TSP in cubic graphs. Beyond 4/3.

J. Correa, O. Larré, J.A. Soto

U. de Chile, TU-Berlin

Ljubljana, Sept. 12th, 2012.

A motivation from graph theory: Barnette's conjecture.

Barnette's conjecture (1969/70):

Cubic, 3-conn., planar, bipartite graphs are Hamiltonian.

Barnette

- · Open for more than 40 years.
- Rich history (sequence of conjectures).
- Good evidence in favor.
 - Minimal counterexample has > 84 vertices (Holton et al. 85, McKay et al. 00).
 - True if faces are square and hexagons (Goodey 75).
 - Equivalent/stronger formulations.

TSP?

We do not know if Barnette graphs are Hamiltonian. What about (short) tours?

Tour: closed walk visiting all vertices at least once.

Can we find a tour of length n? ... $(1 + \varepsilon)n$? ... cn?

$$|F| = 2 + |E| - |V|$$

= 2 + 3n/2 - n
= (n + 4)/2.

Barnette (cubic, 3-conn, planar, bipartite) graphs are **3-face-colorable**.

$$|F| = 2 + |E| - |V|$$

= 2 + 3n/2 - n
= (n + 4)/2.

• One color class has $\leq (n+4)/6$ faces.

$$|F| \underset{\text{Euler}}{=} 2 + |E| - |V|$$

 $\underset{\text{cubic}}{=} 2 + 3n/2 - n$
 $= (n+4)/2$.

- One color class has $\leq (n+4)/6$ faces.
- Connect them by a (doubled) spanning tree of faces. Get a tour of length $\leq n + 2((n+4)/6 - 1) = 4n/3 - 2/3$.

But 4n/3 is achievable for many superclasses.

- Barnette graphs (3-conn., cubic, bipartite, planar).
- 3-conn., cubic (Aggarwal, Garg, Gupta, 2011)
- 2-conn., cubic (Boyd, Sitters, van der Ster, Stougie, 2011)
- 2-conn., subcubic (Mömke, Svensson, 2011)
- 3-conn., planar (Kawarabayashi, Ozeki, 2012)

Can we find tours of length << (4/3)n in some of these cases?

But 4n/3 is achievable for many superclasses.

- Barnette graphs (3-conn., cubic, bipartite, planar).
- 3-conn., cubic (Aggarwal, Garg, Gupta, 2011)
- 2-conn., cubic (Boyd, Sitters, van der Ster, Stougie, 2011)
- 2-conn., subcubic (Mömke, Svensson, 2011) No.
- 3-conn., planar (Kawarabayashi, Ozeki, 2012) No.

Can we find tours of length << (4/3)n in some of these cases?

But 4n/3 is achievable for many superclasses.

- Barnette graphs (3-conn., cubic, bipartite, planar).
- 3-conn., cubic (Aggarwal, Garg, Gupta, 2011)
- 2-conn., cubic (Boyd, Sitters, van der Ster, Stougie, 2011)
- 2-conn., subcubic (Mömke, Svensson, 2011) No.
- 3-conn., planar (Kawarabayashi, Ozeki, 2012) No.

Can we find tours of length << (4/3)n in some of these cases?

Yes! [CLS12]:

2-connected, cubic graphs have tours of size $\leq (4/3 - \varepsilon)n$

Warmout: Barnette Graphs

- **3-face-colorable:** There is a cycle-cover with $\leq n/6$ cycles.
- Idea: Find cycle-cover with $\leq \alpha n$ cycles. to get tour of length $\leq n(1 + 2\alpha)$.

Want a cycle-cover containing the edges outside red faces with small number of cycles.

• Start from such a cycle cover.

- Start from such a cycle cover.
- For each red face f:
 If we can improve C by alternating f's boundary. Do it.

- Start from such a cycle cover.
- For each red face f:
 If we can improve C by alternating f's boundary. Do it.

- Start from such a cycle cover.
- For each red face f:
 If we can improve C by alternating f's boundary. Do it.

- Start from such a cycle cover.
- For each red face f:
 If we can improve C by alternating f's boundary. Do it.

- Start from such a cycle cover.
- For each red face f:
 If we can improve C by alternating f's boundary. Do it.

