
Parameterizing by the Number of Numbers

Michael R. Fellows1, Serge Gaspers2, and Frances A. Rosamond1

1 PCRU, Office of DVC (Research), University of Newcastle, Callaghan, Australia.
{michael.fellows,frances.rosamond}@newcastle.edu.au

2 CMM, University of Chile, Santiago, Chile. sgaspers@dim.uchile.cl

Abstract. The usefulness of parameterized algorithmics has often depended on what
Niedermeier has called, “the art of problem parameterization.” In this paper we intro-
duce and explore a novel but general form of parameterization: the number of numbers.
Several classic numerical problems, such as Subset Sum, Partition, 3-Partition,
Numerical 3-Dimensional Matching, and Numerical Matching with Target
Sums, have multisets of integers as input. We initiate the study of parameterizing
these problems by the number of distinct integers in the input. We rely on an FPT
result for Integer Linear Programming Feasibility to show that all the above-
mentioned problems are fixed-parameter tractable when parameterized in this way. In
various applied settings, problem inputs often consist in part of multisets of integers or
multisets of weighted objects (such as edges in a graph, or jobs to be scheduled). Such
number-of-numbers parameterized problems often reduce to subproblems about tran-
sition systems of various kinds, parameterized by the size of the system description.
We consider several core problems of this kind relevant to number-of-numbers param-
eterization. Our main hardness result considers the problem: given a non-deterministic
Mealy machine M (a finite state automaton outputting a letter on each transition), an
input word x, and a census requirement c for the output word specifying how many
times each letter of the output alphabet should be written, decide whether there exists
a computation of M reading x that outputs a word y that meets the requirement c.
We show that this problem is hard for W [1]. If the question is whether there exists an
input word x such that a computation of M on x outputs a word that meets c, the
problem becomes fixed-parameter tractable.

1 Introduction

Parameterized complexity and algorithmics has been developing for more than twenty
years. Some important progress of the field has depended on what Niedermeier has
called, “the art of problem parameterization” (see Chapter 5 of his monograph [10]).
For example, it was Valerie King in 1994 who first suggested that the parameter
might be k = 1/ε in the study of the complexity of approximation, leading eventually
to the study of EPTASs.

Here we explore, for the first time (to our knowledge), a parameterization that
seems widely relevant: the number of numbers. Many problems take as input informa-
tion that consists (in part) of multisets of integers or multisets of weighted objects,
such as weighted edges in a weighted graph, the time-requirements of jobs to be
scheduled, or the sequence of molecular weights of a spectrographic dataset.

As an initial foray, we first show that a number of classic NP-hard problems
about multisets of integers, when parameterized in this way, become fixed-parameter
tractable. The proofs are easy, and the knowledgeable reader might anticipate them
almost as exercises today — they use the relatively deep result that Integer Linear
Programming, parameterized by the number of variables, is FPT. Until recently, as

2 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

noted in the 2006 monograph by Niedermeier [11], there were not so many interesting
applications of this fundamental result.

At a deeper level of engagement with this parameterization, we describe some
examples of how number-of-numbers parameterized problems reduce to numerical
problems about Mealy machines, parameterized by the size of the description of the
machine. We show that one basic problem about Mealy machines, parameterized in
this way, is FPT, and that another is W [1]-hard.

2 Preliminaries

In the Integer Linear Programming Feasibility problem (ILPF), the input is
an m × n matrix A of integers and an m-vector b of integers, the parameter is n,
and the question is whether there exists an n-vector x of integers satisfying the m
inequalities Ax ≤ b. ILPF was shown to be fixed-parameter tractable by Lenstra [8]
and the running time has been improved by Kannan [6].

Let A be a multiset. The cardinality of A, denoted |A|, is the total number of
elements in A, including repeated memberships. The variety of A, denoted ||A||, is
the number of distinct elements in A. Element a has multiplicity m in A if it occurs
m times in A. We denote the set of integers from 1 to n by [n] = {1, . . . , n}.

Let G = (V,E) be a graph. The subgraph of G induced on a vertex set S ⊆ V is
the graph G[S] = (S,E ∩ {uv : u, v ∈ S}). A clique of G is a vertex subset C ⊆ V
such that G[C] is complete, i.e. there is an edge between every two distinct vertices
of G[C]. An independent set of G is a vertex subset I ⊆ V such that G[I] is empty,
i.e. G[I] has no edge. Let v ∈ V be a vertex and A ⊆ V be a subset of vertices. The
neighborhood of v is the set of vertices incident to v and denoted N(v). Its degree is
d(v) = |N(v)|. We also define NA(v) = N(v) ∩A and dA(v) = |NA(v)|.

Let Σ be an alphabet. The elements of Σ are called letters, and a word x of length
n = |x| is a sequence of n letters. The symbol λ denotes the empty letter. We denote
the concatenation of two words x1, x2 ∈ Σ∗ by x1x2. The ith power of a word x is
denoted xi or (x)i and represents the word xx . . . x︸ ︷︷ ︸

i times

.

