Advances on Matroid Secretary Problem: Free Order and Laminar Case

Patrick Jaillet

José A. Soto

Rico Zenklusen

Johns Hopkins University

March 18th, 2013

Matroid Secretary Problem: Outline

- Random Order Matroid Secretary Problem
 - Laminar matroids

Free Order Model Variant

Matroid Secretary Problem: Outline

- Random Order Matroid Secretary Problem
 - Laminar matroids

Pree Order Model Variant

Secretary Problem

Classical Problem: Select top element of an *n*-stream.

- Hire one person from n candidates arriving in unif. random order.
- Each person reveals a hidden weight during interview.
- Rule: Must decide during the interview.

Best algorithm (variant of Lindley / Dynkin 60's)

- Wait until Bin(n, 1/e) elements have revealed its weight.
- Select the first record among remaining ones.

This return the top candidate with probability 1/e.

Matroids (recap)

Generalize linear independence.

E: ground set of elements.

 \mathcal{I} : independent sets satisfying:

- \bullet $\emptyset \in \mathcal{I}$.
- If $A \in \mathcal{I}$ then every subset $A' \subseteq A$ is in \mathcal{I} .
- If $A, B \in \mathcal{I}$ and |A| < |B| then $\exists y \in B : A \cup \{y\} \in \mathcal{I}$.

Extra notions, for $X \subseteq E$:

- rk(X) is the size of largest independent set in X.
- $\operatorname{span}(X)$ is the largest set containing X with $\operatorname{rk}(X) = \operatorname{rk}(\operatorname{span}(X))$.

Examples

Linear matroids.

E: Finite family of vectors.

 \mathcal{I} : Linearly independent set.

Graphic matroids.

E: Edges of a graph.

 \mathcal{I} : Forests.

Partition matroids.

 $E: E_1 \cup \cdots \cup E_k$.

 \mathcal{I} : $I \subseteq E$ with $|E_i \cap I| \leq b_i$.

Gammoids.

E: Clients in a directed network.

I: Sets that can be connected to a given server on disjoint paths.

[Babaioff, Immorlica, Kleinberg 2007]

- Want: High weight independent set. (e.g. select a forest).
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

[Babaioff, Immorlica, Kleinberg 2007]

- Want: High weight independent set. (e.g. select a forest).
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

[Babaioff, Immorlica, Kleinberg 2007]

- Want: High weight independent set. (e.g. select a forest).
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

[Babaioff, Immorlica, Kleinberg 2007]

- Want: High weight independent set. (e.g. select a forest).
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

[Babaioff, Immorlica, Kleinberg 2007]

- Want: High weight independent set. (e.g. select a forest).
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

[Babaioff, Immorlica, Kleinberg 2007]

- Want: High weight independent set. (e.g. select a forest).
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

[Babaioff, Immorlica, Kleinberg 2007]

- Want: High weight independent set. (e.g. select a forest).
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

[Babaioff, Immorlica, Kleinberg 2007]

- Want: High weight independent set. (e.g. select a forest).
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

[Babaioff, Immorlica, Kleinberg 2007]

- Want: High weight independent set. (e.g. select a forest).
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

[Babaioff, Immorlica, Kleinberg 2007]

- Want: High weight independent set. (e.g. select a forest).
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

[Babaioff, Immorlica, Kleinberg 2007]

- Want: High weight independent set. (e.g. select a forest).
- Hidden weights are revealed in uniform random order.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

[Babaioff, Immorlica, Kleinberg 2007]

- Want: High weight independent set. (e.g. select a forest).
- Hidden weights are revealed in uniform random order.

Competitive ratio: $\frac{w(OPT)}{\mathbb{E}[w(ALG)]}$.

- Accept or reject an element when its weight is revealed.
- Accepted elements must form an independent set.

Previous work on Random Order Model

 Conjecture [BIK07]: There is an O(1)-competitive algorithm for random order of MSP.

Previous work on Random Order Model

- Conjecture [BIK07]: There is an O(1)-competitive algorithm for random order of MSP.
- [BIK07] $O(\log \operatorname{rk}(M))$ for general matroids.
- [CL12] $O(\sqrt{\log \operatorname{rk}(M)})$ for general matroids.
- *O*(1) for:
 - [K05] Partition.
 - [BIK07,KP09] Graphic.
 - [BIK07,DP08,KP09] Transversal.
 - [S11] Cographic.
 - [IW11] Laminar.
 - [DK12] Regular.
 - Other cases (low density, sparse linear, truncations, parallel extensions).