- Start from such a cycle cover.
- For each red face f:
 If we can improve C by alternating f's boundary. Do it.

Local search: 3 cycle covers C_1, C_2, C_3 . Select C as the one with fewer cycles.

Theorem (CLS12+)

We can find a cycle-cover C with $|C| \le 5n/36$. Tour of length $\le n(1+5/18) = (4/3-1/18)n$.

Analysis uses Euler's formula and average argument.

Barnette (cubic,3-conn,bipartite,planar):
 Local search achieves (4/3 – 1/18)n.

- Barnette (cubic,3-conn,bipartite,planar):
 Local search achieves (4/3 1/18)n.
- Cubic, 3-conn, bipartite:
 They admit three disjoint perfect matchings E₁, E₂, E₃.
 and by excluding each of them, three cycle covers.
- Local improvements?

- Barnette (cubic,3-conn,bipartite,planar):
 Local search achieves (4/3 1/18)n.
- Cubic, 3-conn, bipartite:
 They admit three disjoint perfect matchings E₁, E₂, E₃.
 and by excluding each of them, three cycle covers.
- Local improvements?
- If there is a (short) "alternating cycle" reducing the number of cycles, use it.

- Barnette (cubic,3-conn,bipartite,planar):
 Local search achieves (4/3 1/18)n.
- Cubic, 3-conn, bipartite:
 They admit three disjoint perfect matchings E₁, E₂, E₃.
 and by excluding each of them, three cycle covers.
- Local improvements?
- If there is a (short) "alternating cycle" reducing the number of cycles, use it.

- Barnette (cubic,3-conn,bipartite,planar):
 Local search achieves (4/3 1/18)n.
- Cubic, 3-conn, bipartite:
 They admit three disjoint perfect matchings E₁, E₂, E₃.
 and by excluding each of them, three cycle covers.
- Local improvements?
- If there is a (short) "alternating cycle" reducing the number of cycles, use it.

- Barnette (cubic,3-conn,bipartite,planar):
 Local search achieves (4/3 1/18)n.
- Cubic, 3-conn, bipartite:
 They admit three disjoint perfect matchings E₁, E₂, E₃.
 and by excluding each of them, three cycle covers.
- Local improvements?
- If there is a (short) "alternating cycle" reducing the number of cycles, use it.

- Barnette (cubic,3-conn,bipartite,planar):
 Local search achieves (4/3 1/18)n.
- Cubic, 3-conn, bipartite:
 They admit three disjoint perfect matchings E₁, E₂, E₃.
 and by excluding each of them, three cycle covers.
- Local improvements?
- If there is a (short) "alternating cycle" reducing the number of cycles, use it.
- Not planar anymore, so analysis is different (follow Boyd et al.)

• Improve each $\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3$ locally (squares and hexagons). Label $\ell(v) = (\ell_1(v), \ell_2(v), \ell_3(v))$, where $\ell_i(v) :=$ length of cycle in \mathcal{C}_i containing v.

- Improve each C_1, C_2, C_3 locally (squares and hexagons). Label $\ell(v) = (\ell_1(v), \ell_2(v), \ell_3(v))$, where $\ell_i(v) :=$ length of cycle in C_i containing v.
- Define $z_i(v) = (1 + \frac{2}{\ell_i(v)})$, then

$$\sum_{v \in V} z_i(v) = n + 2(\# \text{cycles}) = \text{length of tour } i + 2.$$

- Improve each C_1, C_2, C_3 locally (squares and hexagons). Label $\ell(v) = (\ell_1(v), \ell_2(v), \ell_3(v))$, where $\ell_i(v) :=$ length of cycle in C_i containing v.
- Define $z_i(v) = (1 + \frac{2}{\ell_i(v)})$, then

$$\sum_{v \in V} z_i(v) = n + 2(\# \text{cycles}) = \text{length of tour } i + 2.$$

