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Constraints.



Outline

1 Matroid Secretary Problem

2 Jump Number Problem and Independent Sets of Rectangles.
(joint work with C. Telha)

3 Symmetric Submodular Function Minimization under Hereditary
Constraints.



MSP: Introduction

33

1

3

1

4 3

1

4 153

1

4 15

10

3

1

4 15

10

23

1

4 15

10

2

20

3

1

4 15

10

2

20

36

3

1

4 15

10

2

20

36

9

3

1

4 15

10

2

20

36

9

5

15

20

36

9

3

1

4

10

2

5

Given a matroid.

Elements’ weights are revealed in certain (random) order.
Want to select independent set of high weight.

(In online way / secretary problem setting)
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José A. Soto - M.I.T. Thesis Defense April 15th, 2011 3



MSP: Introduction

33

1

3

1

4 3

1

4 15

3

1

4 15

10

3

1

4 15

10

23

1

4 15

10

2

20

3

1

4 15

10

2

20

36

3

1

4 15

10

2

20

36

9

3

1

4 15

10

2

20

36

9

5

15

20

36

9

3

1

4

10

2

5

Given a matroid.
Elements’ weights are revealed in certain (random) order.

Want to select independent set of high weight.
(In online way / secretary problem setting)
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José A. Soto - M.I.T. Thesis Defense April 15th, 2011 3



MSP: Introduction

33

1

3

1

4 3

1

4 153

1

4 15

10

3

1

4 15

10

23

1

4 15

10

2

20

3

1

4 15

10

2

20

36

3

1

4 15

10

2

20

36

9

3

1

4 15

10

2

20

36

9

5

15

20

36

9

3

1

4

10

2

5

Given a matroid.
Elements’ weights are revealed in certain (random) order.
Want to select independent set of high weight.

(In online way / secretary problem setting)
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Rules
We accept or reject an element when its weight is revealed.
Accepted elements must form an independent set.
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José A. Soto - M.I.T. Thesis Defense April 15th, 2011 4



MSP: Introduction (II)

33

1

34

1

34 15

1

34 15

1

10

34 15

1

2

10

34 15

20

1

2

10

34 15

20

36

1

2

10

34 15

20

36

91

2

10

34 15

20

36

9

5

1

2

10

Rules
We accept or reject an element when its weight is revealed.
Accepted elements must form an independent set.
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MSP: Introduction (II)
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Special Cases

Classical / Multiple choice

Hire one person (or at most r ).
Sell one item to best bidder (or sell r identical items).

José A. Soto - M.I.T. Thesis Defense April 15th, 2011 5



Models

Opponent selects n weights.
w1 ≥ w2 ≥ · · · ≥ wn ≥ 0

then

The weights are assigned either:
adversarially or at random.

and independently

The presentation order is chosen:
adversarially or at random.

Adv.-Order

Random-Assign.

Random-Order
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Random-Order
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I.I.D. Weights
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Models

(Adv.-Assign. Adv.-Order)
Hard: n-competitive ratio

[Babaioff, Immorlica, Kleinberg 07]
Conjecture: O(1)-competitive
algorithm for all other models.

(Adv.-Assign. Random-Order)
O(1) for partition, graphic,
transversal, laminar.
[L61,D63,K05,BIK07,DP08,KP09,BDGIT09,IW11]
O(log rk(M)) for general
matroids [BIK07].

(Random-Assign. Random-Order)
[S11] O(1) for general matroids.
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Random-Assignment Random-Order.

Data

Known Matroid

σ←−−−−
r .a. W : w1 ≥ w2 ≥ · · · ≥ wn ≥ 0.

Hidden weight list

Random assignment. σ : [n]→ E .
Random order. π : E → {1, . . . ,n}.

Objective
Return an independent set ALG ∈ I such that:

Eπ,σ[w(ALG)] ≥ Ω(1) · Eσ[w(OPT)], where

OPT is the optimum base ofM under assignment σ. (Greedy)

José A. Soto - M.I.T. Thesis Defense April 15th, 2011 7



Divide and Conquer to get O(1)-competitive algorithm.

For a general matroidM = (E , I):

Find matroidsMi = (Ei , Ii) with E =
⋃k

i=1 Ei .
1 Mi admits O(1)-competitive algorithm

(Easy parts).

2 Union of independent sets in eachMi is
independent inM. I(

⊕k
i=1Mi) ⊆ I(M).

(Combine nicely).

