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A motivation from graph theory: Barnette’s
conjecture.

Barnette’s conjecture (1969/70):
Cubic, 3-conn., planar, bipartite graphs are Hamiltonian.

Bar‘nrette

e Open for more than 40 years.

¢ Rich history (sequence of conjectures).
e Good evidence in favor.

o Minimal counterexample has > 84 vertices

(Holton et al. 85, McKay et al. 00).
o True if faces are square and hexagons (Goodey 75).
o Equivalent/stronger formulations.
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TSP?

We do not know if Barnette graphs are Hamiltonian.
What about (short) tours?

Tour: closed walk visiting all vertices at least once.

Can we find a tour of length n? ... (1 +¢)n? ...cn?

3of 17



4n/3 is easy for Barnette’s graphs.

Barnette (cubic, 3-conn, planar, bipartite) graphs are
3-face-colorable.
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4n/3 is easy for Barnette’s graphs.

Barnette (cubic, 3-conn, planar, bipartite) graphs are
3-face-colorable.

IFl = 2+|E[ -V
uler
= 2+3n/2—-n

cubic

= (n+4)/2.

* One color class has < (n+ 4)/6 faces.

e Connect them by a (doubled) spanning tree of faces.
Get a tour of length < n+2((n+4)/6 —1) =4n/3 —2/3.
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But 4n/3 is achievable for many superclasses.

e Barnette graphs (3-conn., cubic, bipartite, planar).
3-conn., cubic (Aggarwal, Garg, Gupta, 2011)

2-conn., cubic (Boyd, Sitters, van der Ster, Stougie, 2011)
2-conn., subcubic (Mémke, Svensson, 2011)

3-conn., planar (Kawarabayashi, Ozeki, 2012)

Can we find tours of length << (4/3)n in some of these cases?

50f 17



But 4n/3 is achievable for many superclasses.

e Barnette graphs (3-conn., cubic, bipartite, planar).
3-conn., cubic (Aggarwal, Garg, Gupta, 2011)

2-conn., cubic (Boyd, Sitters, van der Ster, Stougie, 2011)
2-conn., subcubic (Mémke, Svensson, 2011)  No.
3-conn., planar (Kawarabayashi, Ozeki, 2012) No.

Can we find tours of length << (4/3)n in some of these cases?

50f 17



But 4n/3 is achievable for many superclasses.

e Barnette graphs (3-conn., cubic, bipartite, planar).
3-conn., cubic (Aggarwal, Garg, Gupta, 2011)

2-conn., cubic (Boyd, Sitters, van der Ster, Stougie, 2011)
2-conn., subcubic (Mémke, Svensson, 2011)  No.
3-conn., planar (Kawarabayashi, Ozeki, 2012) No.

Can we find tours of length << (4/3)n in some of these cases?

Yes! [CLS12]:
2-connected, cubic graphs have tours of size < (4/3 — ¢)n
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Warmout: Barnette Graphs

» 3-face-colorable: There is a cycle-cover with < n/6 cycles.

 |dea: Find cycle-cover with < an cycles.
to get tour of length < n(1 + 2a).
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Warmout: Barnette Graphs (cont.)

Want a cycle-cover containing the edges outside red faces with
small number of cycles.
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Warmout: Barnette Graphs (cont.)

Want a cycle-cover containing the edges outside red faces with
small number of cycles.
e Start from such a cycle cover.
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Warmout: Barnette Graphs (cont.)

Want a cycle-cover containing the edges outside red faces with
small number of cycles.
e Start from such a cycle cover.
e For each red face f:
If we can improve C by alternating f’s boundary. Do it.

6 parts.
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Warmout: Barnette Graphs (cont.)

Want a cycle-cover containing the edges outside red faces with
small number of cycles.
e Start from such a cycle cover.
e For each red face f:
If we can improve C by alternating f’s boundary. Do it.

4 parts.
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Warmout: Barnette Graphs (cont.)

Want a cycle-cover containing the edges outside red faces with
small number of cycles.
e Start from such a cycle cover.
e For each red face f:
If we can improve C by alternating f’s boundary. Do it.

1 part.
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Warmout: Barnette Graphs (cont.)

Local search: 3 cycle covers Cq,Co,C3. Select C as the one with
fewer cycles.

