Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática

Pauta Control 1 - MA2A1 Agosto 2008

Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla y Javier Orrego

- 1. a) Estudiar si las siguientes definen una norma en \mathbb{R}^2 :
 - 1) $||(x,y)|| = \sqrt{4x^2 + y^2}$
 - 2) $||(x,y)|| = \sqrt{|x| + |y|}$
 - 3) $||(x,y)|| = |x| + \left| \sqrt[3]{x^3 + y^3} \right|$
 - 4) $||(x,y)|| = \sqrt{(x-y)^2 + y^2}$

Solución:

Notemos que si definimos $\|\vec{x}\| = \|L(\vec{x})\|_2$ con $\|\cdot\|_2$ la norma 2 en \mathbb{R}^2 y L una función lineal de \mathbb{R}^2 en \mathbb{R}^2 tal que $L(\vec{x}) = 0$ si y sólo si $\vec{x} = 0$ (es decir, que sea inyectiva), entonces $\|\cdot\|$ es una norma, en efecto:

- $\blacksquare \ \|\vec{x}\| = 0 \Longleftrightarrow \|L(\vec{x})\|_2 = 0 \Longleftrightarrow L(\vec{x}) = 0 \Longleftrightarrow \vec{x} = 0$
- $\blacksquare \ \|\vec{x} + \vec{y}\| = \|L(\vec{x} + \vec{y})\|_2 = \|L(\vec{x}) + L(\vec{y})\|_2 \leq \|L(\vec{x})\|_2 + \|L(\vec{y})\|_2 = \|\vec{x}\| + \|\vec{y}\|_2$
- 1) Sí es norma, basta definir L(x,y)=(2x,y) que cumple las propiedades de la parte anterior.
- 2) No es norma pues si $\lambda \neq 0$ o $\lambda \neq 1$ se tiene

$$\|\lambda(x,y)\| = \sqrt{|\lambda x| + |\lambda y|} = \sqrt{|\lambda|}\sqrt{|x| + |y|} \neq |\lambda|\sqrt{|x| + |y|} = |\lambda| \|(x,y)\|$$

3) No es norma, pues no cumple la desigualdad triángular, un contraejemplo se tiene tomando $\vec{x}=(1,1)$ y $\vec{y}=(1,-1)$

$$\|\vec{x} + \vec{y}\| = \|(2,0)\| = 4 \nleq 3,2599.... = 1 + 1 + \sqrt[3]{2} = \|(1,1)\| + \|(1,-1)\| = \|\vec{x}\| + \|\vec{y}\|$$

4) Sí es norma, basta definir L(x,y)=(x-y,y) que lineal inyectiva.

b) Demostrar que el conjunto $C=\{(x,y)\in\mathbb{R}^2:\sqrt{|x|}+\sqrt{|y|}<1\}$ no es convexo. (hacer un dibujo de este conjunto). Deducir de ello que:

$$||(x,y)|| = (\sqrt{|x|} + \sqrt{|y|})^2$$

No es una norma en \mathbb{R}^2 . Qué condición falla??

NOTA: Si E es un espacio vectorial y $A \subseteq E$ se dice convexo si se cumple que $\forall x,y \in A$ $\forall \lambda \in [0,1] \text{ se tiene } \lambda x + (1-\lambda)y \in A$

Solución:

Primero notemos que podemos escribir C como $C\{(x,y)\in\mathbb{R}^2:\|(x,y)\|<1\}$ con $\|\cdot\|$ la función definida en el enunciado. El dibujo del conjunto C está dado por la figura 1.