3 Subset Sum and Partition

We start with two classic problems on multisets an show that they are fixed-parameter
tractable, parameterized by the number of numbers.

variety-Subset Sum (var -SubSum)

Input: a multiset A of integers and an integer s
Parameter: k = ||A||, the number of distinct integers in A
Question: Is there a multiset X ⊆ A such that

∑
a∈X a = s?

variety-Partition (var -Part)

Input: a multiset A of integers
Parameter: k = ||A||
Question: Is there a multiset X ⊆ A such that

∑
a∈X a =

∑
b∈A\X b?

Parameterizing by the Number of Numbers 3

Theorem 1. var-SubSum is fixed-parameter tractable.

Proof. Given an instance (A, s) for var -SubSum, with ||A|| = k, create an equivalent
instance of ILPF whose number of variables is upper bounded by a function of k.
Let a1, . . . , ak denote the distinct elements of A and let m1, . . . ,mk denote their
respective multiplicities in A. The ILPF instance has the integer variables x1, . . . , xk
and the following inequalities and equalities.

xi ≤ mi ∀i ∈ [k]

xi ≥ 0 ∀i ∈ [k]

k∑
i=1

xi · ai = s.

For each i ∈ [k], the variable xi represents the number of times ai occurs in X, the
set summing to s in a valid solution. Using standard techniques in mathematical
programming, these constraints can be transformed into the form Ax ≤ b. ut

A very similar proof shows that var -Part is fixed-parameter tractable (the proof
can be found in the appendix).

Theorem 2. var-Part is fixed-parameter tractable.

4 Numerical 3-Dimensional Matching

Using the ILPF machinery, we show in this section that several other problems,
which are often used in NP-hardness proofs, become fixed-parameter tractable when
parameterized by the number of numbers.

variety-Numerical 3-Dimensional Matching (var -Num3-DM)

Input: three multisets A,B,C of n integers each and an integer s
Parameter: k = ||A ∪B ∪ C||
Question: Are there n triples S1, . . . , Sn, each containing one element from each

of A,B, and C such that for every i ∈ [n],
∑

a∈Si a = s?

Theorem 3. var-Num3-DM is fixed-parameter tractable.

Proof. Let (A,B,C, s) be an instance for var -Num3-DM, with k1 = ||A||, k2 = ||B||,
k3 = ||C||, and k = ||A ∪ B ∪ C||. Let a1, . . . , ak1 denote the distinct elements of
A, b1, . . . , bk2 denote the distinct elements of B, and c1, . . . , ck3 denote the distinct
elements of C. Also, let m1,a, . . . ,mk1,a,m1,b, . . . ,mk2,b,m1,c, . . . ,mk3,c denote their
respective multiplicities in A, B, and C. We create an instance of ILPF with at most

4 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

k3 integer variables xi,j,`, i ∈ [k1], j ∈ [k2], ` ∈ [k3]:

xi,j,` = 0 for each (i, j, `) ∈ ([k1], [k2], [k3])

such that ai + bj + c` 6= s∑
(j,`)∈([k2],[k3])

xi,j,` = mi,a ∀i ∈ [k1]∑
(i,`)∈([k1],[k3])

xi,j,` = mj,b ∀j ∈ [k2]∑
(i,j)∈([k1],[k2])

xi,j,` = m`,c ∀` ∈ [k3]

A variable xi,j,` represents the number of times the elements ai ∈ A, bj ∈ B and
c` ∈ C are used together to form a triple summing to s. The first constraint makes
sure that such a triple is formed only if it sums to s. The remaining equalities make
sure that each element of A ∪ B ∪ C appears in a triple. Thus n such triples are
formed, all summing to s if the integer program is feasible. ut

Note that the problem is also fixed-parameter tractable if parameterized by ||A∪
B|| only: we face a No-instance if ||C|| > ||{a + b : a ∈ A, b ∈ B}||. Another well
known numerical problem, very closely related to var -Num3-DM, is the following.

variety-Numerical Matching with Target Sums (var -NMTS)

Input: three multisets A,B, S of n integers each
Parameter: k = ||A ∪B ∪ S||
Question: Are there n triples C1, . . . , Cn ∈ (A,B, S), such that the A-element

and the B-element from each Ci sum to its S-element?

Corollary 1. var-NMTS is fixed-parameter tractable.

By the previous discussion, the natural parameterization by ||A ∪ B|| is also
fixed-parameter tractable. A straightforward adaptation of the proof of Theorem 3
shows that variety-3-Partition is fixed-parameter tractable (the proof is given in
the appendix).

variety-3-Partition (var -3-Part)

Input: a multiset A of 3n integers
Parameter: k = ||A||
Question: Are there n triples S1, . . . , Sn ⊆ A, all summing to the same number?

Theorem 4. var-3-Part is fixed-parameter tractable.