Theorem (CLS12+)

We can find a cycle-cover C with |C| < 5n/36.
Tour of length < n(1 +5/18) = (4/3 —1/18)n.

Analysis uses Euler’s formula and average argument.
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More general graphs.

e Barnette (cubic,3-conn,bipartite,planar):
Local search achieves (4/3 — 1/18)n.
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e Cubic, 3-conn, bipartite:
They admit three disjoint perfect matchings E;, Eo, Es.
and by excluding each of them, three cycle covers.

* Local improvements?
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More general graphs.

e Barnette (cubic,3-conn,bipartite,planar):
Local search achieves (4/3 —1/18)n.
e Cubic, 3-conn, bipartite:
They admit three disjoint perfect matchings E;, Eo, Es.
and by excluding each of them, three cycle covers.
* Local improvements?
e |f there is a (short) “alternating cycle” reducing the number of
cycles, use it.
* Not planar anymore, so analysis is different (follow Boyd et al.)
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Cubic, 3-conn, bipartite

e Improve each Cy, (o, C3 locally (squares and hexagons).
Label ¢(v) = (¢1(v), l2(v), ¢3(v)), where
¢i(v) := length of cycle in C; containing v.
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Cubic, 3-conn, bipartite

e Improve each Cy, (o, C3 locally (squares and hexagons).
Label ¢(v) = (¢1(v), l2(v), ¢3(v)), where
¢i(v) := length of cycle in C; containing v.

* Define z(v) = (1 + 7&;), then

> zi(v) = n+ 2(#cycles) = length of tour  + 2.
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Cubic, 3-conn, bipartite

e Improve each Cy, (o, C3 locally (squares and hexagons).
Label ¢(v) = (¢1(v), l2(v), ¢3(v)), where
¢i(v) := length of cycle in C; containing v.

* Define z(v) = (1 + 7&;), then

> zi(v) = n+ 2(#cycles) = length of tour / + 2.
veV

« Contribution of v: z(v) = § 3% ; z(v), then
> z(v) > length of best tour.
veV

e Want z(v) < 4/3 in average. (essentially we win if £;(v) > 6)
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z(v) < 4/3 in average for cubic 3-conn. bipartite
Lemma (After processing squares and hexagons)

o Ifé(v) = (4,],k), thenj k > 10.
* No 6-cycle is completely (6,6,6).
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z(v) < 4/3 in average for cubic 3-conn. bipartite
Lemma (After processing squares and hexagons)

e If¢(v) = (4,),k), thenj k > 10.
* No 6-cycle is completely (6,6,6).

Using the first part of lemma.

o If 4j(v) =4, then z(v) < (%+%+%)/3 3
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z(v) < 4/3 in average for cubic 3-conn. bipartite
Lemma (After processing squares and hexagons)

e If¢(v) = (4,),k), thenj k > 10.
* No 6-cycle is completely (6,6,6).
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z(v) < 4/3 in average for cubic 3-conn. bipartite
Lemma (After processing squares and hexagons)

e If¢(v) = (4,),k), thenj k > 10.
* No 6-cycle is completely (6,6,6).

Using the first part of lemma.

o lf4i(v)=4,thenz(v) < (§ +18+128)/;3=13
If ¢(v) # (6,6,6) then z(v) <
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Second part of lemma + averaging argument:

Theorem (Theorem CLS12+)
In average, z(v) < § — 74g. Tour of length < (% — 35)n.
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Proof flavour of the lemma.

No hexagon has all its vertices labeled (6, 6, 6).

Assume otherwise. Since ¢;(v) are increasing, the hexagons
exists from the beginning (i.e. coming from 3-colored matchings).

At the end, the hexagon is an improving alternating cycle. O
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Proof flavour of the lemma.

No hexagon has all its vertices labeled (6, 6, 6).

Assume otherwise. Since ¢;(v) are increasing, the hexagons
exists from the beginning (i.e. coming from 3-colored matchings).

At the end, the hexagon is an improving alternating cycle. O
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Towards cubic, 2-connected

In cubic, 3-conn., bip., we get < (4/3 —1/108)n.
* What about cubic, 2-connected? Not 3-edge colorable but...
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e “Improving” each cover separately by finding augmenting 4 and
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pentagons to improve a cycle-cover.
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Towards cubic, 2-connected

In cubic, 3-conn., bip., we get < (4/3 —1/108)n.

