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e Symmetric Submodular Function Minimization under Hereditary
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MSP: Introduction

@ Given a matroid.
@ Elements’ weights are revealed in certain (random) order.

@ Want to select independent set of high weight.
(In online way / secretary problem setting)
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MSP: Introduction (II)

Rules
@ We accept or reject an element when its weight is revealed.
@ Accepted elements must form an independent set.
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MSP: Introduction (II)

w(OPT) = 80

Rules
@ We accept or reject an element when its weight is revealed.
@ Accepted elements must form an independent set.
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Special Cases

Classical / Multiple choice

8888888888888 EE888888

@ Hire one person (or at most r).
@ Sell one item to best bidder (or sell r identical items).
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Models

Opponent selects n weights.
Wy > Wo > >Wp>0

then

The weights are assigned either:
adversarially or at random.

and independently

The presentation order is chosen:
adversarially or at random.
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Models

Adv.-Assign.
Opponent selects n weights. Adv -Order
Wy >Wo>-->Wp >0 / \
then
Random-Assign. Adv.-Assign.
Adv.-Order Random-Order
The weights are assigned either: \ /
adversarially or at random.

Random-Assign.

and independently

Random-Order

1.1.D. Weights

The presentation order is chosen:
adversarially or at random.
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Models

@ (Adv.-Assign. Adv.-Order)
Hard: n-competitive ratio

[Babaioff, Immorlica, Kleinberg 07]
Conjecture: O(1)-competitive
algorithm for all other models.

Random-Assign. Adv.-Assign.
Adv.-Order Random-Order

~N

Random-Assign.

Random-Order

1.1.D. Weights
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Models

Adv.-Assign.
@ (Adv.-Assign. Adv.-Order) Adv.-Order
Hard: n-competitive ratio /
[Babaioff, Immorlica, Kleinberg 07] Rand A
Conjecture: O(1)-competitive BT AR
algorithm for all other models. Adv.-Order
@ (Adv.-Assign. Random-Order) \ _
O(1) for partition, graphic, Random-Assign.
transversal, laminar. Random-Order

[L61,D63,K05,BIK07,DP08,KP09,BDGIT09,IW11] |
O(logrk(,AM)) for general
matroids [BIK07].

1.1.D. Weights
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Models

@ (Adv.-Assign. Adv.-Order)
Hard: n-competitive ratio

[Babaioff, Immorlica, Kleinberg 07]
Conjecture: O(1)-competitive
algorithm for all other models.

@ (Adv.-Assign. Random-Order)
O(1) for partition, graphic,
transversal, laminar.

Adv.-Assign.
Adv.-Order

e

N

Random-Assign.
Adv.-Order

Adv.-Assign.

Random-Order

[L61,D63,K05,BIK07,DP08,KP09,BDGIT09,IW11]

O(logrk(,AM)) for general
matroids [BIK07].

@ (Random-Assign. Random-Order)
[S11] O(1) for general matroids.

1.1.D. Weights
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Random-Assignment Random-Order.

Data
% W:wqy>wp>--->wp>0.
&) Hidden weight list
. Random assignment. o: [n] — E.
Known Matroid Random order. 7: E — {1,...,n}.
Objective

Return an independent set ALG € 7 such that:
Er-[W(ALG)] > Q(1) - E,[w(OPT)], where

OPT is the optimum base of M under assignment o. (Greedy)
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Divide and Conquer to get O(1)-competitive algorithm.

For a general matroid M = (E,Z):
Find matroids M; = (E;, Z;) with E = J*_, E;.
@ M; admits O(1)-competitive algorithm
(Easy parts).

@ Union of independent sets in each M; is
independent in M. Z(@*_, M;) C Z(M).
(Combine nicely).

@ Optimum in @X_, M; is comparable with

Optimum in M. (Don’t lose much).
N —
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(Easiest matroids): Uniform. [Independent sets = Sets of size < r.]

For r = 1: Dynkin’s Algorithm

888888 $8888888888888

n/e
@ Observe n/e objects. Accept the first record after that.

Top weight is selected w.p. > 1/e.
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888888 $8888888888888

n/e
@ Observe n/e objects. Accept the first record after that.