5 Mealy Machines

Mealy machines [9] are finite-state transducers, generating an output based on their
current state and input. A deterministic Mealy machine is a dual-alphabet state
transition system given by a 5-tuple M = (S, s0, Γ,Σ, T):

Parameterizing by the Number of Numbers 5

– a finite set of states S,
– a start state s0 ∈ S,
– a finite set Γ , called the input alphabet,
– a finite set Σ, called the output alphabet, and
– a transition function T : S × Γ → S × Σ mapping pairs of a state and an input

symbol to the corresponding next state and output symbol.

In a non-deterministic Mealy machine, the only difference is that the transition func-
tion is defined T : S × Γ → P(S × Σ) as for a given state and input symbol, there
may be more than one possibility for the next state and output symbol. (Here P(X)
denotes the powerset of a set X.)

A census requirement c : Σ → N is a function assigning a non-negative integer
to each symbol of the output alphabet. It is used to constrain how many times each
symbol should appear in the output of the Mealy Machine. A word y ∈ Σ∗ meets the
census requirement if every letter b ∈ Σ appears exactly c(b) times in y.

Our first problem about Mealy machines asks whether there exists an input word
and a computation of the Mealy machine such that the output word meets the census
requirement.

variety-Exists Word Mealy Machine (var -EWMM)

Input: a non-deterministic machine M = (S, s0, Γ,Σ, T), and a census re-
quirement c : Σ → N

Parameter: |S|+ |Γ |+ |Σ|
Question: Does there exist a word x ∈ Γ ∗ for which a computation of M on

input x generates an output y that meets c?

Our proof that var -EWMM is fixed-parameter tractable is inspired by the proof
from [4] showing that Bandwidth is fixed-parameter tractable when parameterized
my the maximum number of leaves in a spanning tree of the input graph. We need
the following definition and lemma from [4].

In a digraph D, two directed paths ∆ and ∆′ from a vertex s to a vertex t are
arc-equivalent, if for every arc a of D, ∆ and ∆′ pass through a the same number of
times.

Lemma 1 ([4]). Any directed path ∆ through a finite digraph D on n vertices from
a vertex s to a vertex t of D is arc-equivalent to a directed path ∆′ from s to t, where
∆′ has the form:

(1) ∆′ consists of an underlying directed path ρ from s to t of length at most n2,
(2) together with some number of short loops, where each such short loop l begins

and ends at a vertex of ρ, and has length at most n.

Theorem 5. var-EWMM is fixed-parameter tractable.

Proof. Let (M ′ = (S′, s′0, Γ
′, Σ′, T ′), c) be an instance for var -EWMM with k =

|S′| + |Γ ′| + |Σ′|. As M ′ might have multiple transitions from one state to another,
we first subdivide each transition in order to obtain a digraph underlying the Mealy
machine (so we can use Lemma 1): create a new non-deterministic Mealy machine

6 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

M = (S, s0, Γ,Σ, T) such that, initially, S = S′, s0 = s′0, Γ = Γ ′ ∪ {λ}, and Σ =
Σ′ ∪ {λ}; for each transition t from a couple (si, 〈i〉) to a couple (so, 〈o〉), add a new
state st to S and add the transition from (si, 〈i〉) to (st, 〈o〉) and the transition from
(st, λ) to (so, λ) to T . Clearly, there is at most one transition between every two states
in M .

Our algorithm goes over all transition paths in M of length at most |S|2 that
start from s0. There are at most |S|2! such transition paths and each such transition
path has at most |S|! short loops, as they have length at most |S| by Lemma 1. Let
P = (s0, s1, . . . , s|P |) be such a transition path and L = (`0, `1, . . . , `|L|) be its short
loops. It remains to check whether there exists a set of integers X = {x1, x2, . . . , x|L|}
such that a word output by a computation of M moving from s0 to s|P | along the
path P , and executing xi times each short loop `i, 0 ≤ i ≤ |L|, meets the census
requirement. Note that if one such word meets the census requirement, then all such
words meet the census requirement, as it does not matter in which order the short
loops are executed. We verify whether such a set X exists by ILPF.

Let Σ = {〈`, 1〉, 〈`, 2〉, . . . , 〈`, |Σ|〉}. Define m(i, j), 0 ≤ i ≤ |L|, 1 ≤ j ≤ |Σ|, to
denote the number of times that M writes the letter 〈`, j〉 when it executes the loop
`i once. Define m(j), 1 ≤ j ≤ |Σ|, to be the number of times that M writes the letter
〈`, j〉 when it transitions from s0 to s|P | along the path P . Then, we only need to
verify that there exist integers x1, x2, . . . , x|L| such that

m(j) +

|L|∑
i=0

xi ·m(i, j) = c(〈`, j〉), ∀j ∈ [|Σ|].

As the number of integer variables of this program is at most |L| ≤ |S|! ≤ (|S′| +
|T ′|)! ≤ (|S′|+ |S′|2 · |Γ ′| · |Σ′|)! ≤ (k+ k4)!, and the number of transition paths that
the algorithm considers is at most |S|2! ≤ (k+k4)2!, var -EWMM is fixed-parameter
tractable. ut

We note that the proof in [4] concerned a special case of a deterministic Mealy
machine where the input and output alphabet are the same, and all transitions that
read a letter 〈`〉 also write 〈`〉.