3 Optimum in
⊕k

i=1Mi is comparable with
Optimum inM. (Don’t lose much).

M1,E1

M,E

M2,E2

Mk ,Ek

...

José A. Soto - M.I.T. Thesis Defense April 15th, 2011 8



(Easiest matroids): Uniform. [Independent sets = Sets of size ≤ r .]

For r = 1: Dynkin’s Algorithm

︸ ︷︷ ︸
n/e

Observe n/e objects. Accept the first record after that.

Top weight is selected w.p. ≥ 1/e.

General r

︸ ︷︷ ︸
n/r

︸ ︷︷ ︸
n/r

︸ ︷︷ ︸
n/r

· · · ︸ ︷︷ ︸
n/r

︸ ︷︷ ︸
n/r

Divide in r classes and apply Dynkin’s algorithm in each class.

Each of the r top weights is the best of its class with prob.
≥ (1− 1/r)r−1 ≥ C > 0. Thus it is selected with prob. ≥ C/e.
e/C (constant) competitive algorithm.

José A. Soto - M.I.T. Thesis Defense April 15th, 2011 9
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(Easy matroids): Uniformly dense matroids are like Uniform

A loopless matroid is Uniformly dense if
|F |

rk(F )
≤ |E |

rk(E)
, for all F 6= ∅.

Property: Sets of rk(E) elements have almost full rank.

E(X :|X |=rk(E))[rk(X )] ≥ rk(E)(1− 1/e).

Algorithm: Simulate e/C-comp. alg. for Uniform Matroids.

︸ ︷︷ ︸
n/r

︸ ︷︷ ︸
n/r

︸ ︷︷ ︸
n/r

· · · ︸ ︷︷ ︸
n/r

︸ ︷︷ ︸
n/r

Try to add each selected weight to the independent set.
Selected elements have expected rank ≥ r(1− 1/e).
We recover (1− 1/e) · C/e fraction of the top r weights.
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Uniformly Dense (sub)matroids That combine nicely

Procedure.

Let E1 be the densest set ofM of maximum
cardinality.

γ(M) := max
F⊆E

|F |
rkM(F )

=
|E1|

rkM(E1)
.

M1 =M|E1 is uniformly dense.

M∗ =M/E1 has smaller density thanM.
Iterate onM∗. . . .

M1,E1

M,E

M2,E2

Mk ,Ek

...

Want:
MatroidsM1, . . . ,Mk such that:

1 EachMi is uniformly dense.
2 If Ii ∈ I(Mi), then I1 ∪ I2 ∪ · · · ∪ Ik ∈ I(M).
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Theorem (Principal Partition) [Tomizawa, Narayanan]

There exists a partition E =
⋃k

i=1 Ei such that
1 Each principal minor Mi = (M/Ei−1)|Ei is uniformly dense.
2 If Ii ∈ I(Mi), then I1 ∪ I2 ∪ · · · ∪ Ik ∈ I(M).
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Algorithm for a General MatroidM

Algorithm
1 LetM1,M2, . . . ,Mk be the principal minors.
2 In eachMi use the O(1)-competitive algorithm for uniformly

dense matroids to obtain an independent set Ii .
3 Return ALG = I1 ∪ I2 ∪ · · · ∪ Ik .

· · ·

We have:

Eπ,σ[w(ALG)] ≥ Ω(1)Eσ[w(OPT⊕
Mi

)].

Also show Eπ,σ[w(ALG)] ≥ Ω(1)/(1− 1/e)Eσ[w(OPTM)].
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Conclusions and Open Problems.

Summary
First constant competitive algorithm for Matroid Secretary Problem
in Random-Assign. Random-Order Model.
[OG-V] Can use same ideas for Random-Assign. Adv.-Order Model.
Algorithm only makes comparisons.

Open
Adv.-Assign. Random-Order Model
Extend to independent systems beyond
matroids.

Adv.-Order

Random-Assign.

Random-Order

Random-Assign.

I.I.D. Weights

Adv.-Order

Adv.-Assign.

Random-Order

Adv.-Assign.
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Outline

1 Matroid Secretary Problem

2 Jump Number Problem and Independent Sets of Rectangles.
(joint work with C. Telha)

3 Symmetric Submodular Function Minimization under Hereditary
Constraints.



Jump Number Problem

a b c

d e f
Jumps

a o b o cf o d o e 4 jumps

a o bd o cf o e 3 jumps

Jump number problem for a poset P

Find a linear extension (schedule) with minimum number of jumps j(P).

