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Abstract. We study an approximation of a Markov process associated to the boundary of an infinite rooted
tree. This approximation is constructed by projecting the infinitesimal generator of the original process
(defined in the boundary) onto the spaces associated to the filtration spanned by the successive levels of the
rooted tree.

1. Introduction

Every (finite or locally-finite) rooted tree can be associated with a tree matrix, constructed by assigning
increasing values to the successive levels of the tree. This tree matrix turns out to be an ultrametric matrix,
a class of matrices, first introduced in [MMM94] for the finite case, corresponding to those matrices U =
(Uij : i, j ∈ I) satisfying the ultrametric inequality:

Uij ≥ min{Uik, Ukj} for each i, j, k ∈ I.

In [DMM96] it was shown that every finite ultrametric matrix has a minimal extension corresponding to a
tree matrix and the result is directly extended to infinite matrices in [DMM04].

In the finite setting it was shown in [MMM94] and [NV94] that the inverse of a non-singular ultrametric
matrix U is a diagonal dominant Stieltjes matrix. Thus U is proportional to the potential of a discrete-time
sub-markovian kernel P , that is U = κ

∑
n≥0 Pn. The graph of the kernel P is closely related to the minimal

tree extension of U (see [DMM96]).
The infinite setting is less simple. In [DMM04] it was shown that each column of an infinite tree matrix U

is the sum of a potential and a harmonic function (non-trivial except in the special recurrent case). In this
case there appears a continuous-time sub-markovian kernel that replaces the kernel P of the finite case. The
matrix U allows to construct a stochastic integral operator W acting on the boundary ∂∞ of the tree, which
in turn is the generator of a Markov process Ξ defined on the boundary. The underlying ultrametricity of the
tree matrices is crucial for these results, which, under certain conditions, can be extended to general infinite
ultrametric matrices. This class of operators were already considered in [Lyo90] and [Lyo92], where some of
its potential properties (as the dimension and capacity of the boundary) are fully studied.

This work is devoted to constructing an approximation of this process Ξ in a manner such that the nth

process of the approximating sequence is in some way a projection of Ξ onto the nth level of the tree. The
next section presents the notions that we need for our work, mainly taken from [DMM04].

2. Basic Notions and Notation

2.1. Trees and tree matrices. In what follows, I will denote a countable infinite set and T ⊆ I × I will
denote a locally-finite tree with set of nodes I and root r.

In [Car72] the following properties are shown. Given two points i 6= j in I there exists a unique path of
minimal length in the tree that connects them, which we will call geod(i, j), the geodesic between i and j.
We say that j 4 i if j ∈ geod(i, r). Thus, given two points i and k in I, there exists a unique point, denoted
by i f k (the minimum between i and k), that satisfies i f k 4 i, i f k 4 k and [(j 4 i, j 4 k) ⇒ j 4 i f k].
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Figure 1. Levels, geodesics and minimums on a tree.

i f k corresponds to the farthest point from the root r that belongs both to geod(i, r) and geod(k, r). We
can also define the level function

|i| = [length of geod(i, r)],

which is an increasing function in i. (Figure 1 sketches these concepts).

Definition 2.1. Given the rooted tree (I, T ) and a non-negative non-decreasing function w : N → R, the
matrix U defined by

Uij = w|ifj|

is called the tree matrix associated to (I, T ) and w.

It is evident that every tree matrix is ultrametric.

2.2. Compactification of the tree. In this part we define the boundary ∂∞ of the tree T . An infinite path
in the tree is a sequence (in ∈ I : n ∈ N) such that (in, in+1) ∈ T for each n ∈ N. If every in is different, the
path is called an infinite chain. We define the following relation over the set of chains:

(in ∈ I : n ∈ N) ∼∂∞ (jn ∈ I : n ∈ N) ⇔ |{in : n ∈ N} ∩ {jn : n ∈ N}| = ∞.

It is clear that ∼∂∞ is an equivalence relation.

Definition 2.2. The boundary of the tree T is the set ∂∞ corresponding to the quotient between the set of
infinite chains of T and the relation ∼∂∞ .

Given i ∈ I and ξ ∈ ∂∞, the geodesic geod(i, ξ) between i and ξ is the unique chain with origin i that
belongs to the equivalence class of ξ (see figure 2). It is easy to define also geod(ξ, η) for ξ, η ∈ ∂∞. For
n ∈ N, ξ(n) will be the unique point in geod(r, ξ) such that |ξ(n)| = n.

4 and f can also be extended to ∂∞:

i 4 ξ ⇔ i ∈ geod(r, ξ) for i ∈ I, ξ ∈ ∂∞,(2.1)

ξ f η = i, where |i| = max{|j| : j ∈ geod(r, ξ) ∩ geod(r, η)}, for ξ, η ∈ I ∪ ∂∞.(2.2)

Then ξ f ξ = ξ and if ξ 6= η then ξ f η ∈ I. In this last case, ξ f η = i if and only if ξ(|i|) = η(|i|) and
ξ(n) 6= η(n) for n > |i|.

We need some more notation. For i ∈ I, ξ ∈ ∂∞ and n ∈ N, we denote

[i,∞] = {z ∈ I ∪ ∂∞ : i 4 z}, [i,∞) = [i,∞] ∩ I,

∂∞(i) = [i,∞] ∩ ∂∞, Cn(ξ) = ∂∞(ξ(n)),

In = {i ∈ I : |i| ≤ n}, Bn = {i ∈ I : |i| = n}.