Top weight is selected w.p. > 1/e.

General r

2280888 gustess 8888888 - - $8558E8 2eeeees

n/r n/r n/r n/r n/r

@ Divide in r classes and apply Dynkin’s algorithm in each class.

v
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(Easiest matroids): Uniform. [Independent sets = Sets of size < r.]

For r = 1: Dynkin’s Algorithm

888888 $8888888888888

n/e
@ Observe n/e objects. Accept the first record after that.

Top weight is selected w.p. > 1/e.

General r

2280888 gustess 8888888 - - $8558E8 2eeeees

n/r n/r n/r n/r n/r

@ Divide in r classes and apply Dynkin’s algorithm in each class.

@ Each of the r top weights is the best of its class with prob.
>(1-1/r)"~' > C > 0. Thus it is selected with prob. > C/e.

@ e/C (constant) competitive algorithm.

v

José A. Soto - M.I.T. Thesis Defense April 15th, 2011

9



(Easy matroids): Uniformly dense matroids are like Uniform

A loopless matroid is Uniformly dense if

|Fl |E]
(F) < X(E)’ for all F #£ 0.
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(Easy matroids): Uniformly dense matroids are like Uniform

A loopless matroid is Uniformly dense if

|Fl |E]
(F) < X(E)’ for all F #£ 0.

Property: Sets of rk(E) elements have almost full rank.

E(x: x|=rk(e)) [tk(X)] > tk(E)(1 —1/e).
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(Easy matroids): Uniformly dense matroids are like Uniform

A loopless matroid is Uniformly dense if

|Fl E|
(F) < @, for all F # (.

Property: Sets of rk(E) elements have almost full rank.

E(x: x|=rk(e)) [tk(X)] > tk(E)(1 —1/e).

Algorithm: Simulate e/C-comp. alg. for Uniform Matroids.

280088 gE80R0S SosEeet - - 8885888 S258eE

n/r n/r n/r n/r n/r

@ Try to add each selected weight to the independent set.
@ Selected elements have expected rank > r(1 —1/e).
@ We recover (1 — 1/e) - C/e fraction of the top r weights.
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Uniformly Dense (sub)matroids That combine nicely

[0 |
(s )
-

~—

Want:
Matroids My, ..., My such that:
@ Each M, is uniformly dense.
Q If IS I(M,'), then hubU---Ul € I(./\/l)
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Uniformly Dense (sub)matroids That combine nicely

()
Procedure.
@ Let £ be the densest set of M of maximum
cardinality.
_ IFIl  |E] M,E
"M =08 P~ (B
@ My = M|, is uniformly dense. M E\ E
@ M* = M/E4 has smaller density than M.
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Uniformly Dense (sub)matroids That combine nicely

()
Procedure.
@ Let Eq be the densest set of M of maximum
cardinality.
Moz, E;
Fl &

o M,E
VM) =X S T (B
@ My = M|, is uniformly dense. M,
* . E\ (E1 U E2)
@ M* = M/Eq has smaller density than M.
@ lterate on M*.... ) L )

Want:
Matroids My, ..., M such that:
@ Each M, is uniformly dense.
Q If IS I(M,'), then hubU---Ul € I(./\/l)
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Uniformly Dense (sub)matroids That combine nicely

Procedure.

@ Let E; be the densest set of M of maximum
cardinality.

-
@ My = M|, is uniformly dense.

M
@ M* = M/Ey has smaller density than M.

2,E2
My, E
@ lterate on M*. ... )

v (.

- IFI &
"M) = FCE tkp(F)  thm(Er)

Theorem (Principal Partition) [Tomizawa, Narayanan]

There exists a partition E = Uf-‘:1 E; such that
@ Each principal minor M; = (M/E;_1)|g, is uniformly dense.
Q IfleZ(M;),then b Uk U-- Ul € Z(M).
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Algorithm for a General Matroid M

Algorithm

@ Let My, My, ..., M be the principal minors.

@ In each M, use the O(1)-competitive algorithm for uniformly
dense matroids to obtain an independent set /;.

Q Return ALG = LU b U---U I.