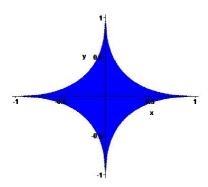


Figura 1: Dibujo de C

Para ver que C no es convexo, bastará dar un contraejemplo, un caso posible es tomando $\vec{x} = (\frac{9}{10}, 0)$ y $\vec{y} = (0, \frac{9}{10})$ y ver que $\frac{1}{2}\vec{x} + \frac{1}{2}\vec{y} \notin C$. Ahora bien como C no es convexo $\exists \vec{x}, \vec{y} \in C \ \exists \lambda \in (0, 1)$ tal que $\lambda \vec{x} + (1 - \lambda)\vec{y} \notin C$, es decir

$$\|\lambda \vec{x} + (1 - \lambda)\vec{y}\| \ge 1$$

Supongamos que $\|\cdot\|$ es norma, claramente

$$||t\vec{u}|| = |t| \, ||\vec{u}||$$

$$\|\vec{u}\| = 0 \iff \vec{u} = 0$$

Supongamos ademas que cumple la desigualdad triangular, entonces en particular se tiene que:

$$\|\lambda \vec{x} + (1 - \lambda)\vec{y}\| < \|\lambda \vec{x}\| + \|(1 - \lambda)\vec{y}\| = \lambda \|\vec{x}\| + (1 - \lambda) \|\vec{y}\|$$

como $\vec{x}, \vec{y} \in C ||\vec{x}||, ||\vec{y}|| < 1$ eso implica que

$$\|\lambda \vec{x} + (1 - \lambda)\vec{y}\| < \lambda + (1 - \lambda) = 1$$

lo que es una contradicción. Por lo tanto ∥.∥ no es una norma pues no cumple la desigualdad triangular.

- 2. Para cada una de las siguientes proposiciones determine su valor de verdad. Si es verdadera debe probarla y si es falsa debe dar un contraejemplo.
 - a) para los números $x_1, ..., x_n, y_1, ..., y_n$ y $z_1, ..., z_n$ se cumple:

$$\left(\sum_{i=1}^{n} x_i y_i z_i\right)^4 \le \left(\sum_{i=1}^{n} x_i^4\right) \left(\sum_{i=1}^{n} y_i^2\right)^2 \left(\sum_{i=1}^{n} z_i^4\right)$$

Solución:

Recordemos la desigualdad de Cauchy-schwartz:

$$\sum_{i=1}^{n} a_i b_i \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2} \iff (\sum_{i=1}^{n} a_i b_i)^2 \le (\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2)$$

luego tomando $a_i = y_i$ y $b_i = x_i z_i$ tenemos:

$$\left(\sum_{i=1}^{n} x_i y_i z_i\right)^4 \le \left(\sum_{i=1}^{n} x_i^2 z_i^2\right)^2 \left(\sum_{i=1}^{n} y_i^2\right)^2$$

Ahora tomando $a_i = x_i^2$ y $b_i = z_i^2$ tenemos el resultado, luego la afirmación es cierta.

b) Con la métrica discreta en \mathbb{R}^n se cumple que los únicos subconjunto que son abiertos y cerrados a la vez son el espacio completo, el conjunto vacío y los $singlet\'on\ \{x\}\ \forall x\in\mathbb{R}^n$

Solución:

Sabemos que \emptyset y \mathbb{R}^n son abiertos y cerrados, veamos que $\{x\}$ es abierto y cerrado $\forall x \in \mathbb{R}^n$.

- ABIERTO: Sea $x \in \mathbb{R}^n$, bastará tomar $r \in (0,1)$ con lo cual $B(x,r) = \{x\} \subseteq \{x\}$
- CERRADO: Sea $x \in \mathbb{R}^n$, veamos que $\{x\}^c$ es abierto, notemos que $\{x\}^c = \bigcup_{y \in \mathbb{R}^n/\{x\}} \{y\}$, como

por lo anterior $\{y\}$ es abierto $\forall y \in \mathbb{R}^n$, se concluye que $\{x\}$ es cerrado.