We endow the set I ∪ ∂∞ with the topology Λ generated by the base formed by the open-closed sets in
the family A = {[i,∞] : i ∈ I}. (I ∪ ∂∞,Λ) turns out to be compact, metrizable and totally discontinuous,
and for ξ ∈ ∂∞ it holds that limn→∞ ξ(n) = ξ and ∂∞(ξ(n)) = {η ∈ ∂∞; |ξ f η| ≥ n} (see [Car72]).
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Figure 2. ∂∞ and the geodesic between i ∈ I and ξ ∈ ∂∞.

2.3. The boundary operator. In [DMM04] it was shown that, given a tree matrix U , there exists a matrix
Q such that UQ = QU = −I (this infinite product is well defined because all the columns of Q have finitely
many non-zero entries, so the sums involved are finite). This matrix is the generator of a continuous-time
Markov process (Xt)t≥0 that lives on the tree. Q is conservative except at the root r, so we add an absorbing
state ∂r connected to r. We denote by ζ the lifetime of X, so that Xζ = ∂r or Xζ ∈ ∂∞.

We say that the tree matrix is transient if Pr{Xζ ∈ ∂∞} > 0. Otherwise, we say that the matrix is
recurrent. This last case is rather easy to analyze, since the unique bounded harmonic function h of the
tree (that is, such that Qh = 0) is h ≡ 0 (see [DMM04]), so in what follows we assume that the matrix is
transient. This allows us to define the conditional measure µ over ∂∞ by

(2.3) µ(·) = Pr{Xζ ∈ ·|Xζ ∈ ∂∞}.
With this measure and this notion of harmonicity, ∂∞ turns out to be isomorphic to the Martin boundary
of the tree (see [Car72]).

Using (2.2) we can extend U to I ∪ ∂∞ in the following way:

for ξ, η ∈ ∂∞, Uξη =

{
w|ξfη| if ξ 6= η,

limn→∞ Uξ(n)ξ(n) if ξ = η,

and for i ∈ I, ξ ∈ ∂∞, Uiξ = w|ifξ(|i|)|.

This extension is continuous in both variables: Uξη = limn,m→∞ Uξ(n)η(m) for ξ, η ∈ ∂∞.
In [DMM04] the set ∂r

∞ of the regular points is introduced as a mean to avoid some technical complications.
We will not enter into that discussion here, let us just mention that ∂r

∞ has full measure, so any integral
computed over ∂∞ can be also computed over ∂r

∞.

Definition 2.3. Given a (positive) bounded and measurable function f : ∂∞ → R we define

Wf (ξ) =
∫

∂∞
Uξηf(η)µ(dη).

W is self adjoint and Wf is bounded if f is so. W1 = α = w0/Pr{Xζ ∈ ∂∞} (where w0 is the value
associated to the level zero of the tree, i.e. the root), W is well defined as an operator in Lp(µ) and ‖W‖p = α.

A useful calculation made in [DMM04] leads to the spectral decomposition of W , which we present now.
For every n ∈ N, the collection {Cn(ξ) : ξ ∈ ∂∞} forms a finite partition of ∂∞, and we write Fn for the
σ-algebra associated to that partition. This gives us a filtration (Fn)n≥0 whose limit is F = σ(Λ). We denote
∆k[w] = wk − wk−1 for k ∈ N and ∆−1[w] = 0 and define the sequence (Gn)n≥0 by

Gn(ξ) =
∑

k≥n

∆k[w]µ(Ck(ξ)) for ξ ∈ ∂∞ and n ∈ N.

Observe that G0 ≡ W1 = α, so G0 is convergent. Moreover, Gn > 0 for all n, and the sequence is decreasing,
predictable and convergent to 0. The spectral decomposition of W (that shows that it is a stochastic integral
operator) amounts to

W =
∑

n∈N
Gn (Eµ(·| Fn)− Eµ(·| Fn−1)) ,

where we assume Eµ(·|F−1) ≡ 0.
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It is possible to construct an inverse of W over Im(W ). We will write W−1 for that inverse and assume
implicitly that its domain is Im(W ), so

W−1 =
∑

n∈N
G−1

n (Eµ(·| Fn)− Eµ(·| Fn−1)) .

2.4. The process on the boundary. We will write Z ∼ exp[λ] to indicate that Z is a random variable
with exponential distribution of parameter λ (and mean 1/λ) and B ∼ Ber[p] to indicate that B is a random
variable with Bernoulli distribution of parameter p (that is, P{B = 1} = 1− P{B = 0} = p).

The following theorem, proved in [DMM04], is the first thing that we will have to replicate for our level-wise
approximation.

Theorem 2.4. Consider the symmetric kernel

(2.4) p(t, ξ, η) =
|ξfη|∑
n=0

e−t/Gn(ξ) − e−t/Gn+1(ξ)

µ(Cn(ξ))
ξ, η ∈ ∂∞, t > 0.

This kernel is sub-markovian with total mass e−t/G0 =
∫

∂∞
p(t, ξ, η) µ(dη). The markovian semigroup

Ptf (ξ) =
∫

∂∞
p(t, ξ, η)f(η) µ(dη)

induced by this kernel in L2(µ) satisfies

Ptf =
∑

n≥0

e−t/Gn (Eµ(f | Fn)− Eµ(f | Fn−1)) ,

and the infinitesimal generator of Pt is an extension of −W−1. The potential of the semigroup is W
(
∫∞
0

Ptf dt = Wf), and its Green kernel is U (
∫∞
0

p(t, ξ, η) dt = Uξη).

