Examen - MA2001

Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla y Francisco Unda

P1. *a*) **(2.0 ptos)** Calcule

$$I = \int_0^{\sqrt{2}} \int_{y/2}^{1/\sqrt{2}} \cos(\pi x^2) dx dy$$

b) (2.0 ptos) Una lámina tiene forma de semidisco de radio a. Hallar la masa de la lámina y su centro de masas sabiendo que la densidad de la lámina varía proporcionalmente a la distancia al centro del lado recto de la lámina.

Recuerdo: Sea $D \subseteq \mathbb{R}^2$ una placa y $\rho : D \to \mathbb{R}$ la densidad (de masa). Entonces la masa total de la placa está dada por:

$$M(D) = \iint_D \rho(x, y) dx dy$$

y las coordenadas (\bar{x}, \bar{y}) del centro de masa de la placa están dadas por:

$$\bar{x} = \frac{1}{M(D)} \iint_D x \rho(x, y) dx dy$$
 $\bar{y} = \frac{1}{M(D)} \iint_D y \rho(x, y) dx dy.$

c) (2.0 ptos) Se quiere calcular el volumen del sólido limitado por el elipsoide

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

para ello se pide plantear el volumen como integral triple en coordenadas cartesianas y resolver usando algún cambio de coordenadas adecuado.

P2. (6.0 ptos) Obtener los extremos absolutos y relativos de la función

$$f(x,y) = 3x^2y^2 + 2y^3 + 2x^3$$

en el conjunto $R = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$.

Indicación: Analizar por separado los extremos en el interior y en la frontera de *R*.

P3. Se desea encontrar una función $\phi : \mathbb{R}^2 \to \mathbb{R}$ de clase C^2 que resuelva la ecuación de ondas:

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2}$$
 $c = \text{constante no nula.}$

Para ello se propone el cambio de variable $\xi = x + ct$, $\eta = x - ct$, de modo que ϕ se obtenga como

$$\phi(x,t) = \psi(\xi(x,t), \eta(x,t))$$

donde $\psi(\xi,\eta)$ es la incógnita.

a) (3.0 ptos) Demuestre que:

$$\frac{\partial^2 \phi}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = 4 \frac{\partial^2 \psi}{\partial \eta \partial \xi}$$

b) (3.0 ptos) Use la propiedad anterior para probar que toda solución de ϕ de clase C^2 de la ecuacion de ondas se escribe como $\phi(x,t) = f(x+ct) + g(x-ct)$, donde f y g son funciones de una variable.

P4. (Opcional, reemplaza a la peor de las anteriores en caso de ser mejor)

(7.0 ptos) Sea Ω el sólido comprendido en el interior de la esfera $x^2 + y^2 + z^2 = 1$, que es exterior al cono $(z-1)^2 = x^2 + y^2$. Sea S_1 la parte de la frontera de Ω correspondiente a la esfera y S_2 la parte de la frontera de Ω correspondiente al cono. Encuentre el área de la superficie $S = S_1 \cup S_2$, parametrizando S_1 y S_2 .

Indicación: Calcule el área de S_1 y S_2 por separado.

Tiempo 3:00 hrs.