Control 1 - MA2001

Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla y Francisco Unda

P1. a) Sean $K: [a,b] \times [a,b] \longrightarrow \mathbb{R}$ una función continua y $T: C([a,b]) \longrightarrow C([a,b])$ definida como

$$T[f](s) = \int_{a}^{b} K(s,t)f(t)dt \quad \forall s \in [a,b]$$

- 1) Pruebe que T está bien definida, es decir, que $\forall f \in C([a,b])$ se tiene que $T[f] \in C([a,b])$. **Indicación:** dados $x_0, x \in [a,b]$ estudie $|T[f](x_0) T[f](x)|$. Utilice resultados de funciones continuas sobre conjuntos compactos.
- 2) Pruebe que $T: (C([a,b]), \|\cdot\|_{\infty}) \longrightarrow (C([a,b]), \|\cdot\|_1)$ es continua. ¿Lo es con la norma $\|\cdot\|_{\infty}$ en el espacio de llegada? ¿por qué? **Indicación:** verifique que T es una función lineal.
- 3) Pruebe que $I = \{ f \in C([a,b]) : T[f] = f \}$ es un conjunto cerrado para la norma $\| \cdot \|_{\infty}$. **Observación:** T[f] = f denota igualdad de funciones.
- *b*) Sean X, Y dos espacios de Banach reales. Considere $T: X \longrightarrow Y$ una función lineal continua. Suponga que $\exists C > 0$ tal que

$$C||x|| \le ||Tx|| \quad \forall x \in X$$

Pruebe que Rg(T) es cerrado. Pruebe además, que la única solución de Tx = 0 es x = 0.

Recuerdo: $Rg(T) = \{y \in Y : \exists x \in X, Tx = y\}$

c) Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert real. Para $A \subseteq H$ se define el conjunto ortogonal a A como

$$A^{\perp} = \{x \in H : \langle x, y \rangle = 0, \ \forall y \in A\}$$

Pruebe que $\forall A \subseteq H$ se tiene que A^{\perp} es un subespacio vectorial cerrado de H. **Indicación:** pruebe que dado $c \in H$, la función $f_c(x) = \langle c, x \rangle$ es lineal y continua en H.

P2. *a*) Estudiar la existencia del siguiente límite.

$$\lim_{(x,y)\to(0,0)} \frac{\sin(2x) - 2x + y}{x^3 + y}$$

b) Estudiar la continuidad de la siguiente función:

$$f(x,y) = \begin{cases} \frac{y^3}{x} \ln\left(\left|\frac{y^3}{x}\right|\right) & x \neq 0 \land y \neq 0\\ 0 & x = 0 \lor y = 0 \end{cases}$$

- c) Dibujar las curvas de nivel de las siguientes funciones. Haga además, un bosquejo de la función. Justifique.
 - 1) $f(x,y) = e^{-x^2-2y^2} + 2$
 - $2) f(x,y) = \sin(x+y)$

P3. *a*) Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ la función definida por:

$$f(x,y) = \begin{cases} \frac{17}{4} - x^2 - y^2 & \text{si } x^2 + y^2 < \frac{1}{4} \\ \frac{1}{x^2 + y^2} & \text{si } \frac{1}{4} \le x^2 + y^2 < 1 \\ \sqrt{x^2 + y^2} & \text{si } x^2 + y^2 \ge 1 \end{cases}$$

- 1) Determine el dominio y estudie la continuidad de f en \mathbb{R}^2 .
- 2) Encuentre las derivadas parciales de f y determine su gradiente.
- 3) Calcule las derivadas direccionales de f en un punto (a,b) tal que $a^2+b^2=1$.
- b) Sea F(x,y) = f(f(x,y), f(x,y)) donde f es una función diferenciable en \mathbb{R}^2 . A un alumnos X de la sección se le pide calcular $\frac{\partial F}{\partial x}$ y entrega como resultado lo siguiente:

$$\frac{\partial F}{\partial x} = \left(\frac{\partial f}{\partial x}\right)^2 + \frac{\partial f}{\partial y}\frac{\partial f}{\partial x}$$

¿es esto correcto? Justifique.

Compruebe la igualdad anterior para $f(x,y) = x^2 + 3xy$. ¿funciona la fórmula obtenida? Justifique.

c) Sean $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ y $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ differenciables, con $g = (g_1, g_2)$ donde:

$$g_1(x, y, z) = x^2 + y^2 + z^2$$

 $g_2(x, y, z) = x + y + z$

Si $h = f \circ g$, demuestre que

$$\|\nabla h\|_{2}^{2} = 4\left(\frac{\partial f}{\partial u}\right)^{2} g_{1} + 4\frac{\partial f}{\partial u}\frac{\partial f}{\partial v}g_{2} + 3\left(\frac{\partial f}{\partial v}\right)^{2}$$

Indique donde están evaluadas las derivadas parciales de la última expresión.

Tiempo: 3 horas.