Definition 2.5. The Markov process (Ξt)0≤t≤Υ is the process over ∂∞ associated to the semigroup (Pt),
where Υ = inf{t > 0 : Ξt /∈ ∂∞} is its lifetime. The coffin state of Ξ will be denoted by † (ΞΥ = †). Ξν will
denote a copy of the process with initial distribution ν in ∂∞, and Ξξ = Ξδξ indicates that the process starts
in ξ ∈ ∂∞.

3. Approximation of the Process Ξ Onto the nth Level

3.1. Construction of the approximation of the process on ∂∞. Let n ≥ 0 be the level of the tree
onto which we are going to project Ξ. We write Em = Eµ(·|Fm) and define the approximate operator
W (n) : L2(µ,F∞) → L2(µ,Fn) by

W (n) = W En.

Evidently, using the spectral decomposition of W , it holds that

W (n) =
n∑

m=0

Gm[Em − Em−1].

We can define the following operator, that corresponds to the inverse of W (n) over L2(µ,Fn):

W (−n) = W−1 En =
n∑

m=0

Gm
−1[Em − Em−1].

The semigroup associated to this approximation is

P
(n)
t = e−tW (−n)

=
n∑

m=0

e−t/Gm [Em − Em−1].

To our approximation we associate a truncation of the coefficients Gm: we define G
(n)
m as Gm if m ≤ n

and 0 if m > n. Note that e−t/G
(n)
n+1 = 0 for t > 0.
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Proposition 3.1.

(3.1) P
(n)
t f(ξ) =

∫

∂∞
p(n)(t, ξ, η)f(η)µ(dη), ∀ξ ∈ ∂∞, ∀t > 0,

where the kernel p(n) corresponds to

(3.2) p(n)(t, ξ, η) =
|ξfη|∧n∑

m=0

e−t/G(n)
m (ξ) − e−t/G

(n)
m+1(ξ)

µ(Cm(ξ))
.

Proof. We can assume that f is Fn-measurable, since P
(n)
t f = P

(n)
t Enf . Thus, it is enough to restrict the

proof to the case f = 1∂∞(i) for i ∈ Bn.

(P (n)
t 1∂∞(i))(ξ) =

n∑
m=0

e−t/Gm(ξ)
[
Em1∂∞(i) − Em−11∂∞(i)

]
(ξ)

=
n∑

m=0

(
e−t/G(n)

m (ξ) − e−t/G
(n)
m+1(ξ)

)
Em1∂∞(i)(ξ)

=
n∑

m=0

(
e−t/G(n)

m (ξ) − e−t/G
(n)
m+1(ξ)

) µ(∂∞(i))
µ(∂∞(i(m)))

1∂∞(i(m))(ξ)

= µ(∂∞(i))
|ξfi|∑
m=0

(
e−t/G(n)

m (ξ) − e−t/G
(n)
m+1(ξ)

) 1
µ(∂∞(i(m)))

.

Now, for η ∈ ∂∞(i) and m ≤ |ξ f i| ∧ n, it holds that µ(∂∞(i(m))) = µ(Cm(ξ)) and |ξ f i| = |ξ f η| ∧ n.
To get the last equality, observe that if |ξ f i| < n, then ξ /∈ ∂∞(i) and thus ξ f η = ξ f i, while if |ξ f i| = n,
then ξ ∈ ∂∞(i), and as η ∈ ∂∞(i), we get |ξ f η| ≥ n, so |ξ f η| ∧ n = n = |ξ f i|. Hence,

(P (n)
t 1∂∞(i))(ξ) =

∫

∂∞(i)

|ξfη|∧n∑
m=0

(
e−t/G(n)

m (ξ) − e−t/G
(n)
m+1(ξ)

) 1
µ(Cm(ξ))

µ(dη)

=
∫

∂∞
p(n)(t, ξ, η)1∂∞(i)(η)µ(dη).

¤

The following proposition describes the Green kernel of this semigroup, that corresponds to the function
U (n) : ∂∞ × ∂∞ → R given by

U
(n)
ξη =

∫ ∞

0

p(n)(t, ξ, η) dt

=
|ξfη|∧n∑

m=0

(
G(n)

m (ξ)−G
(n)
m+1(ξ)

) 1
µ(Cm(ξ))

.

Proposition 3.2.

U
(n)
ξη =

1
µ(Cn(η))

∫ ∞

0

Pµ(·|Cn(ξ)){Ξt ∈ Cn(η)} dt(3.3)

= Uξ(n)η(n) +
1

µ(Cn(ξ))
Gn+1(ξ)1Cn(ξ)(η)(3.4)

=

{
Uξη if |ξ f η| < n,

wn + 1
µ(Cn(ξ))Gn+1(ξ) if |ξ f η| ≥ n.