In our second Mealy machine problem, the question is whether, for a given input
word, there is a computation of the Mealy machine which outputs a word that meets
the census requirement.

variety-Given Word Mealy Machine (var -GWMM)

Input: a non-deterministic Mealy machine M = (S, s0, Γ,Σ, T), a word x ∈
Γ ∗, and a census requirement c : Σ → N

Parameter: |S|+ |Γ |+ |Σ|
Question: Is there a computation of M on input x generating an output y that

meets c?

Our dynamic-programming algorithm proving the following theorem can be found
in the appendix.

Theorem 6. var-GWMM is in XP .

Parameterizing by the Number of Numbers 7

To show that var -GWMM is W [1]-hard, we reduce from the Multicolored
Clique problem, which is W [1]-hard [3].

Multicolored Clique (MCC)

Input: an integer k and a connected undirected graph G = (V (1)∪V (2) . . .∪
V (k), E) such that for every i ∈ [k], the vertices of V (i) induce an
independent set in G

Parameter: k
Question: Is there a clique of size k in G?

Clearly, a solution to this problem has one vertex from each color.

Theorem 7. var-GWMM is W [1]-hard.

Proof. Let (k,G = (V (1) ∪ V (2) . . . ∪ V (k), E)) be an instance of MCC. Suppose
V (i) = {vi,1, vi,2, . . . , vi,|V (i)|} is the vertex set of color i, for each color class i ∈ [k],
E = {e1, e2, . . . , e|E|}, and E(i, j) = {e(i, j, 1), e(i, j, 2), . . . , e(i, j, |E(i, j)|)} is the
subset of edges with one vertex in color class i, and the other in color class j, i, j ∈ [k].
Moreover, suppose E(i, j) follows the same order as E, that is if ep = e(i, j, p′),
eq = e(i, j, q′), and p ≤ q, then p′ ≤ q′. For a vertex vi,p and two integers j ∈ [k] \ {i}
and q ∈ [dV (j)(vi,p) + 1], we define gap(vi,p, j, q) = t− s, where e(i, j, t) is the qth edge
in E(i, j) incident to vi,p (respectively, t = |E(i, j)| if q = dV (j)(vi,p) + 1) and e(i, j, s)

is the (q − 1)th edge in E(i, j) incident to vi,p (respectively, s = 0 if q = 1).
We construct an instance (M = (S, s0, Γ,Σ, T), x, c) for var -GWMM as follows.

M ’s input alphabet, Γ , is {〈i〉, 〈i, j〉, 〈ē, i, j〉, 〈e, i, j〉 : i, j ∈ [k], i 6= j}. M ’s output
alphabet, Σ, is {λ} ∪ {〈`, i, j〉, 〈`, ē, i, j〉 : i, j ∈ [k], i 6= j}. The word x is defined

x := x1x2 . . . xk

xi := xi,0xi,1 . . . xi,i−1xi,i+1xi,i+2 . . . xi,k〈i〉 ∀i ∈ [k]

xi,0 := (〈i, 1〉〈i, 2〉 . . . 〈i, i− 1〉〈i, i+ 1〉〈i, i+ 2〉 . . . 〈i, k〉)|V (i)| ∀i ∈ [k]

xi,j := 〈i, j〉xi,j,1〈i, j〉xi,j,2 . . . 〈i, j〉xi,j,|V (i)|〈i, j〉 ∀i, j ∈ [k], i 6= j

xi,j,p := 〈ē, i, j〉gap(vi,p,j,1)〈e, i, j〉〈ē, i, j〉gap(vi,p,j,2)〈e, i, j〉
. . . 〈ē, i, j〉gap(vi,p,j,dV (j)(vi,p))〈e, i, j〉〈ē, i, j〉gap(vi,p,j,dV (j)(vi,p)+1).

The census requirement c is, for every i, j ∈ [k], i 6= j,

c(〈`, i, j〉) := |V (i)|+ 1

c(〈`, i, j〉) := |V (i)|
c(〈`, ē, i, j〉) := |E(i, j)|.

The Mealy machine M consists of k parts. The ith part of M is depicted in Fig. 1. Its

initial state is sv,1. There is a transition from the last state of each part, s
(4)
e,i,k, to the

first state of the following part, sv,i+1 (from the kth part, there is a transition to a
final state): it reads the letter 〈i〉 and writes the letter λ. We set 〈`′, ē, i, j〉 = 〈`, ē, j, i〉
for all i 6= j ∈ [k].