82888288822822828288888 .. £8828888888888822888
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Algorithm

@ Let My, My, ..., M be the principal minors.

@ In each M, use the O(1)-competitive algorithm for uniformly
dense matroids to obtain an independent set /;.

Q Return ALG = LU b U---U I.
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Algorithm for a General Matroid M

Algorithm

@ Let My, My, ..., M be the principal minors.

@ In each M, use the O(1)-competitive algorithm for uniformly
dense matroids to obtain an independent set /;.

Q Return ALG = LU b U---U I.

82 88 88 88828 g8 8
8 88 g 888 ... 8828 geg 8
g 2g8s8 88 ... ge 88

We have:
Er o [W(ALG)] > Q(1)Eq[w(OPTgy aq,)]-
Also show E, ,[w(ALG)] > Q(1)/(1 — 1/€)E,[w(OPT /).
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Conclusions and Open Problems.

Summary
@ First constant competitive algorithm for Matroid Secretary Problem
in Random-Assign. Random-Order Model.
@ [OG-V] Can use same ideas for Random-Assign. Adv.-Order Model.
@ Algorithm only makes comparisons.

Adv.-Assign.
Adv.-Order
Open Random-Assign.
0 Adv.-Order
@ Adv.-Assign. Random-Order Model
@ Extend to independent systems beyond Random-Assign.
matroids_ Random-Order
1.1.D. Weights
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Outline

© Jump Number Problem and Independent Sets of Rectangles.
(joint work with C. Telha)



Jump Number Problem

Jumps
arbicfidire 4 jumps

arbdicfre 3 jumps
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Jumps
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arbdicfre 3 jumps

Jump number problem for a poset P
Find a linear extension (schedule) with minimum number of jumps j(P).J
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Jump Number Problem

Jumps
arbicfidire 4 jumps

arbdicfre 3 jumps

Jump number problem for a poset P
Find a linear extension (schedule) with minimum number of jumps j(P).

Properties
@ Comparability invariant.

@ NP-hard even for chordal bipartite graphs.
(Every cycle of length > 6 has a chord.)
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Cross-free Matchings and Biclique Covers.

Cross-free matchings in a bipartite graph G = (AU B, E)
@ Two edges ab and &b’ cross if ab’ and &b are also edges.
@ a*(G) = maximum size of a cross-free matching.
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Cross-free Matchings and Biclique Covers.

Cross-free matchings in a bipartite graph G = (AU B, E)
@ Two edges ab and &b’ cross if ab’ and &b are also edges.
@ a*(G) = maximum size of a cross-free matching.

Fact: For G chordal bipartite.
a*(G)+j(P)=n-1
Example: ai1bd1cfire

José A. Soto - M.L.T. Thesis Defense April 15th, 2011



Cross-free Matchings and Biclique Covers.

Cross-free matchings in a bipartite graph G = (AU B, E)
@ Two edges ab and &b’ cross if ab’ and &b are also edges.
@ o*(G) = maximum size of a cross-free matching.

Fact: For G chordal bipartite.
a*(G)+j(P)=n—-1
Example: a1 bd1cfire

Bicliqgue Cover in a bipartite graph G = (AU B, E)

@ x*(G) = minimum size of a collection of complete bipartite graphs
(bicliques) that covers E.
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Cross-free Matchings and Biclique Covers.

Cross-free matchings in a bipartite graph G = (AU B, E)
@ Two edges ab and &b’ cross if ab’ and &b are also edges.
@ o*(G) = maximum size of a cross-free matching.

Fact: For G chordal bipartite.
a*(G)+j(P)=n—-1
Example: a1 bd1cfire

Bicliqgue Cover in a bipartite graph G = (AU B, E)

@ x*(G) = minimum size of a collection of complete bipartite graphs
(bicliques) that covers E. a*(G) < K*(G).
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Special Chordal Bipartite Graphs .

Definition (Bicolored 2D-graphs or 2 d.o.r.g.)

Given two sets A and B of points in the plane.
G(A, B) is the bipartite graph on AU B where

abisanedgeifac A, be B, ax < bxand a, < by
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Given two sets A and B of points in the plane.
G(A, B) is the bipartite graph on AU B where

abisanedgeifac A, be B, ax < bxand a, < by

F
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Special Chordal Bipartite Graphs .