• Contribution of v: $z(v) = \frac{1}{3} \sum_{i=1}^{3} z_i(v)$, then

$$\sum_{v \in V} z(v) \ge \text{length of best tour}.$$

- Improve each C_1, C_2, C_3 locally (squares and hexagons). Label $\ell(v) = (\ell_1(v), \ell_2(v), \ell_3(v))$, where $\ell_i(v) :=$ length of cycle in C_i containing v.
- Define $z_i(v) = (1 + \frac{2}{\ell_i(v)})$, then

$$\sum_{v \in V} z_i(v) = n + 2(\# \text{cycles}) = \text{length of tour } i + 2.$$

• Contribution of v: $z(v) = \frac{1}{3} \sum_{i=1}^{3} z_i(v)$, then

$$\sum_{v \in V} z(v) \ge \text{length of best tour.}$$

• Want z(v) < 4/3 in average. (essentially we win if $\ell_i(v) > 6$)

Lemma (After processing squares and hexagons)

- If $\ell(v) = (4, j, k)$, then $j, k \ge 10$.
- No 6-cycle is completely (6, 6, 6).

Lemma (After processing squares and hexagons)

- If $\ell(v) = (4, j, k)$, then $j, k \ge 10$.
- No 6-cycle is completely (6, 6, 6).

Using the first part of lemma.

• If
$$\ell_i(v) = 4$$
, then $z(v) \le \left(\frac{6}{4} + \frac{12}{10} + \frac{12}{10}\right)/3 = \frac{13}{10} \le \frac{4}{3} - \epsilon$.

Lemma (After processing squares and hexagons)

- If $\ell(v) = (4, j, k)$, then $j, k \ge 10$.
- No 6-cycle is completely (6, 6, 6).

Using the first part of lemma.

• If
$$\ell_i(v) = 4$$
, then $z(v) \le \left(\frac{6}{4} + \frac{12}{10} + \frac{12}{10}\right)/3 = \frac{13}{10} \le \frac{4}{3} - \epsilon$.

If
$$\ell(v) \neq (6,6,6)$$
 then $z(v) \leq \frac{4}{3} - \epsilon$.
If $\ell(v) = (6,6,6)$ then $z(v) = \frac{4}{3}$.

Lemma (After processing squares and hexagons)

- If $\ell(v) = (4, j, k)$, then $j, k \ge 10$.
- No 6-cycle is completely (6, 6, 6).

Using the first part of lemma.

• If
$$\ell_i(v) = 4$$
, then $z(v) \le \left(\frac{6}{4} + \frac{12}{10} + \frac{12}{10}\right)/3 = \frac{13}{10} \le \frac{4}{3} - \epsilon$.

If
$$\ell(v) \neq (6,6,6)$$
 then $z(v) \leq \frac{4}{3} - \epsilon$.
If $\ell(v) = (6,6,6)$ then $z(v) = \frac{4}{3}$.

Second part of lemma + averaging argument:

Theorem (Theorem CLS12+)

In average, $z(v) < \frac{4}{3} - \frac{1}{108}$. Tour of length $\leq (\frac{4}{3} - \frac{1}{108})n$.

Proof flavour of the lemma.

No hexagon has all its vertices labeled (6, 6, 6).

Assume otherwise. Since $\ell_i(v)$ are increasing, the hexagons exists from the beginning (i.e. coming from 3-colored matchings).

At the end, the hexagon is an improving alternating cycle.

Proof flavour of the lemma.

No hexagon has all its vertices labeled (6, 6, 6).

Assume otherwise. Since $\ell_i(v)$ are increasing, the hexagons exists from the beginning (i.e. coming from 3-colored matchings).

At the end, the hexagon is an improving alternating cycle.

In cubic, 3-conn., bip., we get $\leq (4/3 - 1/108)n$.

• What about cubic, 2-connected? Not 3-edge colorable but...

In cubic, 3-conn., bip., we get $\leq (4/3 - 1/108)n$.

- What about cubic, 2-connected? Not 3-edge colorable but...
- (Boyd et al.) Can find collection of special cycle covers (complements of 3-cut perfect matchings) $\{C_i\}_i$ such that

$$(2/3)\chi(E) = \sum_{i} \lambda_{i}\chi(C_{i}), \quad \sum_{i} \lambda_{i} = 1, \quad \lambda_{i} \geq 0.$$

In cubic, 3-conn., bip., we get $\leq (4/3 - 1/108)n$.