8 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond
8 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

sv,i s′v,i s
(1)
e,i,1 s

(2)
e,i,1

s
(3)
e,i,1s

(4)
e,i,1s

(1)
e,i,2s

(2)
e,i,2

s
(3)
e,i,2 s

(4)
e,i,2 s

(1)
e,i,k s

(2)
e,i,k

s
(3)
e,i,ks

(4)
e,i,k

〈i−1〉,λ

〈i,1〉,〈`,i,1〉
〈i,2〉,〈`,i,2〉

...
〈i,k〉,〈`,i,k〉

〈i,k〉,〈`,i,k〉

〈i,1〉,〈`′,i,1〉
〈i,2〉,〈`′,i,2〉

...
〈i,k〉,〈`′,i,k〉

〈i,1〉,〈`′,i,1〉

〈i,1〉,〈`′,i,1〉
〈e,i,1〉,λ
〈ē,i,1〉,λ

〈ē,i,1〉,〈`,ē,i,1〉

〈e,i,1〉,λ
〈ē,i,1〉,〈`,ē,i,1〉

〈e,i,1〉,λ
〈e,i,1〉,λ

〈ē,i,1〉,〈`′,ē,i,1〉

〈i,1〉,〈`,i,1〉

〈i,1〉,〈`,i,1〉
〈e,i,1〉,λ
〈ē,i,1〉,λ

〈i,2〉,〈`′,i,2〉

〈i,2〉,〈`′,i,2〉
〈e,i,2〉,λ
〈ē,i,2〉,λ

〈ē,i,2〉,〈`,ē,i,2〉

〈e,i,2〉,λ
〈ē,i,2〉,〈`,ē,i,2〉

〈e,i,2〉,λ
〈e,i,2〉,λ

〈ē,i,2〉,〈`′,ē,i,2〉

〈i,2〉,〈`,i,2〉

〈i,2〉,〈`,i,2〉
〈e,i,2〉,λ
〈ē,i,2〉,λ

〈i,k〉,〈`′,i,k〉
〈e,i,k〉,λ
〈ē,i,k〉,λ

〈ē,i,k〉,〈`,ē,i,k〉

〈e,i,k〉,λ
〈ē,i,k〉,〈`,ē,i,k〉

〈e,i,k〉,λ
〈e,i,k〉,λ

〈ē,i,k〉,〈`′,ē,i,k〉

〈i,k〉,〈`,i,k〉

〈i,k〉,〈`,i,k〉
〈e,i,k〉,λ
〈ē,i,k〉,λ

〈i〉,λ

Fig. 1. The ith part of the Mealy machine M . It does not have the states s
(1)
e,i,i, s

(2)
e,i,i, s

(3)
e,i,i, and s

(4)
e,i,i

– there is instead a transition from s
(4)
e,i,i−1 to s

(1)
e,i,i+1 reading 〈i − 1〉 and writing λ, and there is

a transition from s
(4)
e,k,k−1 to a final state reading 〈k〉 and writing λ (drawing all this would have

cluttered the figure too much).

final state): it reads the letter 〈i〉 and writes the letter λ. We set 〈`′, ē, i, j〉 = 〈`, ē, j, i〉
for all i 6= j ∈ [k].

First, suppose that (M = (S, s0, Γ,Σ, T), x, c) is a Yes-instance for var -GWMM.

We say that M selects a vertex vi,p if it makes a transition from state sv,i to state
s′v,i reading 〈i, k〉 (respectively 〈i, k − 1〉 if i = k) for the pth time. In other words,

in the ith part of M , it reads p · (k − 1) − 1 letters of xi,0, staying in state sv,i and
outputs the letter 〈`, i, r〉 for each letter 〈i, r〉 it reads; then it transitions to state s′v,i

Fig. 1. The ith part of the Mealy machine M . It does not have the states s
(1)
e,i,i, s

(2)
e,i,i, s

(3)
e,i,i, and

s
(4)
e,i,i; there is instead a transition from s

(4)
e,i,i−1 to s

(1)
e,i,i+1 reading 〈i − 1〉 and writing λ, and there

is a transition from s
(4)
e,k,k−1 to a final state reading 〈k〉 and writing λ (drawing all this would have

cluttered the figure too much).

First, suppose that (M = (S, s0, Γ,Σ, T), x, c) is a Yes-instance for var -GWMM.

We say that M selects a vertex vi,p if it makes a transition from state sv,i to state
s′v,i reading 〈i, k〉 (respectively 〈i, k − 1〉 if i = k) for the pth time. In other words,

in the ith part of M , it reads p · (k − 1) − 1 letters of xi,0, staying in state sv,i and
outputs the letter 〈`, i, r〉 for each letter 〈i, r〉 it reads; then it transitions to state s′v,i
on reading 〈i, k〉 (respectively 〈i, k−1〉) and outputs 〈`, i, k〉 (respectively 〈`, i, k−1〉);
in the state s′v,i it outputs the letter 〈`′, i, r〉 for each letter 〈i, r〉 it reads.

We say that M selects an edge e(i, j, q) if it makes a transition from state s
(2)
e,i,j

to state s
(3)
e,i,j after having read the letter 〈ē, i, j〉 of xi,j,p exactly q times, where vi,p

is the vertex of color i that e(i, j, q) is incident on. In other words, in the ith part of

M , it transitions from the state s
(1)
e,i,j to the state s

(2)
e,i,j on reading the first letter of

Parameterizing by the Number of Numbers 9

xi,j,p (if it did this transition any later, the census requirement of 〈`, ē, i, j〉 could not

be met, as shown in the proof of Claim 2 below); then it stays in the state s
(2)
e,i,j until

it has read q times the letter 〈ē, i, j〉 of xi,j,p; then it transitions to the state s
(3)
e,i,j on

reading 〈e, i, j〉; it stays in this state and outputs 〈`′, ē, i, j〉 for each letter 〈ē, i, j〉 it

reads until transitioning to the state s
(4)
e,i,j on reading the letter following xi,j,p.