Definition (Bicolored 2D-graphs or 2 d.o.r.g.)

Given two sets A and B of points in the plane.
G(A, B) is the bipartite graph on AU B where

abisanedgeifac A, be B, ax < bxand a, < by

o L’
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a*(G(A, B)) and x*(G(A, B))

Crossing edges = Overlapping Rectangles

Maximal Bicliques = Rectangle Hitting Sets
o @

,;Z__:_:_:}?, < > | o

¢ o
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a*(G(A, B)) and x*(G(A, B))

Crossing edges = Overlapping Rectangles

Maximal Bicliques = Rectangle Hitting Sets
o @

,;::'g__:_:_:}:,}, < > | 0

¢y .

v

Theorem 1 [ST11] : In a 2 d.o.r.g. with rectangles R

@ o = max. cross-free matching = max. indep. set of R [MIS(R)].

@ «* = min. biclique cover = min. hitting set of R [MHS(R)].
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a*(G(A, B)) and x*(G(A, B))

Crossing edges = Overlapping Rectangles
P ............. ® <_>
Can replace R
hd ) by the
inclusionwise
Maximal Bicliques = Rectangle Hitting Sets minimal
» ° rectangles R ;.
.:':'Z,/. ”‘:' ®
& ‘ o ®

v

Theorem 1 [ST11] : In a 2 d.o.r.g. with rectangles R
@ o = max. cross-free matching = max. indep. set of R [MIS(R)].
@ «* = min. biclique cover = min. hitting set of R [MHS(R)].
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Main results

Theorem 2 [ST11]: In a 2 d.o.r.g. with minimal rectangles R |

The fractional solution for the natural LP relaxation of MIS(R ) having
minimum weighted area is an integral solution: If

P = {x e ®RMR,Y xg<1,q9¢€ Grid},z* = max{ILTx, X € P}.
R>q

Then o* = z* and

argmin{ > area(R)xg: 17x = z*,x € P ¢ is integral .
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Main results

Theorem 2 [ST11]: In a 2 d.o.r.g. with minimal rectangles R |

The fractional solution for the natural LP relaxation of MIS(R ) having
minimum weighted area is an integral solution: If

P = {x e ®RMR,Y xg<1,q9¢€ Grid},z* = max{ILTx, X € P}.
R>q

Then o* = z* and

arg min { > area(R)xg: 17x = z*,x € P} is integral .

Theorem 3 [ST11]: For every 2 d.o.r.g.

a*(G(A, B)) = k" (G(A, B)).

v
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(sketch) Theorem 3: o*(G(A, B)) = v*(G(A, B)).

H: Intersection graph of R,,.
@ o*(G(A, B)) = MIS(R,) = stability number of H.
@ «*(G(A, B)) = MHS(R,) = clique covering number of H.
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(sketch) Theorem 3: o*(G(A, B)) = v*(G(A, B)).

H: Intersection graph of R,,.
@ o*(G(A, B)) = MIS(R,) = stability number of H.
@ «*(G(A, B)) = MHS(R,) = clique covering number of H.

Intersections
The only possible intersections in H can be
corner-free intersections or corner intersections.
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(sketch) Theorem 3: o*(G(A, B)) = v*(G(A, B)).

H: Intersection graph of R,,.
@ o*(G(A, B)) = MIS(R,) = stability number of H.
@ *(G(A, B)) = MHS(R,) = clique covering humber of H.

Intersections

The only possible intersections in H can be
corner-free intersections or

BN

[ —
L ¢
>

Perfect Case:
If R, is such that the only intersections are corner-free-intersection,
then its intersection graph H is a comparability graph (perfect).

