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A motivation from graph theory: Barnette’s
conjecture.

Barnette’s conjecture (1969/70):

Cubic, 3-conn., planar, bipartite︸ ︷︷ ︸
Barnette

graphs are Hamiltonian.

• Open for more than 40 years.
• Rich history (sequence of conjectures).
• Good evidence in favor.
◦ Minimal counterexample has ≥ 84 vertices

(Holton et al. 85, McKay et al. 00).
◦ True if faces are square and hexagons (Goodey 75).
◦ Equivalent/stronger formulations.
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TSP?

We do not know if Barnette graphs are Hamiltonian.
What about (short) tours?

Tour: closed walk visiting all vertices at least once.

Can we find a tour of length n? . . . (1 + ε)n? . . . cn?
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4n/3 is easy for Barnette’s graphs.
Barnette (cubic, 3-conn, planar, bipartite) graphs are
3-face-colorable.

|F | =
Euler

2 + |E | − |V |

=
cubic

2 + 3n/2− n

= (n + 4)/2.

• One color class has ≤ (n + 4)/6 faces.
• Connect them by a (doubled) spanning tree of faces.

Get a tour of length ≤ n + 2((n + 4)/6− 1) = 4n/3− 2/3.
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But 4n/3 is achievable for many superclasses.

• Barnette graphs (3-conn., cubic, bipartite, planar).
• 3-conn., cubic (Aggarwal, Garg, Gupta, 2011)
• 2-conn., cubic (Boyd, Sitters, van der Ster, Stougie, 2011)
• 2-conn., subcubic (Mömke, Svensson, 2011)

No.

• 3-conn., planar (Kawarabayashi, Ozeki, 2012)

No.

Can we find tours of length << (4/3)n in some of these cases?

Yes! [CLS12]:
2-connected, cubic graphs have tours of size ≤ (4/3− ε)n
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Warmout: Barnette Graphs

• 3-face-colorable: There is a cycle-cover with ≤ n/6 cycles.
• Idea: Find cycle-cover with ≤ αn cycles.

to get tour of length ≤ n(1 + 2α).
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Warmout: Barnette Graphs (cont.)
Want a cycle-cover containing the edges outside red faces with
small number of cycles.

• Start from such a cycle cover.
• For each red face f :

If we can improve C by alternating f ’s boundary. Do it.
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Warmout: Barnette Graphs (cont.)

Local search: 3 cycle covers C1, C2, C3. Select C as the one with
fewer cycles.

Theorem (CLS12+)
We can find a cycle-cover C with |C| ≤ 5n/36.
Tour of length ≤ n(1 + 5/18) = (4/3− 1/18)n.

Analysis uses Euler’s formula and average argument.
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More general graphs.

• Barnette (cubic,3-conn,bipartite,planar):
Local search achieves (4/3− 1/18)n.

• Cubic, 3-conn, bipartite:
They admit three disjoint perfect matchings E1,E2,E3.
and by excluding each of them, three cycle covers.

• Local improvements?
• If there is a (short) “alternating cycle” reducing the number of

cycles, use it.
• Not planar anymore, so analysis is different (follow Boyd et al.)
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Cubic, 3-conn, bipartite

• Improve each C1, C2, C3 locally (squares and hexagons).
Label `(v) = (`1(v), `2(v), `3(v)), where
`i(v) := length of cycle in Ci containing v .

• Define zi(v) = (1 + 2
`i (v)

), then∑
v∈V

zi(v) = n + 2(#cycles) = length of tour i + 2.

• Contribution of v : z(v) = 1
3
∑3

i=1 zi(v), then∑
v∈V

z(v) ≥ length of best tour.

• Want z(v) < 4/3 in average. (essentially we win if `i(v) > 6)
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z(v) < 4/3 in average for cubic 3-conn. bipartite
Lemma (After processing squares and hexagons)

• If `(v) = (4, j , k), then j , k ≥ 10.
• No 6-cycle is completely (6,6,6).

