Control 3 - MA2001

Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla y Francisco Unda

P1. a) (2.0 ptos) Calcular el volúmen de la región de \mathbb{R}^3 situada sobre el plano XY, que queda debajo de la función

$$f(x,y) = \frac{4 - x^2 - y^2}{(x^2 + y^2)^{\frac{3}{2}}}$$

que es interior al cilindro $(x-1)^2 + y^2 = 1$ y que es exterior al cilindro $x^2 + y^2 = 1$. Represente gráficamente la región de integración.

b) 1) (1.0 pto) Sean $a, b \in \mathbb{R}$ tal que a < b. Considere $f : [a, b] \times [a, b] \longrightarrow \mathbb{R}$ una función continua, pruebe que

$$I = \int_a^b \int_a^x f(x, y) dy dx = \int_a^b \int_y^b f(x, y) dx dy$$

2) (1.0 pto) Deducir que si f(x,y) = f(y,x) en el rectángulo $B = [a,b] \times [a,b]$ entonces

$$I = \frac{1}{2} \iint_{R} f(x, y) dx dy$$

3) (1.0 pto) Pruebe que si a > 0 y si $\frac{f(x)}{x}$ es continua en [0, a] entonces

$$\int_0^a \int_x^a \frac{f(y)}{y} dy dx = \int_0^a f(x) dx$$

c) (2.0 ptos) Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Calcule ambas integrales y compruebe que

$$\int_{0}^{1} \int_{0}^{1} f(x, y) dy dx \neq \int_{0}^{1} \int_{0}^{1} f(x, y) dx dy$$

¿Contradice en algo este resultado al teorema de Fubini?

- **P2.** Encontrar un pto. P de coordenadas positivas perteneciente al elipsoide en \mathbb{R}^3 de ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, tal que el plano tangente al elipsoide en P determine con los ejes coordenados un tetraedro de volumen mínimo. Para ello
 - a) (1.5 ptos) Muestre que la ecuación del plano tangente a la elipsoide en un pto. $Q = (x_0, y_0, z_0)$ es:

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = 1$$

b) (1.5 ptos) Dados A, B, C > 0, muestre el volumen del tetraedro de vértices (0,0,0), (A,0,0), (0,B,0) y (0,0,C) es

$$V = \frac{1}{6}ABC$$

Indicación: Muestre que la cara opuesta al origen está contenido en el plano de ecuación

1

$$\frac{x}{A} + \frac{y}{B} + \frac{z}{C} = 1$$

c) (3.0 ptos) concluya.

P3. Responda sólo una de las siguientes:

- a) 1) (3.0 ptos) Pruebe que a ecuación $xy = \ln\left(\frac{x}{y}\right)$ admite una única solución $y = \varphi(x)$ de clase C^{∞} definida en una vecindad de $x_0 = \sqrt{e}$ y verificando $\varphi(x_0) = \frac{1}{\sqrt{e}}$.
 - 2) (3.0 ptos) Deduzca que la función φ presenta un máximo local en x_0 .
- b) Encuentre el máximo de la integral

$$J(x,y) = \int_{x}^{y} (e^{-t} - e^{-2t})dt$$

respecto a los límites de integración sujeto a la restricción y-x=c, donde $c\neq 0$ es una constante.

Tiempo 3:00 hrs.