Luego $\{x\}$ es abierto y cerrado $\forall x \in \mathbb{R}^n$, pero con esto, dados $u, v \in \mathbb{R}^n$ distintos, el conjunto $\{u, v\}$ es abierto y cerrado a la vez pues es unión finita de cerrados y de abiertos. Luego la proposición es falsa

c) Si el punto $x_0 \in \mathbb{R}^n$ es punto de acumulación del subconjunto $S \subseteq \mathbb{R}^n$, entonces todo conjunto abierto que contiene a x_0 posee infinitos puntos de S

Solución:

Supongamos \mathbb{R}^n con la norma $\|\cdot\|$, como $x_0 \in S'$ existe una sucesión $\{x_n\}_{n\geq 1} \subseteq S$ tal que $x_n \longrightarrow x_o$ y además $\forall n \geq 1$ $x_n \neq x_0$.

Luego $\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0, \ 0 < \|x_n - x_0\| < \epsilon$, es decir, $\forall n \geq n_0$ se cumple $x_n \in B'(x_0, \epsilon)$. Por lo tanto la afirmación es cierta.

d) Si $A, B \subseteq \mathbb{R}^n$ con A abierto, B cualquiera y $x_0 \in \mathbb{R}^n$ entonces $A + B = \{x + y \in \mathbb{R}^n : x \in A, y \in B\}$ es abierto, pero $A + \{x_0\}$ no es abierto ni cerrado.

Solución:

Sea $z \in A+B$,por lo tanto $\exists x \in A, y \in B$ tales que z=x+y. Como A es abierto, $\exists r>0$ tal que $B(x,r)\subseteq A$ pero esto implica que $B(x+y,r)\subseteq A+\{y\}$, es decir, $B(z,r)\subseteq A+\{y\}$. Notemos que A+B lo podemos escribir como:

$$A + B = \bigcup_{y \in B} A + \{y\}$$

por lo tanto $B(z,r) \subseteq A + \{y\} \subseteq A + B$. Luego A + B es abierto, pero por lo anterior vemos que el conjunto $A + \{x_0\}$ también es abierto, por lo que la afirmación es falsa.

e) Sea $\{x_k\}_{k\in\mathbb{N}}$ una sucesión de Cauchy en (E,d) un espacio métrico. Si $\{x_k\}_{k\in\mathbb{N}}$ posee una subsucesión convergente a x^* entonces $\lim_{k\to\infty}x_k=x^*$.

Solución:

Sea $\{x_{k_i}\}_{i\in\mathbb{N}}$ una subsucesión de $\{x_k\}_{k\in\mathbb{N}}$ que converge a x^* , luego

$$d(x_{k_i}, x^*) \longrightarrow 0$$

Ahora bien, como la sucesión es de Cauchy tenemos que

$$d(x_k, x_{k_i}) \longrightarrow 0$$

luego

$$d(x_k, x^*) \le d(x_k, x_{k_i}) + d(x_{k_i}, x^*) \longrightarrow 0$$

finalmente tenemos que $\lim_{k\to\infty}x_k=x^*$. por lo tanto la afirmación es cierta.

f) Sea $(\mathbb{R}^n, \|\cdot\|)$ espacio vectorial normado real, entonces se cumple que si A y B son dos subconjuntos cualquiera de \mathbb{R}^n , $Fr(A) \cap Fr(B) \subseteq Fr(A \cap B)$, y además $A \cap Fr(B) \subseteq Fr(A \cap B)$.

Solución:

Dotemos \mathbb{R}^n de la norma euclideana para facilitar las cosas.

La afirmación es falsa pues basta tomar A,B conjuntos abierto tales que $A \cap B = \emptyset$ pero con $\overline{A} \cap \overline{B} \neq \emptyset$, por ejemplo tomemos A = B(0,1) y $B = B(2e_i,1)$ con e_i un vector canónico de la base de \mathbb{R}^n , luego $A \cap B = \emptyset$ pero $\overline{A} \cap \overline{B} = \{e_i\}$ con lo cual $Fr(A) \cap Fr(B) = \{e_i\} \subseteq Fr(A \cap B) = \emptyset$ lo cual es imposible.