- What about cubic, 2-connected? Not 3-edge colorable but...
- (Boyd et al.) Can find collection of special cycle covers (complements of 3-cut perfect matchings) $\{C_i\}_i$ such that

$$(2/3)\chi(E) = \sum_{i} \lambda_{i}\chi(C_{i}), \quad \sum_{i} \lambda_{i} = 1, \quad \lambda_{i} \geq 0.$$

 "Improving" each cover separately by finding augmenting 4 and 6 cycles is not enough.

In cubic, 3-conn., bip., we get $\leq (4/3 - 1/108)n$.

- What about cubic, 2-connected? Not 3-edge colorable but...
- (Boyd et al.) Can find collection of special cycle covers (complements of 3-cut perfect matchings) $\{C_i\}_i$ such that

$$(2/3)\chi(E) = \sum_{i} \lambda_{i}\chi(C_{i}), \quad \sum_{i} \lambda_{i} = 1, \quad \lambda_{i} \geq 0.$$

 "Improving" each cover separately by finding augmenting 4 and 6 cycles is not enough. As Boyd et al., we also need to use pentagons to improve a cycle-cover.

In cubic, 3-conn., bip., we get $\leq (4/3 - 1/108)n$.

- What about cubic, 2-connected? Not 3-edge colorable but...
- (Boyd et al.) Can find collection of special cycle covers (complements of 3-cut perfect matchings) $\{C_i\}_i$ such that

$$(2/3)\chi(E) = \sum_{i} \lambda_{i}\chi(C_{i}), \quad \sum_{i} \lambda_{i} = 1, \quad \lambda_{i} \geq 0.$$

 "Improving" each cover separately by finding augmenting 4 and 6 cycles is not enough. As Boyd et al., we also need to use pentagons to improve a cycle-cover.

In cubic, 3-conn., bip., we get $\leq (4/3 - 1/108)n$.

- What about cubic, 2-connected? Not 3-edge colorable but...
- (Boyd et al.) Can find collection of special cycle covers (complements of 3-cut perfect matchings) $\{C_i\}_i$ such that

$$(2/3)\chi(E) = \sum_{i} \lambda_{i}\chi(C_{i}), \quad \sum_{i} \lambda_{i} = 1, \quad \lambda_{i} \geq 0.$$

 "Improving" each cover separately by finding augmenting 4 and 6 cycles is not enough. As Boyd et al., we also need to use pentagons to improve a cycle-cover.

• We need Eulerian subgraphs covers instead of cycle-covers.

Algorithm: Based on Boyd et al.'s algorithm.

- Find a decomposition of (2/3)χ(E) as convex comb. of complements of 3-cut perfect matchings, λ₁χ(C₁),...,λ_kχ(C_k)
- For each *i*, do the following local moves:
 - Use squares and hexagons to improve C_i as possible.
 - Use pentagons to improve C_i .
- Return the final cover of the list yielding the smallest tour.

Algorithm: Based on Boyd et al.'s algorithm.

- Find a decomposition of (2/3)χ(E) as convex comb. of complements of 3-cut perfect matchings, λ₁χ(C₁),...,λ_kχ(C_k)
- For each *i*, do the following local moves:
 - Use squares and hexagons to improve C_i as possible.
 - ∘ Use pentagons to improve C_i .
- Return the final cover of the list yielding the smallest tour.

Analysis:

- $Z_i(V) = \frac{e(C)+2}{v(C)}$.
- $z(v) = \sum_{i \in I} \lambda_i z_i(v)$. \leftarrow contribution of v.
- Tour length $\leq \sum_{v \in V} z(v)$.

We win if z(v) < 4/3 in average.

Algorithm: Based on Boyd et al.'s algorithm.

- Find a decomposition of (2/3)χ(E) as convex comb. of complements of 3-cut perfect matchings, λ₁χ(C₁),...,λ_kχ(C_k)
- For each *i*, do the following local moves:
 - Use squares and hexagons to improve C_i as possible.
 - Use pentagons to improve C_i .
- Return the final cover of the list yielding the smallest tour.