(3.5)

Moreover, if σ ∈ Cn(ξ) and τ ∈ Cn(η), then U
(n)
στ = U

(n)
ξη .
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Proof. On one hand, it holds that

U
(n)
ξη =

|ξfη|∧n∑
m=0

(
G(n)

m (ξ)−G
(n)
m+1(ξ)

) 1
µ(Cm(ξ))

=
|ξfη|∧n∑

m=0

G(n)
m (ξ)

[
1

µ(Cm(ξ))
− 1

µ(Cm−1(ξ))

]
−

G
(n)
|ξfη|∧n+1(ξ)

µ(C |ξfη|∧n)(ξ)
,

(3.6)

where, by convention, we put 1/µ(C−1(ξ)) = 0. On the other hand, using that 1Cn(ξ) is Fn-measurable, it
holds that

<W1Cn(ξ),1Cn(η) >L2(µ) =<
∑

m≥0

Gm

[
Em1Cn(ξ) − Em−11Cn(ξ)

]
,1Cn(η) >L2(µ)

=
n∑

m=0

<Gm

[
Em1Cn(ξ) − Em−11Cn(ξ)

]
,1Cn(η) >L2(µ)

=
n∑

m=0

∫

Cn(η)

Gm(σ)
[
Em1Cn(ξ) − Em−11Cn(ξ)

]
(σ)µ(dσ)

(Gm(σ) = Gm(η) for σ ∈ Cn(η) y m ≤ n)

=
n∑

m=0

Gm(η) <
[
Em1Cn(ξ) − Em−11Cn(ξ)

]
,1Cn(η) >L2(µ) .

Now Eµ(1Cn(ξ)|Fm) = µ(Cn(ξ))
µ(Cm(ξ))1Cm(ξ), and Cm(ξ) ∩ Cn(η) equals Cn(η) if m ≤ |ξ f η| and is empty

otherwise. Thus

<
[
Em1Cn(ξ) − Em−11Cn(ξ)

]
,1Cn(η) >L2(µ)=




µ(Cn(ξ))µ(Cn(η))
[

1
µ(Cm(ξ)) − 1

µ(Cm−1(ξ))

]
if m ≤ |ξ f η|,

−µ(Cn(ξ))µ(Cn(η))/µ(C |ξfη|(ξ)) if m = |ξ f η|+ 1,
0 if m > |ξ f η|+ 1

and then,

<W1Cn(ξ),1Cn(η) >L2(µ)

µ(Cn(ξ))µ(Cn(η))
=



|ξfη|∧n∑

m=0

G(n)
m (η)

[
1

µ(Cm(ξ))
− 1

µ(Cm−1(ξ))

]

−G
(n)
|ξfη|∧n+1(η)

1
µ(C |ξfη|∧n(ξ))

]
.

But in the previous formula G
(n)
m (η) can be replaced by G

(n)
m (ξ) since it appears only for m ≤ |ξ f η|+ 1,

in which case both terms coincide. Thus, this formula recovers (3.6), and then

µ(Cn(ξ))µ(Cn(η))U (n)
ξη =<W1Cn(ξ),1Cn(η) >L2(µ)=

∫

Cn(η)

(W1Cn(ξ))(σ) µ(dσ)

=
∫

Cn(η)

∫

Cn(ξ)

Uστ µ(dτ)µ(dσ) dt =
∫ ∞

0

∫

Cn(η)

∫

Cn(ξ)

p(t, σ, τ) µ(dτ)µ(dσ) dt

=
∫ ∞

0

∫

Cn(ξ)

∫

Cn(η)

p(t, τ, σ)µ(dσ)µ(dτ) dt =
∫ ∞

0

∫

Cn(ξ)

Pτ{Ξt ∈ Cn(η)}µ(dτ) dt

= µ(Cn(ξ))
∫ ∞

0

∫

∂∞
Pτ{Ξt ∈ Cn(η)}µ(dτ |Cn(ξ)) dt.

Hence,

U
(n)
ξη =

1
µ(Cn(η))

∫ ∞

0

Pµ(·|Cn(ξ)){Ξt ∈ Cn(η)} dt.

On the other hand, from the previous calculations one obtains that

U
(n)
ξη =

1
µ(Cn(ξ))

1
µ(Cn(η))

∫

Cn(η)

∫

Cn(ξ)

Uστ µ(dτ)µ(dσ).
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Then, if η /∈ Cn(ξ), it holds that U
(n)
ξη = Uξη. Besides, if σ ∈ Cn(ξ) and τ ∈ Cn(η), then U

(n)
στ = U

(n)
ξη . So

we have only U
(n)
ξξ left to calculate:

U
(n)
ξξ =

n∑
m=0

(
G(n)

m (ξ)−G
(n)
m+1(ξ)

) 1
µ(Cm(ξ))

=
n−1∑
m=0

∆m[w] +
Gn(ξ)

µ(Cn(ξ))

= wn−1 +
Gn(ξ)

µ(Cn(ξ))
= wn +

1
µ(Cn(ξ))

[(wn−1 − wn)µ(Cn(ξ)) + Gn(ξ)]

= wn +
1

µ(Cn(ξ))
Gn+1(ξ),

from where the formula proposed holds. ¤

Using the previous proposition it is easy to see that U (n) turns out to be an ultrametric matrix.
For the kernel p(n) we have a formula similar to (3.4), which is proved in an analogous way:

Proposition 3.3.

(3.7) p(n)(t, ξ, η) = p(t, ξ(n), η(n)) +
1

µ(Cn(ξ))
e−t/Gn+1(ξ)1Cn(ξ)(η),

where p(t, ξ(n), η(n)) is understood as the same formula as p(t, ξ, η), save truncating the sum at n:

p(t, ξ(n), η(n)) =
|ξfη|∧n∑

m=0

e−t/Gm(ξ) − e−t/Gm+1(ξ)

µ(Cm(ξ))
.

