Examen Adicional - MA2001

Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla y Francisco Unda

P1. *a*) Pruebe que

$$\iint_{A} e^{-(x^{2}+y^{2})} dxdy = ae^{-a^{2}} \int_{0}^{\infty} \frac{e^{-u^{2}}}{a^{2}+u^{2}} du$$

Donde $A = \{(x, y) \in \mathbb{R}^2 : x \ge a > 0\}.$

Indicación: Use la transformación

$$x^2 + y^2 = u^2 + a^2$$
, $y = vx$

b) Sea $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ de clase C^2 tal que $\varphi(x,y) = (\varphi_1(x,y), \varphi_2(x,y))$ y

$$\frac{\partial \varphi_1}{\partial x} = \frac{\partial \varphi_2}{\partial y} \quad \frac{\partial \varphi_1}{\partial y} = -\frac{\partial \varphi_2}{\partial x}$$

1) Pruebe que $\Delta \varphi_1 = 0$ y $\Delta \varphi_2 = 0$.

2) Sea $h: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de clase C^2 . Se define $f = h \circ \varphi$, demuestre que:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \left[\left(\frac{\partial \varphi_1}{\partial x} \right)^2 + \left(\frac{\partial \varphi_2}{\partial x} \right)^2 \right] \left[\frac{\partial^2 h}{\partial u^2} + \frac{\partial^2 h}{\partial v^2} \right]$$

Diga explícitamente donde están evaluadas las derivadas parciales.

P2. a) Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ de clase C^1 . Considere la transformación T(x,y) = (u,v) definida por

$$u = f(x)$$
$$v = -y + x f(x)$$

Si $f'(x_0) \neq 0$, muestre que esta transformación es localmente invertible cerca de (x_0, y_0) , es decir, $\exists U$ abierto que contiene a (x_0, y_0) tal que $T: U \longrightarrow T(U)$ es invertible, y la inversa tiene la forma $T^{-1}(u, v) = (x, y)$ donde

$$x = g(u)$$
$$y = -v + ug(u)$$

b) Sea $a \in \mathbb{R}$, $a \neq 0$ y $f : \mathbb{R} \longrightarrow \mathbb{R}$ una función de clase C^2 . Se define

$$F(x,y) = f\left(\frac{x^2 - a^2}{y} + y\right)$$

Encuentre f (no constante) tal que $\forall (x,y) \in \mathbb{R} \times (0,+\infty)$, se tiene que $\Delta F = 0$.

Tiempo 2:00 hrs.