Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática

Control 1 - MA2A1 20 de Agosto 2008

Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla y Javier Orrego

- 1. a) Estudiar si las siguientes definen una norma en \mathbb{R}^2 :
 - 1) $||(x,y)|| = \sqrt{4x^2 + y^2}$
 - 2) $||(x,y)|| = \sqrt{|x| + |y|}$
 - 3) $||(x,y)|| = |x| + \left| \sqrt[3]{x^3 + y^3} \right|$
 - 4) $||(x,y)|| = \sqrt{(x-y)^2 + y^2}$
 - b) Demostrar que el conjunto $\{(x,y) \in \mathbb{R}^2 : \sqrt{|x|} + \sqrt{|y|} < 1\}$ no es convexo. (hacer un dibujo de este conjunto). Deducir de ello que:

$$||(x,y)|| = (\sqrt{|x|} + \sqrt{|y|})^2$$

No es una norma en \mathbb{R}^2 . Qué condición falla??

NOTA: Si E es un espacio vectorial y $A \subseteq E$ se dice convexo si se cumple que $\forall x, y \in A$ $\forall \lambda \in [0,1]$ se tiene $\lambda x + (1-\lambda)y \in A$

- 2. Para cada una de las siguientes proposiciones determine su valor de verdad. Si es verdadera debe probarla y si es falsa debe dar un contraejemplo.
 - a) para los números $x_1, ..., x_n, y_1, ..., y_n$ y $z_1, ..., z_n$ se cumple:

$$\left(\sum_{i=1}^{n} x_i y_i z_i\right)^4 \le \left(\sum_{i=1}^{n} x_i^4\right) \left(\sum_{i=1}^{n} y_i^2\right)^2 \left(\sum_{i=1}^{n} z_i^4\right)$$

- b) Con la métrica discreta en \mathbb{R}^n se cumple que los únicos subconjunto que son abiertos y cerrados a la vez son el espacio completo, el conjunto vacío y los $singlet\'on\ \{x\}\ \forall x\in\mathbb{R}^n$
- c) Si el punto $x_0 \in \mathbb{R}^n$ es punto de acumulación del subconjunto $S \subseteq \mathbb{R}^n$, entonces todo conjunto abierto que contiene a x_0 posee infinitos puntos de S
- d) Si $A, B \subseteq \mathbb{R}^n$ con A abierto, B cualquiera y $x_0 \in \mathbb{R}^n$ entonces $A + B = \{x + y \in \mathbb{R}^n : x \in A, y \in B\}$ es abierto, pero $A + \{x_0\}$ no es abierto ni cerrado
- e) Sea $\{x_k\}_{k\in\mathbb{N}}$ una sucesión de Cauchy en (E,d) un espacio métrico. Si $\{x_k\}_{k\in\mathbb{N}}$ posee una subsucesión convergente a x^* entonces $\lim_{k\to\infty}x_k=x^*$
- f) Sea $(\mathbb{R}^n, \|\cdot\|)$ espacio vectorial normado real, entonces se cumple que si A y B son dos subconjuntos cualquiera de \mathbb{R}^n , $Fr(A) \cap Fr(B) \subseteq Fr(A \cap B)$, y además $A \cap Fr(B) \subseteq Fr(A \cap B)$.

1

a) Hallar las superficies de nivel, de valor $\alpha = 1, 0, -1$ de la función de 3 variables:

$$f(x, y, z) = x^2 + y^2 - z^2$$

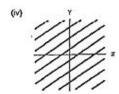
- b) Para cada una de las siguientes funciones (del 1) al 6)) dada por una fórmula se pide encontrar la tabla de números; o bien la curva de nivel o gráfico correspondiente (de i) a ix)). Puede ocurrir que una fórmula no tenga ninguna representación o bien más de una. Justifique brevemente su elección:
 - 1) $f(x,y) = x^2 y^2$
 - 2) f(x,y) = 6 2x + 3y

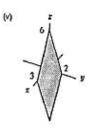
 - 3) $f(x,y) = \sqrt{1-x^2-y^2}$ 4) $f(x,y) = \frac{1}{1+x^2+y^2}$ 5) f(x,y) = 6-2x-3y6) $f(x,y) = \sqrt{x^2+y^2}$

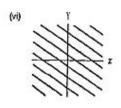
(i)		r					
ं		-2	-1	0	1	2	
	2	2.828	2.236	2.000	2.236	2.828	
	1	2.236	1.414	1.000	1.414	2.236	
y	0	2.000	1.000	0.000	1.000	2.000	
	-1	2.236	1.414	1.000	1.414	2.236	
	:2	2.828	2.236	2.000	2 236	2.828	

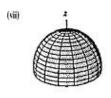
(ii)						
٧,	<u>"</u> [-2	-1	0	1	2
1	2	0.111	0.167	0.200	0.167	0.111
ı	1	0.167	0.333	0.500	0.333	0.167
١,	0	0.200	0.500	1.000	0.500	0.200
1	-1	0.167	0.333	0.500	0.333	0.167
1	-2	0.111	0.167	0.200	0.167	0.111

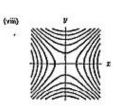
9	6)						
,	"	-2	-1	0	1	2	ĺ
	2	0.00	-3.00	4.00	-3.00	0.00	Ī
	1	3.00	0.00	-1.00	0.00	3.00	Ī
V	0	4.00	1.00	0.00	1.00	4.00	1
	-1	3.00	0.00	-1.00	0.00	3.00	Ī
	-2	0.00	-3.00	-4.00	-3.00	0.00	İ











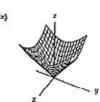


Figura 1: pregunta 3.b