Therefore o*(G(A, B)) = v*(G(A, B)).
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(cont.) Theorem 3: MIS(R|)=MHS(R,)

General Case:

@ Construct a family K C R by greedily including (in a certain
order) rectangles in K if they do not form
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(cont.) Theorem 3: MIS(R|)=MHS(R,)

General Case:

@ Construct a family K C R by greedily including (in a certain
order) rectangles in K if they do not form

@ Since K is a corner-free-intersection family
MHS(K)=MIS(K)<MIS(R})<MHS(R,).
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(cont.) Theorem 3: MIS(R|)=MHS(R,)

General Case:

@ Construct a family K C R by greedily including (in a certain
order) rectangles in K if they do not form

@ Since K is a corner-free-intersection family
MHS(K)=MIS(K)<MIS(R})<MHS(R,).
© Compute a minimum hitting set P of K.
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(cont.) Theorem 3: MIS(R|)=MHS(R,)

General Case:

@ Construct a family K C R by greedily including (in a certain
order) rectangles in K if they do not form

@ Since K is a corner-free-intersection family
MHS(K)=MIS(K)<MIS(R})<MHS(R,).
© Compute a minimum hitting set P of K.

Swapping procedure.
If p, gin P, with py < gy and p, < gy s.t.

P/:P\{p7q}u{(vaqy)7(pyaqX)} ‘<I> ‘ ‘ ¢ ‘
is a hitting set for K then set P < P’. — —

o] __[®
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(cont.) Theorem 3: MIS(R|)=MHS(R,)

General Case:

@ Construct a family K C R by greedily including (in a certain
order) rectangles in K if they do not form

@ Since K is a corner-free-intersection family
MHS(K)=MIS(K)<MIS(R})<MHS(R,).
© Compute a minimum hitting set P of K.

Swapping procedure.
If p, gin P, with py < gy and p, < gy s.t.

P/:P\{p7q}u{(vaqy)7(py7qX)} ‘<I> ‘ ‘ ¢ ‘
is a hitting set for K then set P < P’. — —

o] __[®

We can show that final P is also a hitting set for R, .
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Conclusions and Other Results

Results in Context

Jump Number

Max Cross-Free Matching

Min Biclique Cover

Bipartite Permutation Graphs ‘

Bipartite Permutation Graphs ‘

Chordal Bipartite Graphs NP-hard Chordal Bipartite Graphs NP-hard
Two Directional Orthogonal Ray Graphs Two Directional Orthogonal Ray Graphs
? ?
Interval Bigraphs ? Interval Bigraphs ?
Convex Graphs Convex Graphs
O(n?) ?
Biconvex Graphs Biconvex Graphs
O(rn?) O(n?) *

Permutation Graphs
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Conclusions and Other Results

Results in Context (new results in red)

Jump Number

Max Cross-Free Matching Min Biclique Cover
Chordal Bipartite Graphs NP-hard Chordal Bipartite Graphs NP-hard
Two Directional Orthogonal Ray Graphs Two Directional Orthogonal Ray Graphs
O(n*°logn) O(n*%logn)
Interval Bigraphs Interval Bigraphs
Convex Graphs 9 Convex Graphs 9
O(n?) O(n?) O(n?)
Biconvex Graphs Biconvex Graphs
O(n?) O(n?) *
Bipartite Permutation Graphs ‘ Bipartite Permutation Graphs ‘
Permutation Graphs ? Permutation Graphs ?
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Conclusions and Other Results

Additional Results

Weighted Jump Number
Max Weight Cross-Free Matching

Chordal Bipartite Graphs

NP-hard

Two Directional Orthogonal Ray Graphs

NP-hard
Interval Bigraphs 2
Convex Graphs :
O(n?)

Biconvex Graphs

Bipartite Permutation Graphs ‘

Permutation Graphs

José A. Soto - M.L.T.

NP-hard

@ Show that maximum weight
cross-free matching is
NP-hard for 2 d.o.r.g.

@ Give O(n®) algorithm for
weighted problem in biconvex
and convex graphs.
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Outline

e Symmetric Submodular Function Minimization under Hereditary
Constraints.



SSF Minimization: Introduction

Definitions
f:2Y 5 Ris submodular if

f(AUB) + f(AN B) < f(A) + f(B), forall A, BC V

f is symmetric if
f(A)=f(V\A), foral AC V

A family Z of sets is an independent system if it is closed for inclusion.