Besides, if σ ∈ Cn(ξ) and τ ∈ Cn(η), then p(n)(t, σ, τ) = p(n)(t, ξ, η), i.e., the values of p(n) are constant
within the atoms of Fn.

The following proposition describes the relation between W (n), U (n) and P (n), and finishes recovering
theorem 2.4:

Proposition 3.4. Let f ∈ L2(µ). Then:

W (n)f(ξ) =
∫

∂∞
U

(n)
ξη f(η) µ(dη)(3.8)

=
∫ ∞

0

P
(n)
t f(ξ) dt.(3.9)

That is, U (n) is the Green kernel of P (n) and W (n) is its potential.

Proof.

W (n)f(ξ) =
n∑

m=0

Gm(ξ) [Emf(ξ)− Em−1f(ξ)]

=
n∑

m=0

[Gm(ξ)−Gm+1(ξ)]Emf(ξ) + Gn+1Enf(ξ)

=
n∑

m=0

∆m[w]µ(Cm(ξ))Emf(ξ) + Gn+1Enf(ξ)

=
n∑

m=0

∆m[w]
∫

Cm(ξ)

f dµ +
Gn+1

µ(Cn(ξ))

∫

Cn(ξ)

f dµ

=
n−1∑
m=0

wm

∫

Cm(ξ)\Cm+1(ξ)

f dµ + wn

∫

Cn(ξ)

f dµ +
Gn+1

µ(Cn(ξ))

∫

Cn(ξ)

f dµ

=
n−1∑
m=0

wm

∫

Cm(ξ)\Cm+1(ξ)

f dµ +
[
wn +

Gn+1

µ(Cn(ξ))

] ∫

Cn(ξ)

f dµ

=
∫

∂∞
U

(n)
ξη f(η)µ(dη).
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The other equality results from∫ ∞

0

P
(n)
t f(ξ) dt =

∫

∂∞

∫ ∞

0

p(n)(t, ξ, η)f(η) dt µ(dη) =
∫

∂∞
U

(n)
ξη f(η)µ(dη).

¤

In what follows we will denote by Π(n) the Markov process associated to the semigroup P (n). Observe
that µ turns out to be a quasi-stationary measure for Π(n):

(3.10) Pµ{Π(n)
t ∈ A} = e−t/G0µ(A).

This happens also with Ξ (see [DMM04]), the proofs being identical (see [Rem04]).

3.2. Relation between Ξ and Π(n). To begin, observe that∫

∂∞
p(n)(t, ξ, η)µ(dη) = (P (n)

t 1)(ξ) = e−t/G0 ,

thus the lifetime of Π(n), which we will denote by Γ(n), has distribution exp[1/G0], the same as the distribution
of the lifetime Υ of Ξ.

The following proposition shows that both processes have the same distribution over the atoms of Fn,
while the subsequent theorem studies the convergence of Π(n).

Proposition 3.5. Let ξ, η ∈ ∂∞. Then:

Pξ{Π(n)
t ∈ Cn(η)} = Pξ{Ξt ∈ Cn(η)}.

Proof. Suppose first that |ξ f η| < n. Then:

Pξ{Π(n)
t ∈ Cn(η)} =

∫

Cn(η)

p(n)(t, ξ, σ) µ(dσ) =
∫

Cn(η)

p(t, ξ, σ)µ(dσ)

= Pξ{Ξt ∈ Cn(η)}.
Now suppose that |ξ f η| ≥ n. In this case, Cn(ξ) = Cn(η), thus it is enough to restrict the proof to the

case ξ = η :

Pξ{Π(n)
t ∈ Cn(ξ)} = 1− Pξ{Π(n)

t ∈ ∂∞\Cn(ξ)} − Pξ{Γ(n) ≤ t}
= 1− Pξ{Ξt ∈ ∂∞\Cn(ξ)} − (1− e−t/G0)

= e−t/G0 − Pξ{Ξt ∈ ∂∞\Cn(ξ)} = Pξ{Υ > t} − Pξ{Ξt ∈ ∂∞\Cn(ξ)}
= Pξ{Ξt ∈ Cn(ξ)}.

¤

Observe that, by the previous proposition, the following is also true:

Pξ{Π(n)
t ∈ Cm(η)} = Pξ{Ξt ∈ Cm(η)} for 0 ≤ m ≤ n.

Theorem 3.6. The sequence of processes (Π(n))n≥0 converges in distribution to Ξ,

Π(n) dist.−−−−→
n→∞

Ξ.

Proof. Since ∂∞ is compact, it suffices to prove the convergence of the finite-dimensional laws of Π(n) to
those of Ξ. That is, we must prove that, given 0<t1 < · · ·< tk <∞ and A1, . . . , Ak ∈ F∞, it holds that:

Pξ{Π(n)
ti

∈ Ai, i = 1, . . . , k} −−−−→
n→∞

Pξ{Ξti ∈ Ai, i = 1, . . . , k}.

It is well known that in this context we can restrict the proof of the preceding property to atoms A1, . . . , Ak

of the generating algebra
⋃∞

n=0 Fn (see, for example, [Bil68, Theorem 2.2]). Moreover, we can restrict the
proof to the case in which every atom is defined on the same level (otherwise it suffices to work in the lowest
level in which an atom is defined and decompose the other atoms with respect to that level). We will only
present the case k = 2, the rest being analogous. Observe that A1 = A2 or A1 ∩A2 = ∅.