Laminar Matroids

T: Rooted tree with positive capacities b(v) on internal nodes.

E: Leaves.

 $I \subseteq E$ is independent iff $|I \cap L(v)| \le b(v)$, for every internal v.

Laminar Matroids

T: Rooted tree with positive capacities b(v) on internal nodes. E: Leaves.

 $I \subseteq E$ is independent iff $|I \cap L(v)| \le b(v)$, for every internal v.

Important: Each v correspond to a consecutive interval of E. These intervals form a laminar family.

Results.

There is a very involved algorithm by Im and Wu (2011) Large constant 16000/3-competitive.

Theorem [JSZ12]

There is a simple $3\sqrt{3}e \approx 14.12$ -competitive algorithm.

Here: I will show an 16*e*-competitive algorithm.

- **1** $A \leftarrow \text{first Bin}(n, 1/2)$ elements revealed. $\bigcirc \leftarrow A$.
- ② Use OPT(A) to divide $E \setminus A$ into intervals P_1, P_2, \dots, P_k .
- ullet Run e-competitive alg. to select top element of each interval in \mathcal{S} .

- **1** $A \leftarrow \text{first Bin}(n, 1/2)$ elements revealed. $\bigcirc \leftarrow A$.
- ② Use OPT(A) to divide $E \setminus A$ into intervals P_1, P_2, \ldots, P_k .
- ullet Run e-competitive alg. to select top element of each interval in \mathcal{S} .

- **1** $A \leftarrow \text{first Bin}(n, 1/2)$ elements revealed. $\bigcirc \leftarrow A$.
- ② Use OPT(A) to divide $E \setminus A$ into intervals P_1, P_2, \ldots, P_k .
- $\mathcal{S} = \begin{cases} \text{Even intervals}, & \text{with prob. 1/2.} \\ \text{Odd intervals}, & \text{with prob. 1/2.} \end{cases}$
 - ullet Run e-competitive alg. to select top element of each interval in \mathcal{S} .

- **1** $A \leftarrow \text{first Bin}(n, 1/2)$ elements revealed. $\bigcirc \leftarrow A$.
- ② Use OPT(A) to divide $E \setminus A$ into intervals P_1, P_2, \ldots, P_k .
- $\mathcal{S} = \begin{cases} \text{Even intervals}, & \text{with prob. 1/2.} \\ \text{Odd intervals}, & \text{with prob. 1/2.} \end{cases}$
- ullet Run e-competitive alg. to select top element of each interval in \mathcal{S} .

Correctness

Let $I \subseteq \bigcup S$ and $|I \cap P| \le 1$ for each $P \in S$ then I is independent.

Correctness

Let $I \subseteq \bigcup S$ and $|I \cap P| \le 1$ for each $P \in S$ then I is independent.

Proof: Let *v* be an internal node.

- If $|I \cap L(v)| \leq 1$, we are OK.
- If $|I \cap L(v)| \ge 2$. Between every pair of I there are ≥ 2 elements of OPT(A). Then: $|I \cap L(v)| \le |OPT(A) \cap L(v)| \le b(v)$.

• With prob 1/8: $f_- \in A$, $f \notin A$, $f_+ \in A$.

• With prob 1/8: $f_- \in A$, $f \notin A$, $f_+ \in A$. Then $f_-, f_+ \in OPT(A)$ and $P(f) \in (f_- \dots f_+)$.

- With prob 1/8: $f_- \in A$, $f \notin A$, $f_+ \in A$. Then $f_-, f_+ \in OPT(A)$ and $P(f) \in (f_- \dots f_+)$.
- With prob 1/2: $P(f) \in \mathcal{S}$ (good parity).

- With prob 1/8: $f_- \in A$, $f \notin A$, $f_+ \in A$. Then $f_-, f_+ \in OPT(A)$ and $P(f) \in (f_- \dots f_+)$.
- With prob 1/2: $P(f) \in \mathcal{S}$ (good parity).
- With probability 1/e, in P(f) we recover weight $\geq w(f)$.