Problem
Find ) # X* € 7 that minimizes f(X) over all X € Z.
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Examples

Examples
@ Find a minimum unbalanced cut in a (weighted) graph.

min{|E(X; X)|: 0 # |X| < k}.
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Examples

Examples
@ Find a minimum unbalanced cut in a (weighted) graph.

min{|E(X; X)|: 0 # |X| < k}.

@ Find a nonempty subgraph satisfying an hereditary graph property
(e.g. triangle-free, clique, stable-set, planar) minimizing the
weights of the edges in its coboundary.
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Examples

Examples
@ Find a minimum unbalanced cut in a (weighted) graph.

min{|E(X; X)|: 0 # |X| < k}.

@ Find a nonempty subgraph satisfying an hereditary graph property
(e.g. triangle-free, clique, stable-set, planar) minimizing the
weights of the edges in its coboundary.

@ Minimizing a SSF under any combination of upper cardinality /
knapsack / matroid constraints.
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Results (Old+New)

[Svitkina-Fleischer 08]
Minimizing a general submodular function under cardinality constraints

is NP-hard to approximate within o(\/|V|/log | V]).

[GS10]
O(n®)-algorithm for minimizing SSF on independent systems.
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Rizzi Functions

Let f be a SSF on V with f(0)) = 0.
Define the function d(-, :) on pairs of disjoint subsets of V as

d(A, B) = % (f(A) + f(B) — f(AU B)).

Rizzi
A Rizzi bi-set function d(-,:) is any function satisfying
@ Symmetric: d(A, B) = d(B, A).
© Monotone: d(A, B) < d(A, Bu C).
© Consistent: d(A,C) < d(B,C) = d(A,BUC) <d(B,AuC).

E.g., d(A, B) = |E(A: B)| is a Rizzi bi-set function associated to |4(-)|.
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Pendant Pairs and M.A. order

(s,t) is a pendant pair of d if
d({t}, V\ {t}) <d(S,V\S), for all S separating s and t.

Vi,...,Vpis a M.A. order if

d(vi,{v1,...,vi1}) > d(vj, {v1,...,vi_1}).

We get M.A. order by setting vy arbitrarily and selecting the next vertex
as the one with MAX. ADJACENCY to the already selected.

v
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Pendant Pairs and M.A. order

(s,t) is a pendant pair of d if
d({t}, V\ {t}) <d(S,V\S), for all S separating s and t.

Vi,...,Vpis a M.A. order if

d(vi,{v1,...,vi1}) > d(vj, {v1,...,vi_1}).

We get M.A. order by setting vy arbitrarily and selecting the next vertex
as the one with MAX. ADJACENCY to the already selected.

v

Lemma [Queyranne, Rizzi]
The last two elements (v,_1, v,) of a M.A. order are a pendant pair.
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Queyranne’s algorithm

Algorithm to minimize SSF in 2V \ {V, ()}

@ While | V| > 2,
@ Find (s, t) pendant pair.
@ Add {t} as a candidate for minimum.
© Fuse s and t as one vertex.

@ Return the best of the n — 1 candidates.
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Queyranne’s algorithm

Algorithm to minimize SSF in 2V \ {V, ()}

@ While | V| > 2,
@ Find (s, t) pendant pair.
@ Add {t} as a candidate for minimum.
© Fuse s and t as one vertex.

@ Return the best of the n — 1 candidates.

Remark:
If | V| > 3, we can always find a pendant pair avoiding one vertex.
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Algorithm for constrained version

A loop of Z is a singleton not in Z. (Assume Z has exactly one loop ¥).

Algorithm

@ While |V| > 8,
@ Find (s, t) pendant pair avoiding .
@ Add {t} as a candidate for minimum.
© If {s,t} € Z, Fuse s and t as one vertex.
Else, Fuse s, t and ¢ as one vertex (call it ¢).

@ If |V| =2, add the only non-loop as a candidate.
@ Return the best candidate.
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Conclusions.

Results
@ O(n®)-algorithm for finding all inclusionwise minimal minimizers of
a SSF of an independent system 7.
@ An algorithm by Nagamochi also solves this problem (and more)

in the same time.
But our algorithm works for a wider class than Nagamochi’s.

Open
Characterize functions admitting pendant pairs for all their fusions.
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Thank you.
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