Properties
Comparability invariant.
NP-hard even for chordal bipartite graphs.
(Every cycle of length ≥ 6 has a chord.)
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Cross-free Matchings and Biclique Covers.

Cross-free matchings in a bipartite graph G = (A ∪ B,E)

Two edges ab and a′b′ cross if ab′ and a′b are also edges.
α∗(G) = maximum size of a cross-free matching.

a b c

d e f

Fact: For G chordal bipartite.

α∗(G) + j(P) = n − 1

Example: a o bd o cf o e

Biclique Cover in a bipartite graph G = (A ∪ B,E)

κ∗(G) = minimum size of a collection of complete bipartite graphs
(bicliques) that covers E .
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α∗(G) = maximum size of a cross-free matching.

a b c

d e f Fact: For G chordal bipartite.

α∗(G) + j(P) = n − 1

Example: a o bd o cf o e

Biclique Cover in a bipartite graph G = (A ∪ B,E)

κ∗(G) = minimum size of a collection of complete bipartite graphs
(bicliques) that covers E . α∗(G) ≤ κ∗(G).
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Special Chordal Bipartite Graphs .

Definition (Bicolored 2D-graphs or 2 d.o.r.g.)

Given two sets A and B of points in the plane.
G(A,B) is the bipartite graph on A ∪ B where

ab is an edge if a ∈ A, b ∈ B, ax ≤ bx and ay ≤ by
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α∗(G(A,B)) and κ∗(G(A,B))

Crossing edges = Overlapping Rectangles

Maximal Bicliques = Rectangle Hitting Sets

Theorem 1 [ST11] : In a 2 d.o.r.g. with rectangles R
α∗ = max. cross-free matching = max. indep. set of R [MIS(R)].
κ∗ = min. biclique cover = min. hitting set of R [MHS(R)].
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α∗(G(A,B)) and κ∗(G(A,B))

Crossing edges = Overlapping Rectangles

Maximal Bicliques = Rectangle Hitting Sets

Can replace R
by the

inclusionwise
minimal

rectangles R↓.

Theorem 1 [ST11] : In a 2 d.o.r.g. with rectangles R
α∗ = max. cross-free matching = max. indep. set of R [MIS(R)].
κ∗ = min. biclique cover = min. hitting set of R [MHS(R)].
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Main results

Theorem 2 [ST11]: In a 2 d.o.r.g. with minimal rectangles R↓
The fractional solution for the natural LP relaxation of MIS(R↓) having
minimum weighted area is an integral solution: If

P =
{

x ∈ (R+)R↓ ,
∑
R3q

xR ≤ 1,q ∈ Grid
}
, z∗ = max

{
1

T x , x ∈ P
}
.

Then α∗ = z∗ and

arg min

 ∑
R∈R↓

area(R)xR : 1T x = z∗, x ∈ P

 is integral .

Theorem 3 [ST11]: For every 2 d.o.r.g.

α∗(G(A,B)) = κ∗(G(A,B)).
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(sketch) Theorem 3: α∗(G(A,B)) = κ∗(G(A,B)).

H: Intersection graph of R↓.
α∗(G(A,B)) = MIS(R↓) = stability number of H.
κ∗(G(A,B)) = MHS(R↓) = clique covering number of H.

Intersections
The only possible intersections in H can be
corner-free intersections or corner intersections.

Perfect Case:
If R↓ is such that the only intersections are corner-free-intersection,
then its intersection graph H is a comparability graph (perfect).

Therefore α∗(G(A,B)) = κ∗(G(A,B)).
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(cont.) Theorem 3: MIS(R↓)=MHS(R↓)

General Case:
1 Construct a family K ⊆ R↓ by greedily including (in a certain

order) rectangles in K if they do not form corner-intersection.

2 Since K is a corner-free-intersection family
MHS(K)=MIS(K)≤MIS(R↓)≤MHS(R↓).

3 Compute a minimum hitting set P of K.

Swapping procedure.
If p,q in P, with px < qx and py < qy s.t.

P′ = P \ {p,q} ∪ {(px ,qy ), (py ,qx )}
is a hitting set for K then set P← P′.

We can show that final P is also a hitting set for R↓.

José A. Soto - M.I.T. Thesis Defense April 15th, 2011 20



(cont.) Theorem 3: MIS(R↓)=MHS(R↓)

General Case:
1 Construct a family K ⊆ R↓ by greedily including (in a certain

order) rectangles in K if they do not form corner-intersection.
2 Since K is a corner-free-intersection family

MHS(K)=MIS(K)≤MIS(R↓)≤MHS(R↓).