The following claims ensure that the edge-selection and the vertex-selection are
compatible, i.e., that exactly one edge is selected from color i to color j, and that
this edge is incident on the selected vertex of color i.

Claim 1. Let i be a color and let vi,p be the vertex selected in the ith part of M . In
its ith part, M selects one edge incident to vi,p and to a vertex of color j, for each
j ∈ [k] \ {i}.

Proof. After M has selected vi,p, it has output p times each of the letters 〈`, i, 1〉,
〈`, i, 2〉, . . . , 〈`, i, i − 1〉, 〈`, i, i + 1〉, 〈`, i, i + 2〉, . . . , 〈`, i, k〉. For each j ∈ [k] \ {i}, the

only other transitions that output 〈`, i, j〉 are the transition from s
(3)
e,i,j to s

(4)
e,i,j and a

transition that loops on s
(4)
e,i,j . To meet the census requirement of |V (i)|+1 for 〈`, i, j〉,

M selects an edge while reading xi,j,p. This edge is incident on vi,p by construction.
ut

The following claim makes sure that the edge selected from color i to color j is
the same as the edge selected from color j to color i.

Claim 2. Suppose M selects the edge e(i, j, q) in its ith part. Then, M selects the
edge e(j, i, q) in its jth part.

Proof. Before M selects e(i, j, q), it has output q′ ≤ q times the letter 〈`, ē, i, j〉. On

selecting e(i, j, q) it transitions to the state s
(3)
e,i,j , and after the selection it outputs

〈`′, ē, i, j〉 for every letter 〈ē, i, j〉 of xi,j,p it reads. As it reads

(

dV (j)(vi,p)+1∑
r=1

gap(vi,p, j, r))− q = |E(i, j)| − q

times the letter 〈ē, i, j〉 of xi,j,p after it has selected e(i, j, q), it outputs |E(i, j)| − q
times the letter 〈`′, ē, i, j〉 in its ith part.

The only other transition where it outputs 〈`, ē, i, j〉 = 〈`′, ē, j, i〉 is the transition

in the jth part of M looping on s
(3)
e,j,i that reads 〈ē, j, i〉 and outputs 〈`′, ē, j, i〉. To meet

the census requirement for 〈`, ē, i, j〉, this transition must be used exactly |E(i, j)|−q′
times.

The only other transitions where it outputs 〈`′, ē, i, j〉 = 〈`, ē, j, i〉 are two transi-

tions in the jth part of M : the transition from s
(1)
e,j,i to s

(2)
e,j,i and the transition looping

on s
(2)
e,j,i, both reading 〈ē, j, i〉 and writing 〈`, ē, j, i〉. These transitions can be used at

most q′ times as the transition of the previous paragraph is used |E(i, j)| − q′ times.
These transitions have to be used at least q times to meet the census requirement for
〈`′, ē, i, j〉. Thus, these transitions are used exactly q times and q = q′.

10 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

Finally, the transition from s
(2)
e,j,i to s

(3)
e,j,i happens after having read q times the

letter 〈ē, j, i〉 of some vertex xj,i,p′ , p
′ ∈ [|V (j)|], which means that M selects the edge

e(j, i, q) in its jth part. ut

By Claims 1 and 2, the k vertices that are selected by M form a multicolored
clique. Thus, (k,G = (V (1) ∪ V (2) . . . ∪ V (k), E)) is a Yes-instance for MCC.

Now, suppose that (M = (S, s0, Γ,Σ, T), x, c) is a No-instance for var -GWMM.
For the sake of contradiction, suppose that (k,G = (V (1) ∪ V (2) . . . ∪ V (k), E)) is
a Yes-instance for MCC. Let {v1,p1 , v2,p2 , . . . , vk,pk} be a multicolored clique in G.
We will construct a word y meeting c such that a computation of M on input x
generates y. For two adjacent vertices vi,pi and vj,pj , define edge(vi,pi , vj,pj) = t such
that e(i, j, t) = vi,pivj,pj . The word y is y1y2 . . . vk, where yi, i ∈ [k] is

(〈`, i, 1〉〈`, i, 2〉 . . . 〈`, i, i− 1〉〈`, i, i+ 1〉〈`, i, i+ 2〉 . . . 〈`, i, k〉)pi

(〈`′, i, 1〉〈`′, i, 2〉 . . . 〈`′, i, i− 1〉〈`′, i, i+ 1〉〈`′, i, i+ 2〉 . . . 〈`′, i, k〉)|V (i)|−pi

yi,1yi,2 . . . yi,i−1yi,i+1yi,i+2 . . . yi,k〈i〉

and yi,j , i 6= j ∈ [k] is

〈`′, i, j〉pi〈`, ē, i, j〉edge(vi,pi ,vj,pj)

〈`′, ē, i, j〉|E(i,j)|−edge(vi,pi ,vj,pj)〈`, i, j〉|V (i)|−pi+1.