We first assume that ξ /∈ A1. If A1 ∩A2 = ∅, we have that

Pξ{Π(n)
t1 ∈ A1, Π

(n)
t2 ∈ A2} =

∫

A2

∫

A1

p(n)(t1, ξ, ξ1)p(n)(t2 − t1, ξ1, ξ2)µ(dξ1)µ(dξ2),
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and the fact that the terms p(n)(t1, ξ, ξ1) and p(n)(t2 − t1, ξ1, ξ2) are constant for n sufficiently big, and thus
equal to the corresponding terms replacing p(n) with p, implies that the convergence follows. If A1 = A2 we
define C(n)

1 = {∂∞(i), i ∈ Bn}\A1, the family of atoms on the level n except A1, so

Pξ{Π(n)
t1 ∈ A1, Π

(n)
t2 ∈ A1} = Pξ{Π(n)

t2 ∈ A1} −
∑

A′1∈C(n)
1

Pξ{Π(n)
t1 ∈ A′1, Π

(n)
t2 ∈ A1}

= Pξ{Ξt2 ∈ A1} −
∑

A′1∈C(n)
1

Pξ{Ξt1 ∈ A′1,Ξt2 ∈ A1}

= Pξ{Ξt1 ∈ A1,Ξt2 ∈ A1},
due to the previous case and proposition 3.5.

Now if ξ ∈ A1, and for any pair A1, A2, we have

Pξ{Π(n)
t1 ∈ A1, Π

(n)
t2 ∈ A2} = Pξ{Π(n)

t2 ∈ A2} −
∑

A′1∈C(n)
1

Pξ{Π(n)
t1 ∈ A′1, Π

(n)
t2 ∈ A2}

= Pξ{Ξt1 ∈ A1,Ξt2 ∈ A2},
using the case ξ /∈ A1.

¤

In this way, the process Π(n) approximates the original process Ξ.
Observe that we also have that

U (n) −−−−→
n→∞

U µ-a.s. and p(n) −−−−→
n→∞

p µ-a.s.

This follows from (3.4), (3.7) and the fact that Gn+1
µ(Cn(ξ)) and e−t/Gn+1

µ(Cn(ξ)) both converge to 0 if µ({ξ}) > 0.

3.3. Interpretation of the process Π(n). We will start by giving an interpretation for the potential asso-
ciated to Π(n). Remember that the Green kernel of Π(n) is given by

U
(n)
ξη = Uξ(n)η(n) +

Gn+1(ξ)
µ(Cn(ξ))

1Cn(ξ)(η)

(see (3.4)). The potential of Π(n) corresponds to W (n). From (3.8) and (3.9) we obtain that, given ξ, η ∈ ∂∞,

W (n)1Cn(η)(ξ) = [total time spent by Π(n) in Cn(η), starting from ξ]

=
∫

Cn(η)

U
(n)
ξσ µ(dσ)

= U
(n)
ξη µ(Cn(η)).

(3.11)

Observe that, except in the case ξ = η, it holds that

U
(n)
ξη −−−−→

n→∞
Uξη.

In fact, when ξ and η are in different atoms of Fn (that is, if |ξ f η| < n), it holds that U
(n)
ξη = Uξη, and

then W (n)1Cn(η)(ξ) = W1Cn(η)(ξ). In the opposite case, |ξ f η| ≥ n, we have µ(Cn(η)) = µ(Cn(ξ)), so

U
(n)
ξη µ(Cn(η)) = µ(Cn(ξ))wn + Gn+1(ξ)

= µ(Cn(ξ))wn + (Gn+1(ξ)−Gn(ξ)) + Gn(ξ)

= µ(Cn(ξ)) (wn −∆n[w]) + Gn(ξ)

= µ(Cn(ξ))wn−1 + Gn(ξ).

(3.12)

To give an interpretation for this term we introduce the shifted process, which we will denote by Ξ
(n)

, and
that lives in the subtree that is born of ξ(n) (see figure 3). To each level of this subtree we associate the same
value as before, that is, to the level m of the subtree we associate the coefficient w

(n)
m = wn+m for n ≥ 0 and

we put w
(n)
−1 = 0. In this way, the matrix U

(n)
corresponding to this restriction is simply the restriction of
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Figure 3. Shifted process, that corresponds to the process defined over the restriction of the whole
problem to [ξ(n),∞).

the matrix U to [ξ(n),∞]. We must consider the measure µ conditioned to the atom corresponding to the
subtree, that is, µ(n)(·) = µ(·|Cn(ξ)). The associated operator turns out to be

W
(n)

f(ξ) =
∫

Cn(ξ)

Uξηf(η)µ(n)(dη).

The resulting process is analogous to the original process Ξ. Observe that for m ≥ 1 it holds that
G

(n)

n+m(ξ) = Gm(ξ)/µ(Cn(ξ)). Nevertheless, this is not true for m = 0 (since in the shifted process we put
w

(n)
−1 as 0 instead of wn−1):

G
(n)

0 = W
(n)

1 =
∫

Cn(ξ)

Uξη µ(n)(dη)

=
∑

m≥n

∫

Cm(ξ)\Cm+1(ξ)

Uξη µ(n)(dη) =
∑

m≥n

wm

(
µ(n)(Cm(ξ))− µ(n)(Cm+1(ξ))

)

=
1

µ(Cn(ξ))


 ∑

m≥n

∆m[w]µ(Cm(ξ)) + wn−1µ(Cn(ξ))


 .