- With prob 1/8: $f_- \in A$, $f \notin A$, $f_+ \in A$. Then $f_-, f_+ \in OPT(A)$ and $P(f) \in (f_- \dots f_+)$.
- With prob 1/2: $P(f) \in \mathcal{S}$ (good parity).
- With probability 1/e, in P(f) we recover weight $\geq w(f)$.

 $\mathbb{E}[ALG] \geq \mathbb{E}[OPT]/(16e)$

Matroid Secretary Problem: Outline

- Random Order Matroid Secretary Problem
 - Laminar matroids

Free Order Model Variant

Free Order Model

We can choose the order in which elements reveal their weight.

Theorem [JSZ12]

There is a simple 9-competitive algorithm for any matroid in FOM.

Plan: Try to accept each $x \in \text{OPT}$ with constant probability $(\geq 1/9)$.

Free Order Model

We can choose the order in which elements reveal their weight.

Theorem [JSZ12]

There is a simple 9-competitive algorithm for any matroid in FOM.

Plan: Try to accept each $x \in \text{OPT}$ with constant probability $(\geq 1/9)$.

Good elements

An element e is good for $X \subseteq E \setminus \{e\}$ if $e \in OPT(X \cup \{e\})$.

Elements in OPT are Good for any set!

First attempt

(Incorrect) Algorithm:

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning *E* into *A* and *B*. Observe *A*.

For every e of B in random order: If (e is good for A) and $(ALG + e \in \mathcal{I})$ Then add e to ALG.

First attempt

(Incorrect) Algorithm:

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning *E* into *A* and *B*. Observe *A*.

For every e of B in random order: If (e is good for A) and $(ALG + e \in \mathcal{I})$ Then add e to ALG.

Problem:

Might accept low-weight good elements that later block high-weight good elements.

First attempt

(Incorrect) Algorithm:

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning E into A and B. Observe A.

For every e of B in random order: If (e is good for A) and $(ALG + e \in \mathcal{I})$ Then add e to ALG.

Problem:

Might accept low-weight good elements that later block high-weight good elements.

Idea:

Let $A_i = \{a_1, \dots, a_i\}$ be the top i weights in A.

• Good elements for A_i in $B \cap \text{span}(A_i)$ have weight at least $w(a_i)$.

Algorithm

Online.

```
ALG \leftarrow \emptyset.
```

Every element flips a coin partitioning *E* into *A* and *B*.

Observe and sort $A = \{a_1, \dots, a_s\}$ by weight.

```
For i=1 to s.

For every e \in (B \cap \operatorname{span}(A_i)) not yet seen If (\operatorname{ALG} + e \in \mathcal{I}) and (w(e) > w(a_i)) then add e to ALG.
```

Algorithm

Offline simulation.

```
ALG \leftarrow \emptyset.
```

Every element flips a coin partitioning *E* into *A* and *B*.

Sort
$$E = \{e_1, \dots, e_n\}$$
 by weight. "See" A .

For i = 1 to n.

```
For every e \in (B \cap \text{span}(A \cap E_i)) not yet seen.
```

```
If (ALG + e \in \mathcal{I}) and (w(e) > w(e_i)) then add e to ALG.
```

Algorithm

Offline simulation.

```
ALG \leftarrow \emptyset.
```

Every element flips a coin partitioning *E* into *A* and *B*.

Sort
$$E = \{e_1, \dots, e_n\}$$
 by weight. "See" A .

For i = 1 to n.

For every $e \in (B \cap \operatorname{span}(A \cap E_i))$ not yet seen.

If
$$(ALG + e \in \mathcal{I})$$
 and $(w(e) > w(e_i))$ then add e to ALG .

Simplifying assumption:

For all $f \in E$: $Pr(f \in span(A - f)) \approx 1$.

Analysis (1): Let $f \in OPT$.

Let $E = \{e_1, e_2, \dots, e_n\}$ sorted by weights, and $E_i = \{e_1, \dots, e_i\}$.

Let $p_i(f) = \Pr(f \in \operatorname{span}(A \cap E_i - f))$.

- $p_n(f) \approx 1$.
- $p_0(f) = 0$
- $p_i(f) \leq p_{i+1}(f)$.

Analysis (1): Let $f \in OPT$.

Let
$$E = \{e_1, e_2, \dots, e_n\}$$
 sorted by weights, and $E_i = \{e_1, \dots, e_i\}$.