* What about cubic, 2-connected? Not 3-edge colorable but...

» (Boyd et al.) Can find collection of special cycle covers
(complements of 3-cut perfect matchings) {C;}; such that

(2/3)x Z)\,X ;D> Ai=1, A>0.
i

e “Improving” each cover separately by finding augmenting 4 and
6 cycles is not enough. As Boyd et al., we also need to use
pentagons to improve a cycle-cover.

* We need Eulerian subgraphs covers instead of cycle-covers.
13 of 17



Cubic, 2-connected

Algorithm: Based on Boyd et al’s algorithm.

* Find a decomposition of (2/3)x(E) as convex comb. of
complements of 3-cut perfect matchings, A\ x(C1), ..., Ax(Ck)

* For each /, do the following local moves:

o Use squares and hexagons to improve C; as possible.
o Use pentagons to improve C;.

e Return the final cover of the list yielding the smallest tour.
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Cubic, 2-connected

Algorithm: Based on Boyd et al’s algorithm.

* Find a decomposition of (2/3)x(E) as convex comb. of
complements of 3-cut perfect matchings, A\ x(C1), ..., Ax(Ck)

* For each /, do the following local moves:

o Use squares and hexagons to improve C; as possible.
o Use pentagons to improve C;.

e Return the final cover of the list yielding the smallest tour.

Analysis:

C)+2
° zi(v) = e(v(%;)r .

* z(v) = Y icsMizi(v). « contribution of v.
e Tourlength < 3", z(Vv).

We win if z(v) < 4/3 in average. It does not work...
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Cubic, 2-connected

* Bad subgraphs: Chorded hexagons and squares

SEET

» Can get rid of chorded hexagons via a reduction:
Tour in the reduced graph of length in [(5/4)n’, an’] yields a tour
in original graph of length in [(5/4)n, an].

» But chorded squares (diamonds) remain.
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Analysis: After the reduction.

e |f vis neither in a diamond nor in a 6-cycle belonging to some
cover then z(v) < 4/3 —e.
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v > wey Z(W) < 6(4/3 —¢€)
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Analysis: After the reduction.

e |f vis neither in a diamond nor in a 6-cycle belonging to some
cover then z(v) < 4/3 —e.

If visina6-cycle v then z(v) < 4/3 and
v > wey Z(W) < 6(4/3 —¢€)

If vis in a diamond, then z(v) < 4/3.
J M If the diamond is not isolated, then
z(v) <4/3-¢".

A constant fraction of vertices are outside isolated diamonds

Theorem (CLS12)
In average, z(v) < 4/3 — ¢*, fore* = 1/61236. Every cubic
2-conn. graph has a tour of at most (4/3 — €*)n — 2.
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Summary

Theorem (CLS12+)

Every cubic 2-conn. graph has a tour of length at most
(4/3 —€*)n—2.
In particular, Held and Karp’s integrality gap in this class is < 4/3.
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Summary

Theorem (CLS12+)
Every cubic 2-conn. graph has a tour of length at most

(4/3 —€*)n—2.

In particular, Held and Karp’s integrality gap in this class is < 4/3.
Open:

What is the “gap” (with respect to n) for this class?

Lower bound Upper bound
Barnette (9/9)n (4/3—-1/18)n
Cubic, 2-conn, bipartite (10/9)n (4/3—-1/108)n
Cubic, 2-conn. (11/9)n (4/3—1/61236)n
Subcubic, 2-conn. (12/9)n (4/3)n
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Summary

Theorem (CLS12+)

Every cubic 2-conn. graph has a tour of length at most

(4/3 — ¢)n— 2.

In particular, Held and Karp’s integrality gap in this class is < 4/3.

Open:

What is the “gap” (with respect to n) for this class?

Lower bound

Upper bound

Barnette
Cubic, 2-conn, bipartite
Cubic, 2-conn.
Subcubic, 2-conn.

(9/9)n
(10/9)n
(11/9)n
(12/9)n

(4/3=1/18)n
(4/3 —1/108)n
(4/3 —1/61236)n
(4/3)n

Related (and more important: Gap with respect to LP?).
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