3. a) Hallar las superficies de nivel, de valor $\alpha=1,0,-1$ de la función de 3 variables:

$$f(x, y, z) = x^2 + y^2 - z^2$$

Solución:

Existen varias formas de visualizar las superficies, una es escribir primero la ecuación:

$$x^2 + y^2 - z^2 = \alpha \Longrightarrow z = \pm \sqrt{x^2 + y^2 - \alpha}$$

Con esto vemos que para las superficies de nivel se pueden interpretar como un paraboloide o un cono reflejado por el plano XY, con lo cual tenemos las siguientes figuras:

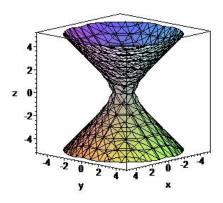


Figura 2: $\alpha = 1$

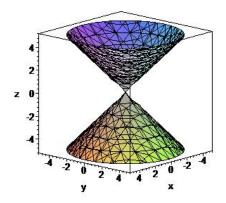


Figura 3: $\alpha = 0$

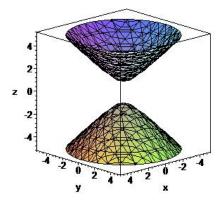


Figura 4: $\alpha = -1$

- b) Para cada una de las siguientes funciones (del 1) al 6)) dada por una fórmula se pide encontrar la tabla de números; o bien la curva de nivel o gráfico correspondiente (de i) a ix)). Puede ocurrir que una fórmula no tenga ninguna representación o bien más de una. Justifique brevemente su elección:
 - 1) $f(x,y) = x^2 y^2$
 - 2) f(x,y) = 6 2x + 3y
 - 3) $f(x,y) = \sqrt{1 x^2 y^2}$
 - 4) $f(x,y) = \frac{1}{1+x^2+y^2}$
 - 5) f(x,y) = 6 2x 3y
 - 6) $f(x,y) = \sqrt{x^2 + y^2}$

Solución:

- 1) iii) y viii) pues corresponde a un punto silla y además se anula cuando |x| = |y| también se considera el hecho que los valores son fáciles de calcular.
- 2) iv) pues es un plano (por lo tanto sus curvas de nivel son rectas paralelas) y haciendo haciendo z=0 obtenemos la ecuación de una recta de pendiente positiva
- 3) vii) pues corresponde a la ecuación de una esfera de centro $\vec{0}$ y radio 1, $x^2+y^2+z^2=1$ pero tomando $z\geq 0$
- 4) ii) pues la tabla es simétrica con respecto a x e y y además los valores son faciles de calcular y calzan.
- 5) v) y vi) pues es un plano que intersecta los ejes en tales puntos y además haciendo z=0 obtenemos la ecuación de una recta de pendiente negativa
- 6) i) y ix) pues corresponde a un cono (se puede ver con el hecho que está formado de infinitos círculos centrados en el eje z), la tabla corresponde pues se anula en (0,0) y además cuando una de las coordenas es 0 y la otra ∓ 1 (∓ 2) la función vale 1 (2).

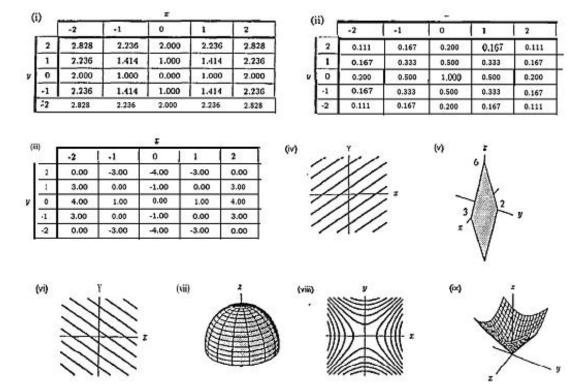


Figura 5: pregunta 3.b