3 Compute a minimum hitting set P of K.

Swapping procedure.
If p,q in P, with px < qx and py < qy s.t.

P′ = P \ {p,q} ∪ {(px ,qy ), (py ,qx )}
is a hitting set for K then set P← P′.

We can show that final P is also a hitting set for R↓.
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Conclusions and Other Results

Results in Context

(new results in red)
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Conclusions and Other Results

Additional Results
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?

Show that maximum weight
cross-free matching is
NP-hard for 2 d.o.r.g.
Give O(n3) algorithm for
weighted problem in biconvex
and convex graphs.
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Outline

1 Matroid Secretary Problem

2 Jump Number Problem and Independent Sets of Rectangles.
(joint work with C. Telha)

3 Symmetric Submodular Function Minimization under Hereditary
Constraints.



SSF Minimization: Introduction

Definitions

f : 2V → R is submodular if

f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B), for all A,B ⊆ V

f is symmetric if
f (A) = f (V \ A), for all A ⊆ V

A family I of sets is an independent system if it is closed for inclusion.

Problem
Find ∅ 6= X ∗ ∈ I that minimizes f (X ) over all X ∈ I.
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Examples

Examples
Find a minimum unbalanced cut in a (weighted) graph.

X V \X min{|E(X ; X )| : 0 6= |X | ≤ k}.

Find a nonempty subgraph satisfying an hereditary graph property
(e.g. triangle-free, clique, stable-set, planar) minimizing the
weights of the edges in its coboundary.
Minimizing a SSF under any combination of upper cardinality /
knapsack / matroid constraints.
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Results (Old+New)

[Svitkina-Fleischer 08]
Minimizing a general submodular function under cardinality constraints
is NP-hard to approximate within o(

√
|V |/ log |V |).

[GS10]

O(n3)-algorithm for minimizing SSF on independent systems.
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Rizzi Functions

Let f be a SSF on V with f (∅) = 0.
Define the function d(·, :) on pairs of disjoint subsets of V as

d(A,B) =
1
2

(f (A) + f (B)− f (A ∪ B)) .

Rizzi
A Rizzi bi-set function d(·, :) is any function satisfying

1 Symmetric: d(A,B) = d(B,A).
2 Monotone: d(A,B) ≤ d(A,B ∪ C).
3 Consistent: d(A,C) ≤ d(B,C)⇒ d(A,B ∪ C) ≤ d(B,A ∪ C).

E.g., d(A,B) = |E(A : B)| is a Rizzi bi-set function associated to |δ(·)|.
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Pendant Pairs and M.A. order

(s, t) is a pendant pair of d if

d({t},V \ {t}) ≤ d(S,V \ S), for all S separating s and t .

v1, . . . , vn is a M.A. order if

d(vi , {v1, . . . , vi−1}) ≥ d(vj , {v1, . . . , vi−1}).
We get M.A. order by setting v1 arbitrarily and selecting the next vertex
as the one with MAX. ADJACENCY to the already selected.

Lemma [Queyranne, Rizzi]

The last two elements (vn−1, vn) of a M.A. order are a pendant pair.
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Queyranne’s algorithm

Algorithm to minimize SSF in 2V \ {V , ∅}
While |V | ≥ 2,

1 Find (s, t) pendant pair.
2 Add {t} as a candidate for minimum.
3 Fuse s and t as one vertex.

Return the best of the n − 1 candidates.

Remark:
If |V | ≥ 3, we can always find a pendant pair avoiding one vertex.
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Algorithm for constrained version

A loop of I is a singleton not in I. (Assume I has exactly one loop `).

Algorithm

While |V | ≥ 3,
1 Find (s, t) pendant pair avoiding `.
2 Add {t} as a candidate for minimum.
3 If {s, t} ∈ I, Fuse s and t as one vertex.

Else, Fuse s, t and ` as one vertex (call it `).

If |V | = 2, add the only non-loop as a candidate.
Return the best candidate.
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Conclusions.

Results

O(n3)-algorithm for finding all inclusionwise minimal minimizers of
a SSF of an independent system I.
An algorithm by Nagamochi also solves this problem (and more)
in the same time.
But our algorithm works for a wider class than Nagamochi’s.

Open
Characterize functions admitting pendant pairs for all their fusions.
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Thank you.
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