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Matroids.

∅ 6= B ⊆ 2V is the basis system of a matroid if
Every B ∈ B has the same size.
basis exchange property: For all A,B ∈ B distinct
there are a ∈ A \ B, b ∈ B \ A s.t. A− a + b ∈ B.

A \B B \ A

A ∩B

a b

A \B B \ A

A ∩B

a b

A \B B \ A

A ∩B

a b

Independent sets I.
Independent Sets = Basis subset.

Examples of matroid bases
(Free) Only V .
(Uniform) Sets of size k .
(Graphic) Spanning forests.
(Linear) Vector space bases.
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Strongly Base Orderable (SBO) Matroids.

∅ 6= B ⊆ 2V is the basis system of a SBO matroid
Every B ∈ B has the same size.
(SBO) basis exchange property: For all A,B ∈ B distinct
∃ bijection π : A \ B → B \ A s.t. ∀X ⊆ A, A \ X ∪ π(X ) ∈ B.

A \B B \ A

A ∩B

A \B B \ A

A ∩B

A \B B \ A

A ∩B

Examples of SBO matroid bases
(Uniform) Sets of size k .
(Gammoid)

Maximum sets of clients
connected to servers
by edge-disjoint paths.
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Weighted Matroid Matching Problem

Problem
Weighted graph G = (V ,E), w : E → R+.
MatroidM = (V , I).

A matching M ⊆ E is feasible forM if V (M) is independent.
Goal: Find a maximum weight feasible matching.
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Weighted Matroid Matching Problem

Problem
Weighted graph G = (V ,E), w : E → R+.
MatroidM = (V , I).

A matching M ⊆ E is feasible forM if V (M) is independent.
Goal: Find a maximum weight feasible matching.

Weighted Matching
Free matroid.

Weighted Matroid
Intersection

M1 M2⊕
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Complexity of WMM

Not in oracle coNP even for unweighted case.
NP-hard even for unweighted case.
Special subproblems in P:
Weighted matching / Weighted Matroid Intersection.
(Lovász 1981) Unweighted case in P for linear matroids.
(Tong et al. 1982) Weighted case in P for gammoids.
(Camerini et al. 1992, Narayanan et al. 1994)
Pseudopolynomial for weighted case in linear matroids.
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Approximation algorithms

Unweighted
Greedy gives 2-approximation.

(Fujito 1993) 3/2-approximation using local search.
(Lee et al. 2010) PTAS using local search.

Weighted

Greedy gives 2-approximation.
(S. 2011) PTAS for SBO-matroids.
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WMM on SBO-matroids

Hardness
Still outside oracle coNP and NP-hard.

Simplification:
G = matching.

G,M

G′,M′

Weighted Parity on SBO-matroids
Find maximum weight paired basis of
a SBO-matroidM. (with dummy pairs)
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Local moves

t-swap: For a current paired basis A
Swap at most t pairs to obtain paired basis B.
Gain: w(B)− w(A). High gain: w(B)− w(A) ≥ w(A)/n2.

Algorithm: For constant 1 ≤ t ≤ n,
Start with greedy solution.
Do t-swaps with high gain until local optimum is found.

At most O(log(1+1/n2) 1/2) = O(n2) moves suffice.

Can find an t-local optimum in polynomial time (O(n2t+2))
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Main result for WMM on SBO-matroids.

Theorem
If paired basis A is a t-local optimum and B = OPT then

w(B) ≤
(

1 +
2

t − 1

)
w(A).

PTAS: To get (1 + ε)-approx set t = 1 + 2/ε.
Running time nO(1/ε).

Auxiliar construction
Matroid with dummy
pairs is still SBO...
(multi)graph H of
degrees 0 and 2.
~H: Union of directed
cycles.

A ∩B

A \B B \ A

A ∩B

A \B B \ A
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Proof of w(B) ≤ (1 + 2/(t − 1))w(A).

For a pair p of A,

Hp: Reachable from p using
≤ 2(t − 1) edges.

swap(p): Swap Hp ∩ A by
Hp ∩ B (plus perhaps one
dummy pair).

p

ppp

Since we swap at most t pairs

w(A)/n2 > Gain(swap(p)) = w(Hp ∩ B)− w(Hp ∩ A).
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Proof of w(B) ≤ (1 + 2/(t − 1))w(A). (cont.)

p

p

p

p

p

p p

∑
p∈Along

w(A)
n2 >

∑
p∈Along

w(Hp ∩ B)− w(Hp ∩ A)

= (t − 1)w(Blong)− t w(Along).

∑
p∈Arest

w(A)
n2 >

∑
p∈Arest

w(Hp ∩ B)− w(Hp ∩ A)

= w(Brest)− w(Arest).

(t − 1)w(B)− t w(A) ≤
(
(t − 1)w(Blong)− t w(Along)

)
+ t (w(Brest)− w(Arest))

<
w(A)

n2

(
|Along|+ t |Arest|

)
≤ w(A).
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Proof of w(B) ≤ (1 + 2/(t − 1))w(A). (cont.)
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Summary

Conclusions
First PTAS for Weighted Matroid Matching on Strongly Orderable
Matroids.

Open Problems
Can we get a PTAS for general matroids?
Can we get a FPTAS for this class?
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