We note that there is a computation of M on input x that generates y and that y
meets the census requirement c. This contradicts (M = (S, s0, Γ,Σ, T), x, c) being a
No-instance. ut

6 Applications

In this section we sketch two examples that illustrate how number-of-numbers pa-
rameterized problems may reduce to census problems about Mealy machines, param-
eterized by the size of the machine. For another application, see [4].

Example 1: Heat-Sensitive Scheduling. In a recent paper Chrobak et al. [2]
introduced a model for the issue of temperature-aware task scheduling for micropro-
cessor systems. The motivation is that different jobs with the same time requirements
may generate different heat loads, and it may be important to schedule the jobs so
that some temperature threshold is not breached.

In the model, the input consists of a set of jobs that are all assumed to be of
unit length, with each job assigned a numerical heat level. If at time t the processor
temperature is Tt, and if the next job that is scheduled has heat level H, then the
processor temperature at time t+ 1 is

Tt+1 = (Tt +H)/2

It is also allowed that perhaps no job is scheduled for time t (that is, idle time is
scheduled), in which case H = 0 in the above calculation of the updated temperature.

Parameterizing by the Number of Numbers 11

The relevant decision problem is whether all of the jobs can be scheduled, meet-
ing a specified deadline, in such a way that a given temperature threshold is never
exceeded. This problem has been shown to be NP-hard [2] by a reduction from 3-
Dimensional Matching. An image instance of the reduction, however, involves
arbitrarily many distinct heat levels asymptotically close to H = 2, for a tempera-
ture threshold of 1.

In the spirit of the “deconstruction of hardness proofs” advocated by Komusiewicz
et al. [7] (see also [1]), one might regard this problem as ripe for parameterization
by the number of numbers, for example (scaling appropriately), a model based on 2k
equally-spaced heat levels and a temperature threshold of k. Furthermore, if the heat
levels of the jobs are only roughly classified in this way, it also makes sense to treat
the temperature transition model similarly, as:

Tt+1 = d(Tt +H)/2e

The input to the problem can now be viewed equivalently as a census of how
many jobs there are for each of the 2k + 1 heat levels, with the available potential
units of idle time allowed to meet the deadline treated as “jobs” for which H = 0.
Because of the ceiling function modeling the temperature transition, the problem now
immediately reduces to var -EWMM, for a machine on k + 1 states (that represent
the temperature of the processor) and an alphabet of size at most 2k+1. By Theorem
5, the problem is fixed-parameter tractable.

Example 2: A Problem in Computational Chemistry. The parameterized
problem of Weighted Splits Reconstruction for Paths that arises in com-
putational chemistry [5] reduces to a special case of var -GWMM. The input to
the problem is obtained from time-series spectrographic data concerning molecular
weights. The problem as defined in [5] is equivalent to the following two-processor
scheduling problem. The input consists of

– a sequence x of positive integer time gaps taken from a set of positive integers Γ ,
and

– a census requirement c on a set of positive integers Σ of job lengths.

The question is whether there is a “winning play” for the following one-person two-
processor scheduling game. At each step, first, Nature plays the next positive integer
“gap” of the sequence of time gaps x — this establishes the next immediate deadline.
Second, the Player responds by scheduling on one of the two processors, a job that
begins at the last stop-time on that processor, and ends at the immediate deadline.
The Player wins if there is a sequence of plays (against x) that meets the census
requirement c on job lengths. Figure 2 illustrates such a game.

This problem easily reduces to a special case of var -GWMM. Whether this special
case is also W [1]-hard remains open.

7 Concluding Remarks

The practical world of computing is full of computational problems where inputs
are “weighted” in a realistic model — weighted graphs provide a simple example

12 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

Processor 1 4 3 3
Processor 2 5 3 1 5

x = 4 1 2 1 1 1 4

Fig. 2. A winning game for the census: 1 (1), 3 (3), 4 (1), 5 (2)

relevant to many applications. Here we have begun to explore parameterizing on the
numbers of numbers as a way of mitigating computational complexity for problems
that are numerically structured. One might view some of the impulse here as moving
approximation issues into the modeling, as illustrated by Example 1 in Section 6. We
believe this line of attack may be widely applicable.

Finally, we remark that to date, there has been little attention to parameterized
complexity in the context of cryptography. Number of numbers parameterization may
provide some inroads into this underdeveloped area.

Acknowledment. We thank Iyad Kanj for stimulating conversations about this
work.

References

1. Nadja Betzler, Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and Frances A. Rosamond.
Fixed-parameter algorithms for kemeny rankings. Theoretical Computer Science, 410(45):4554–
4570, 2009.

2. Marek Chrobak, Christoph Dürr, Mathilde Hurand, and Julien Robert. Algorithms for
temperature-aware task scheduling in microprocessor systems. In Rudolf Fleischer and Jinhui
Xu, editors, AAIM, volume 5034 of Lecture Notes in Computer Science, pages 120–130. Springer,
2008.