Analysis:

- $Z_i(V) = \frac{e(C)+2}{v(C)}$.
- $z(v) = \sum_{i \in I} \lambda_i z_i(v)$. \leftarrow contribution of v.
- Tour length $\leq \sum_{v \in V} z(v)$.

We win if z(v) < 4/3 in average. It does not work...

Bad subgraphs: Chorded hexagons and squares

- Can get rid of chorded hexagons via a reduction:
 Tour in the reduced graph of length in [(5/4)n', αn'] yields a tour in original graph of length in [(5/4)n, αn].
- But chorded squares (diamonds) remain.

• If v is neither in a diamond nor in a 6-cycle belonging to some cover then $z(v) \le 4/3 - \epsilon$.

• If v is neither in a diamond nor in a 6-cycle belonging to some cover then $z(v) \le 4/3 - \epsilon$.

If
$$v$$
 is in a 6-cycle γ then $z(v) \le 4/3$ and
$$\sum_{w \in \gamma} z(w) \le 6(4/3 - \epsilon')$$

• If v is neither in a diamond nor in a 6-cycle belonging to some cover then $z(v) \le 4/3 - \epsilon$.

If v is in a 6-cycle γ then $z(v) \le 4/3$ and $\sum_{w \in \gamma} z(w) \le 6(4/3 - \epsilon')$

If v is in a diamond, then $z(v) \le 4/3$. If the diamond is not isolated, then $z(v) \le 4/3 - \epsilon''$.

• If v is neither in a diamond nor in a 6-cycle belonging to some cover then $z(v) \le 4/3 - \epsilon$.

If v is in a 6-cycle γ then $z(v) \le 4/3$ and $\sum_{w \in \gamma} z(w) \le 6(4/3 - \epsilon')$

If v is in a diamond, then $z(v) \le 4/3$. If the diamond is not isolated, then $z(v) \le 4/3 - \epsilon''$.

A constant fraction of vertices are outside isolated diamonds

• If v is neither in a diamond nor in a 6-cycle belonging to some cover then $z(v) \le 4/3 - \epsilon$.

If v is in a 6-cycle γ then $z(v) \le 4/3$ and $\sum_{w \in \gamma} z(w) \le 6(4/3 - \epsilon')$

If v is in a diamond, then $z(v) \le 4/3$. If the diamond is not isolated, then $z(v) \le 4/3 - \epsilon''$.

A constant fraction of vertices are outside isolated diamonds Theorem (CLS12)

In average, $z(v) \le 4/3 - \epsilon^*$, for $\epsilon^* = 1/61236$. Every cubic 2-conn. graph has a tour of at most $(4/3 - \epsilon^*)n - 2$.

Summary

Theorem (CLS12+)

Every cubic 2-conn. graph has a tour of length at most $(4/3 - \epsilon^*)n - 2$.

In particular, Held and Karp's integrality gap in this class is < 4/3.

Summary

Theorem (CLS12+)

Every cubic 2-conn. graph has a tour of length at most $(4/3 - \epsilon^*)n - 2$.

In particular, Held and Karp's integrality gap in this class is < 4/3.

Open:

What is the "gap" (with respect to *n*) for this class?

	Lower bound	Upper bound
Barnette	(9/9)n	(4/3-1/18)n
Cubic, 2-conn, bipartite	(10/9) <i>n</i>	(4/3 - 1/108)n
Cubic, 2-conn.	(11/9) <i>n</i>	(4/3 - 1/61236)n
Subcubic, 2-conn.	(12/9) <i>n</i>	(4/3)n

Summary

Theorem (CLS12+)

Every cubic 2-conn. graph has a tour of length at most $(4/3 - \epsilon^*)n - 2$.

In particular, Held and Karp's integrality gap in this class is < 4/3.

Open:

What is the "gap" (with respect to *n*) for this class?

	Lower bound	Upper bound
Barnette	(9/9)n	(4/3-1/18)n
Cubic, 2-conn, bipartite	(10/9) <i>n</i>	(4/3 - 1/108)n
Cubic, 2-conn.	(11/9) <i>n</i>	(4/3 - 1/61236)n
Subcubic, 2-conn.	(12/9) <i>n</i>	(4/3)n

Related (and more important: Gap with respect to LP?).