Let
$$p_i(f) = \Pr(f \in \operatorname{span}(A \cap E_i - f)).$$

- $p_n(f) \approx 1$.
- $p_0(f) = 0$
- $p_i(f) \leq p_{i+1}(f)$.

Can show that there is *j* such that $1/3 \le p_j(f) \le 2/3$.

Analysis (2)

$$1/3 \leq \underbrace{\Pr(\mathbf{f} \in \operatorname{opt}_{j} - \mathbf{f})}_{p_{j}(\mathbf{f})} \leq 2/3.$$

Offline simulation.

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning *E* into *A* and *B*.

Sort
$$E = \{e_1, \dots, e_n\}$$
 by weight. "See" A .

For i = 1 to n.

For every $e \in (B \cap \text{span}(A \cap E_i))$ not yet seen.

If
$$(ALG + e \in \mathcal{I})$$
 and $(w(e) > w(e_i))$ then add e to ALG .

Analysis (2)

$$1/3 \leq \underbrace{\Pr(\mathbf{f} \in \operatorname{span}(A \cap E_j - \mathbf{f}))}_{p_j(\mathbf{f})} \leq 2/3.$$

Offline simulation.

$$ALG \leftarrow \emptyset$$
.

Every element flips a coin partitioning *E* into *A* and *B*.

Sort
$$E = \{e_1, \dots, e_n\}$$
 by weight. "See" A .

For i = 1 to n.

For every $e \in (B \cap \text{span}(A \cap E_i))$ not yet seen.

If
$$(ALG + e \in \mathcal{I})$$
 and $(w(e) > w(e_i))$

then add e to ALG.

Consider the events:

$$\mathcal{E}_1$$
 $f \in \mathcal{B}$.

$$\mathcal{E}_2$$
 $\mathbf{f} \in \operatorname{span}(\mathbf{A} \cap \mathbf{E}_j - \mathbf{f}). \Rightarrow$

$$\mathcal{E}_3 \not f \notin \operatorname{span}(B \cap E_j - f).$$

- f is not "sampled".
- f is "called" on some iteration $i \leq j$.
- f is not in the span of ALG when called.

Analysis (2)

$$1/3 \leq \underbrace{\Pr(\mathbf{f} \in \operatorname{span}(A \cap E_j - \mathbf{f}))}_{p_j(\mathbf{f})} \leq 2/3.$$

Offline simulation.

 $ALG \leftarrow \emptyset$.

Every element flips a coin partitioning *E* into *A* and *B*.

Sort
$$E = \{e_1, \dots, e_n\}$$
 by weight. "See" A .

For i = 1 to n.

For every $e \in (B \cap \text{span}(A \cap E_i))$ not yet seen.

If
$$(ALG + e \in \mathcal{I})$$
 and $(w(e) > w(e_i))$ then add e to ALG .

Consider the events:

$$\mathcal{E}_1$$
 $f \in B$.

$$\mathcal{E}_2 \ \mathbf{f} \in \operatorname{span}(\mathbf{A} \cap \mathbf{E}_j - \mathbf{f}). \Rightarrow$$

$$\mathcal{E}_3$$
 $f \notin \operatorname{span}(B \cap E_j - f)$.

$$\begin{array}{ll} \Pr[\mathcal{E}_{1} \cap \mathcal{E}_{2} \cap \mathcal{E}_{3}] \\ &= \Pr[\mathcal{E}_{1}] \cdot \Pr[\mathcal{E}_{2} \cap \mathcal{E}_{3}] \\ &\geq \Pr[\mathcal{E}_{1}] \cdot \Pr[\mathcal{E}_{2}] \cdot \Pr[\mathcal{E}_{3}] \\ &= (1/2) \cdot p_{i}(f) \cdot (1 - p_{i}(f)) \geq 1/9. \end{array}$$

Conclusion

Our algorithm returns a set ALG such that

$$\forall f \in \text{OPT}, \ \text{Pr}(f \in \text{ALG}) \ge 1/9.$$

In particular,

$$\mathbb{E}[w(ALG)] \geq \frac{1}{9}w(OPT).$$

9-competitive algorithm for Free Order Model!

Final Words

- Simple constant competitive algorithm for Laminar Matroids on Random Order Model.
- Constant competitive algorithm for Free Order Model.

Open

- Free order under different constraints (matroid intersections, p-systems, etc.)?
- Use ideas of free order to get constant in random order?
- Random Order for Gammoids.