Thus,

(3.13) G
(n)

0 = wn−1 +
Gn(ξ)

µ(Cn(ξ))
.

Recall that G
(n)

0 corresponds to the mean of the lifetime of the process Ξ
(n)

, which we will denote by Υ
(n)

.
Using (3.12) and (3.13), we have obtained that

(3.14) W (n)1Cn(η)(ξ) = µ(Cn(ξ))E(Υ
(n)

).

This means that the mean time spent by Π(n) in Cn(η) when starting from a point ξ ∈ Cn(η) corresponds
to the mean of the lifetime of the shifted process Ξ

(n)
, normalized by the measure of the relevant atom. This

result shows that the measure µ contains a big part of the global information of the process Ξ. Observe
that the process Π(n) is constructed by truncating W to the space associated to the σ-algebra Fn, that is,
forgetting everything that happens in the tree after the nth level, while Ξ

(n)
is constructed by shifting all

the problem to make it start from the nth level, that is, forgetting everything before the nth level. The only
global information that both processes share, the measure µ, is enough for their behavior to be related.

Regarding the transition probabilities of the truncated process Π(n) it is possible to give a very precise
interpretation of it in terms of the process Ξ. The equality

U
(n)
ξη =

∫ ∞

0

p(n)(t, ξ, η) dt =
1

µ(Cn(η))

∫ ∞

0

Pµ(·|Cn(ξ)){Ξt ∈ Cn(η)} dt

gives an idea that is shown to be correct by the following theorem:

Theorem 3.7. Given ξ, η ∈ ∂∞, it holds that

p(n)(t, ξ, η) =
1

µ(Cn(η))
Pµ(·|Cn(ξ)){Ξt ∈ Cn(η)}.
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Proof.

Pµ(·|Cn(ξ)){Ξt ∈ Cn(η)} =
1

µ(Cn(ξ))

∫

Cn(ξ)

Pσ{Ξt ∈ Cn(η)}µ(dσ)

=
1

µ(Cn(ξ))

∫

Cn(ξ)

Pσ{Π(n)
t ∈ Cn(η)}µ(dσ)

(but σ ∈ Cn(ξ) ⇒ Pσ{Π(n)
t ∈ Cn(η)} = Pξ{Π(n)

t ∈ Cn(η)})

= Pξ{Π(n)
t ∈ Cn(η)} =

∫

Cn(η)

p(n)(t, ξ, σ)µ(dσ)

(and using again that p(n)(t, ξ, σ) is constant for σ located in the same atom of Fn)

= µ(Cn(η))p(n)(t, ξ, η).

¤

To end this part we will show that the distribution of the exit time of Π(n) from an atom Cm(ξ) for
m ≤ n and ξ ∈ ∂∞ is equal to that of Ξ. To prove this it will be necessary to replicate for Π(n) the way of
constructing a copy of Ξ given in [DMM04].

Given n ≥ 0, fix m ≤ n, ξ∗ ∈ ∂r
∞ and consider the subtree that is born of ξ∗(m). Define the conditional

measure mµ = µ(·|Cm(ξ∗)) and the weight function given by
mw−1 = 0 and ∆k[mw] = µ(Cm(ξ∗))∆k+m[w] for k ≥ 1.

Define the level function m| · | = | · | − m and the atoms mCn(·) = Cn+m(·). With these definitions,
mGk = Gk+m. We further define

mG
(n)
k =

{
mGk if k + m ≤ n

0 if k + m > n.

Then mG
(n)
k = G

(n)
k+m. The associated operator in this case is given by

mW (n) =
n∑

k=0

mGk [Emµ(·| Fk)− Emµ(·| Fk−1)] ,

and the kernel by

mp(n)(t, ξ, η) =
|ξfη|∧(n−m)∑

k=0

e−t/mG
(n)
k (ξ) − e−t/mG

(n)
k+1(ξ)

mµ(mCk(ξ))
.

The process induced by the generator −(mW (n))−1 will be denoted by mΠ(n). Its lifetime satisfies mΓ(n) ∼
exp[1/Gm].

Theorem 3.8. Fix n ≥ 1. Let m ≤ n and ξ ∈ ∂r
∞. Let (B1, . . . , Bm) be a vector of independent random

variables with Bk ∼ Ber[1−Gk(ξ)/Gk+1(ξ)]. Then, under the measure Pξ, the Markov process defined by

(3.15)
[

mΠ̃(n)
t

]ξ

=





[
mΠ(n)

t

]ξ

if t < mΓ(n),

† if t ≥ mΓ(n) and Bk = 0 for 1 ≤ k ≤ m,
[

kΠ̃(n)

t−mΓ(n)

]kµ

if t ≥ mΓ(n) and Bk+1 = 1, Bp = 0 for k + 1 < p ≤ m,

is a copy Π(n)ξ
.

Proof. Using the definitions and formulas for Π(n), the proof is identical to that of the construction of nΞ in
[DMM04] (see [Rem04] for more details). ¤

Proposition 3.9. The exit time of Π(n), starting from a point ξ∗ ∈ ∂∞, from any atom associated to a level
m ≤ n, satisfies R(n)

m ∼ exp[βm(ξ∗)], where

βm(ξ∗) = µ(Cm(ξ∗))

[
1

G0(ξ∗)
+

m∑

k=1

µ(Ck−1(ξ∗)\Ck(ξ∗))
µ(Ck(ξ∗))µ(Ck−1(ξ∗))Gk(ξ∗)

]
.

