
 No o(log n/ log log n)-comp. algorithm.
 Can we attain O(log n) (or even o(n))?.
- Approximate notion of PP for non-matroidal domains?
 E.g. Matroid Intersection, p-independence systems.