Control 2 - MA2001

Profesor: Marcelo Leseigneur Auxiliar: Cristopher Hermosilla

- **P1.** *a*) (1,0 punto) Sean $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ dos espacios vectoriales normados y $\phi: X \to Y$ una transformación lineal. Pruebe que las siguientes proposiciones son equivalentes:
 - 1) ϕ continua en x = 0.
 - 2) $\exists M > 0$ tal que $\forall x \in X$, $\|\phi(x)\|_{\mathcal{V}} \leq M\|x\|_{\mathcal{X}}$.
 - 3) ϕ es continua $\forall x \in X$.
 - *b*) **(0,5 puntos)** Considere X = C([0,1]) con la norma $||f||_x = \sup_{x \in [0,1]} |f(x)|$, $Y = \mathbb{R}$ con la norma usual y $I: X \to \mathbb{R}$ definida por

$$I(f) := \int_0^1 f(x) dx.$$

Pruebe que *I* es una función continua en *X*.

c) (1,5 puntos)Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida como

$$f(x,y) := \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Muestre que f es diferenciable en (0,0), pero las derivadas parciales no son continuas en (0,0). ¿Qué puede decir de la diferenciabilidad y de las derivadas parciales en los puntos distintos de (0,0)?

d) (1,5 puntos) Sea F(x,y) := f(f(x,y), f(x,y)) donde f es una función diferenciable en \mathbb{R}^2 . A un alumno X de la sección se le pide calcular $\frac{\partial F}{\partial x}$ y entrega como resultado lo siguiente:

$$\frac{\partial F}{\partial x} = \left(\frac{\partial f}{\partial x}\right)^2 + \frac{\partial f}{\partial y}\frac{\partial f}{\partial x}$$

¿Es esto correcto? Justifique. Si no lo es, dé la expresión correcta. Compruebe la igualdad anterior para $f(x,y) = x^2 + 3xy$. ¿funciona la fórmula?

e) (1,5 puntos) Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ una función continua. Sea $g: \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}$ dada por

$$g(x) := f\left(\frac{x}{\|x\|}\right)$$

- 1) Pruebe que g alcanza su máximo y mínimo en $\mathbb{R}^n \setminus \{0\}$
- 2) Pruebe que $\lim_{x\to 0} g(x)$ existe si y sólo si f es constante en $S = \{x \in \mathbb{R}^n : ||x|| = 1\}$.

1

P2. *a*) (2,0 puntos) Muestre que la ecuación del plano tangente a la elipsoide de ecuación

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

en el punto (x_0, y_0, z_0) puede escribirse como:

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = 1$$

b) (2,0 puntos) Considere la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) := \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- 1) Pruebe que f es continua en (0,0).
- 2) Pruebe que f es diferenciable en todo punto distinto de (0,0).
- 3) Calcule, para cada $v = (v_1, v_2)$, la derivada direccional f'((0,0); v).
- 4) Verifique si f es diferenciable en (0,0).
- c) (2,0 puntos) Sean $g: \mathbb{R} \to \mathbb{R}$ y $h: \mathbb{R}^2 \to \mathbb{R}$ funciones diferenciables. Se define

$$f(x,y) := x^2 g\left(\frac{x}{y}\right) + xyh\left(\frac{x}{x+y}, \frac{x^2}{y^2}\right).$$

Demuestre que:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 2f$$

Tiempo: 3 horas.