Hence that exit time has the same distribution as that of Ξ. (See [DMM04]).
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Proof. The same proof given for the exit time of Ξ in [DMM04] works in this case.
¤

4. A Different Construction of the Process Π(n)

The definition of the approximated process Π(n) could have been also done considering it as defined in Bn.
This gives another Markov process, which we will denote by Y (n), that satisfies a set of properties analogous
to those of Π(n). The elements used in this construction are:

U
(n)
ij = Uij for i, j ∈ Bn,

W
(n)
ij = U

(n)
ij µ(∂∞(j)) for i, j ∈ Bn,

and p(n)(t, i, j) =
|ifj|∑
m=0

(
e−t/G(n)

m (i) − e−t/G
(n)
m+1(i)

) µ(∂∞(j))
µ(∂∞(i(m))

for i, j ∈ Bn, t > 0,

where in the last line G
(n)
m (i) = G

(n)
m (ξ) for any ξ ∈ ∂∞(i). (See [Rem04] for details).

In this section we will show how to obtain Π(n) from Y (n), allowing us to conclude the understanding of
our approximation. To do this we will construct another Markov process in ∂∞, starting from Y (n), with the
same finite-dimensional laws of Π(n).

Denote by T1, T2, . . . the jump times of Y (n) and by Z(n) its skeleton. Suppose that Π(n) starts from
ξ ∈ ∂∞, so we make Y (n) start from ξ(n). Denote by um a random variable uniformly distributed according
to µ in ∂∞(Z(n)

m ). Define the process Π̂(n) by

Π̂(n)
t =

{
ξ if t < T1,

um if Tm ≤ t < Tm+1.

To show that Π̂(n) is a Markov process we will prove that for every pair of measurable and bounded
functions F and G it holds that

E(F (Xtm+1)G(Xtm , . . . , Xt1)) = E(E(F (Xtm+1)|Xtm)G(Xtm , . . . , Xt1)).

We can restrict the proof to F and G of the form 1A, A ∈ F∞. Then we must show that, given A1, . . . , Am+1 ∈
F∞,

Eξ(Π̂(n)
t1 ∈ A1, . . . ,Π̂(n)

tm+1 ∈ Am+1)

= Eξ(Π̂(n)
t1 ∈ A1, . . . , Π̂(n)

tm ∈ Am EdΠ(n)
tm

(Π̂(n)
tm+1−tm ∈ Am+1))

= Eξ(Π̂(n)
t1 ∈ A1, . . . , Π̂(n)

tm ∈ Am)EdΠ(n)
tm

(Π̂(n)
tm+1−tm ∈ Am+1).

We can restrict the proof further to the case when A1, . . . , Am+1 are each contained in one atom of Fn.
Denote by ∂∞(Am) the atom of Fn that contains Am and by i(Am) the corresponding node in Bn.

Pξ{Π̂(n)
t1 ∈ A1, . . . , Π̂(n)

tm+1 ∈ Am+1}

= Pξ(n){Y (n)
t1 = i(A1), . . . , Y

(n)
tm+1

= i(Am+1)} µ(A1)
µ(∂∞(A1))

· · · µ(Am+1)
µ(∂∞(Am+1))

= Pξ(n){Y (n)
t1 = i(A1), . . . , Y

(n)
tm

= i(Am)}P
Y

(n)
tm

{Y (n)
tm+1−tm

= i(Am+1)}
µ(A1)

µ(∂∞(A1))
· · · µ(Am+1)

µ(∂∞(Am+1))

= Pξ(n){Π̂(n)
t1 ∈ A1, . . . , Π̂(n)

tm ∈ Am}PY
(n)

tm

{Π̂(n)
tm+1−tm ∈ Am+1}.

Thus, Π̂(n) is a Markov process.

We must prove now that the finite-dimensional laws of Π̂(n) and Π(n) coincide. Due to the compactness of
∂∞ we may restrict ourselves to prove the equality of the one-dimensional laws. Again we restrict the proof
to sets contained in some atom of Fn.

Pξ{Π̂(n)
t ∈ A} = Pξ(n){Y (n)

t = i(A)} µ(A)
µ(∂∞(A))

= p(n)(t, ξ(n), i(A))
µ(A)

µ(∂∞(A))
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Figure 4. Sketch of the process Π(n) constructed from Y (n).

=
|ξ(n)fi(A)|∑

m=0

(
e−t/G(n)

m (ξ) − e−t/G
(n)
m+1(ξ)

) µ(∂∞(i(A)))
µ(Cn(ξ))

µ(A)
µ(∂∞(A))

=
∫

A

p(n)(t, ξ, η) µ(dη)

= Pξ{Π(n)
t ∈ A}.

We have proven the following theorem:

Theorem 4.1. The process Π(n) coincides with Π̂(n). In other words, Π(n) corresponds to the process in ∂∞
that jumps between the atoms of Fn according to the jumps of the process Y (n), and that upon the arrival to
each atom chooses uniformly a point where it stays until the next jump (see figure 4).

From the preceding theorem it follows directly the following corollary that finishes the description of Π(n):

Corollary 4.2. The trajectories of the process Π(n) do not move within the atoms of Fn, they only make
jumps between different atoms. In other words,

Pξ{Π(n)
t 6= ξ | t < T∂∞\Cn(ξ)} = 0,

where T∂∞\Cn(ξ) is the exit time from Cn(ξ).
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