3. Michael R. Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the parame-
terized complexity of multiple-interval graph problems. Theoretical Computer Science, 410(1):53–
61, 2009.

4. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Matthias Mnich, Frances A. Rosamond,
and Saket Saurabh. The complexity ecology of parameters: An illustration using bounded max
leaf number. Theory of Computing Systems, 45(4):822–848, 2009.

5. Serge Gaspers, Mathieu Liedloff, Maya J. Stein, and Karol Suchan. Complexity of splits recon-
struction for low-degree trees. CoRR, abs/1007.1733, 2010. Available on arXiv.org.

6. Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of
Operations Research, 12(3):415–440, 1987.

7. Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. Deconstructing intractability:
A case study for interval constrained coloring. In Gregory Kucherov and Esko Ukkonen, editors,
CPM, volume 5577 of Lecture Notes in Computer Science, pages 207–220. Springer, 2009.

8. Hendrik W. Lenstra. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8(4):538–548, 1983.

9. George H. Mealy. A method for synthesizing sequential circuits. Bell System Technical Journal,
34(5):1045–1079, 1955.

10. Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms, chapter 5: The Art of Problem
Parameterization, pages 41–49. Oxford Lecture Series in Mathematics and Its Applications.
Oxford University Press, Oxford, 2006.

11. Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathe-
matics and Its Applications. Oxford University Press, Oxford, 2006.

Parameterizing by the Number of Numbers 13

A Missing proofs

Proof (of Theorem 2). Given an instance A for var -Part, with ||A|| = k, we create
an equivalent instance of ILPF whose number n of variables is upper bounded by a
function of k.
Let a1, . . . , ak denote the distinct elements of A and let m1, . . . ,mk denote their
respective multiplicities in A. The ILPF instance has the integer variables x1, . . . , xk
and the following inequalities and equalities.

xi ≤ mi ∀i ∈ [k]

xi ≥ 0 ∀i ∈ [k]

k∑
i=1

xi · ai =
∑
a∈A

a/2.

For each i ∈ [k], the variable xi represents the number of times ai occurs in X, such
that

∑
a∈X a =

∑
b∈A\X b =

∑
a∈A a/2 in a valid solution.

Using standard techniques in mathematical programming, these constraints can be
transformed such that they respect the form Ax ≤ b. ut

Proof (of Theorem 4). Let A be an instance for var -3-Part, with ||A|| = k and
|A| = 3n. Let s =

∑
a∈A a/n. Let a1, . . . , ak denote the distinct elements of A and let

m1, . . . ,mk denote their multiplicities in A. We create an instance of ILPF with at
most k3 integer variables xi,j,`, i, j, ` ∈ [k]:

xi,j,` = 0 for each i, j, ` ∈ [k]

such that ai + aj + a` 6= s∑
j,`∈[k]
j, 6̀=i

(xi,j,` + xj,i,` + xj,`,i)

+2 ·
∑
j∈[k]
j 6=i

(xi,i,j + xi,j,i + xj,i,i)

+3 · xi,i,i = mi ∀i ∈ [k]

A variable xi,j,` represents the number of times the elements ai, aj and a` are used
together to form a triple summing to s. The first constraint makes sure that such a
triple is formed only if it sums to s. The second set of equalities make sure that each
element of A appears in a triple. Thus n such triples are formed, all summing to s if
the integer program is feasible. ut

Proof (of Theorem 6). Let Σ = {b1, . . . , b|Σ|}. Our dynamic programming algorithm
computes the entries of a boolean table A. The table A has an entry A[s, c1, . . . , c|Σ|, i]
for each state s ∈ S, each cj ∈ {0, . . . , c(bj)}, j ∈ [|Σ|], and each index i ∈ [|x|]. The
entry A[s, c1, . . . , c|Σ|, i] is set to true if there exists a computation of M reading the
first i letters of x and outputting a word y in which the letter bj occurs cj times, for

14 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond

each j ∈ [|Σ|], and to false otherwise.
Set A[s, c1, . . . , c|Σ|, 0] to true if s = s0 and c1 = . . . = c|Σ| = 0, and to false

otherwise. We compute the values of the table by increasing index i:

A[s, c1, . . . , c|Σ|, i] =
∨

s′∈S,bj∈Σ:

T (s′,x[i])=(s,bj)

A[s′, c1, . . . , cj−1, cj − 1, cj+1, . . . , c|Σ|, i− 1].

Finally, there exists an x-computation of M generating a word y that meets the
census requirement if and only if

∨
s∈S A[s, c(b1), . . . , c(b|Σ|), |x|] is true.

The table has |S| · |x| · Π |Σ|j=1c(bj) ≤ |S| · |x||Σ|+1 entries, and each entry can be
computed in time |S| · |Σ|. The running time of the algorithm is thus upper bounded
by O(nk+1 · k3), where n is the length of the description of an input instance, and k
is the parameter. ut