Using the first part of lemma.
• If `i(v) = 4, then z(v) ≤

(6
4 + 12

10 + 12
10

)
/3 = 13

10 ≤
4
3 − ε.

• If `(v) 6= (6,6,6) then z(v) ≤ 4
3 − ε.

If `(v) = (6,6,6) then z(v) = 4
3 .

Second part of lemma + averaging argument:

Theorem (Theorem CLS12+)
In average, z(v) < 4

3 −
1

108 . Tour of length ≤ (4
3 −

1
108)n.
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Proof flavour of the lemma.

No hexagon has all its vertices labeled (6,6,6).
Assume otherwise. Since `i(v) are increasing, the hexagons
exists from the beginning (i.e. coming from 3-colored matchings).

At the end, the hexagon is an improving alternating cycle.
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Towards cubic, 2-connected
In cubic, 3-conn., bip., we get ≤ (4/3− 1/108)n.
• What about cubic, 2-connected? Not 3-edge colorable but...

• (Boyd et al.) Can find collection of special cycle covers
(complements of 3-cut perfect matchings) {Ci}i such that

(2/3)χ(E) =
∑

i

λiχ(Ci),
∑

i

λi = 1, λi ≥ 0.

• “Improving” each cover separately by finding augmenting 4 and
6 cycles is not enough.

As Boyd et al., we also need to use
pentagons to improve a cycle-cover.

• We need Eulerian subgraphs covers instead of cycle-covers.
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Cubic, 2-connected
Algorithm: Based on Boyd et al.’s algorithm.

• Find a decomposition of (2/3)χ(E) as convex comb. of
complements of 3-cut perfect matchings, λ1χ(C1), . . . , λkχ(Ck )

• For each i , do the following local moves:
◦ Use squares and hexagons to improve Ci as possible.
◦ Use pentagons to improve Ci .

• Return the final cover of the list yielding the smallest tour.

Analysis:
• zi(v) =

e(C)+2
v(C) .

• z(v) =
∑

i∈I λizi(v). ← contribution of v .
• Tour length ≤

∑
v∈V z(v).

We win if z(v) < 4/3 in average. It does not work...

14 of 17
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Cubic, 2-connected

• Bad subgraphs: Chorded hexagons and squares

• Can get rid of chorded hexagons via a reduction:
Tour in the reduced graph of length in [(5/4)n′, αn′] yields a tour
in original graph of length in [(5/4)n, αn].

• But chorded squares (diamonds) remain.
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Analysis: After the reduction.

• If v is neither in a diamond nor in a 6-cycle belonging to some
cover then z(v) ≤ 4/3− ε.

•
v

γ
If v is in a 6-cycle γ then z(v) ≤ 4/3 and∑

w∈γ z(w) ≤ 6(4/3− ε′)

•
If v is in a diamond, then z(v) ≤ 4/3.
If the diamond is not isolated, then
z(v) ≤ 4/3− ε′′.

A constant fraction of vertices are outside isolated diamonds

Theorem (CLS12)
In average, z(v) ≤ 4/3− ε∗, for ε∗ = 1/61236. Every cubic
2-conn. graph has a tour of at most (4/3− ε∗)n − 2.
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Analysis: After the reduction.

• If v is neither in a diamond nor in a 6-cycle belonging to some
cover then z(v) ≤ 4/3− ε.

•
v

γ
If v is in a 6-cycle γ then z(v) ≤ 4/3 and∑
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Summary

Theorem (CLS12+)
Every cubic 2-conn. graph has a tour of length at most
(4/3− ε∗)n − 2.
In particular, Held and Karp’s integrality gap in this class is < 4/3.

Open:
What is the “gap” (with respect to n) for this class?

Lower bound Upper bound
Barnette (9/9)n (4/3− 1/18)n

Cubic, 2-conn, bipartite (10/9)n (4/3− 1/108)n
Cubic, 2-conn. (11/9)n (4/3− 1/61236)n

Subcubic, 2-conn. (12/9)n (4/3)n

Related (and more important: Gap with respect to LP?).
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