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Abstract

The connections between robust linear regression and sparse reconstruction are
brought to light. We show that in the context of fixed design, the notion of breakdown
point coincides with exact recovery of sparse signals from highly incomplete informa-
tion. The main consequence of this connection in robust regression is that there exists,
for any dimension, “many” designs on which the `1 estimator has a positive break-
down point. This result clarifies a common misunderstanding on the robustness of
M-estimators.

1 Introduction

In recent years there has been a lot of excitement about the advances in the reconstruction
of sparse signals by `1-norm minimization and its applications to compressed sensing. The
basic question in compressed sensing (Donoho, 2006) is the following: if a vector e ∈ Rn

has a sparse representation in some basis, can we reconstruct e from less than n linear
combinations of its components? A first theoretical answer is positive; if F is a p × n
matrix (p < n) with columns in general position and e has at most (n− p− 1)/2 nonzero
components, then e is the unique solution to

min
s∈Rn

‖s‖0
s.t Fs = ỹ.

(1)

where ỹ = Fe are the measurements and ‖e‖0 denotes the “`0 norm” of e, defined as the
number of nonzero components. However, the difficulty of solving Problem (1) makes it
impractical. Instead, one solves its closest convex problem

min
s∈Rn

‖s‖1
s.t Fs = ỹ.

(2)

Conditions on p and F ensuring the equivalence of problems (1) and (2) has been the
subject of extensive research with many impressive results.
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The study of under-determined problems, such as (2) has concentrated most of this
research effort. However, in some circumstances Problem (2) is equivalent to the following
overdetermined least absolute deviations problem (Candes and Tao, 2005; Zhang, 2005)

min
g∈Rp

‖y −Xg‖1, (3)

provided that
FX = 0 and ỹ = Fy.

Built on this equivalence, we explore the striking connections between the sparse re-
construction problem and robust linear regression, with `1-norm minimization as common
theme.

Let us consider the following problem; we send a vector f ∈ Rp (the signal) encoded by
a n× p matrix X. When delivered to its recipients, the encoded information is corrupted
by arbitrary and unknown errors. In its noiseless version, the problem is to recover f from
the corrupted measurements y = Xf + e, where e is a sparse vector of errors. Candes and
Tao (2005) show that the information f can be exactly recovered as the unique solution
to Problem (3), provided that X satisfies some conditions and the number of nonzero
components of e is small enough. Viewed from a statistical perspective, the result seems
overly strong; recovering exactly the signal is not the kind of result one expects from a
regression procedure, even less if the errors are of arbitrary magnitude. Before looking
at the rather involved conditions on X, we point out an unusual hypothesis: sparsity. In
simple words, the sparsity hypothesis reads “ a small fraction of the observations can be
subject to arbitrary errors, but the large majority of them is completely free of errors”.
The study of the effects of arbitrary contamination on statistical analysis is not new and
there exists a whole branch of statistics devoted to the subject. On the contrary, that the
majority of the observations are completely free of errors is a situation unlikely to have been
considered before in the statistics literature. In robust statistics, a central role is played
by the notion of breakdown point, which mesures the resistance level of an estimator when
some observations are replaced by arbitrary ones. Though, the part of the observations
considered as “clean” follows a linear model and is by no means supposed to be completely
free of errors. One may think that the results in robust regression dealing with the more
general noisy version of the problem should recover Candes and Tao ones under the same
hypothesis, but it is not so. In fact, a major drawback of the breakdown point notion is
that by looking at the limit as contamination diverges it negliges a lot of useful information.
It is regrettable that the dichotomic character of these results (bounded/unbounded) in
some cases overshadow elaborated developments. This is case of He et al. (1990), where it
was derived for the first time the regression breakdown point of the `1 estimator. Recently,
Flores (2014) extended those results and gave sharp error bounds for the `1 estimator. We
shall show that using Flores bounds we are able to recover all of the most recent results on
sparse recovery, establishing an unexpected link between a 25 years old statistical theory
with one of the most dynamic research fields in the last decade.
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2 Connections with sparse reconstruction

Let us consider the problem of recovering an input f from corrupted measurements

y = Xf + e, (4)

when the error term e is sparse. This problem can solved by exploiting recent advances
in the study of Sparse Reconstruction Problems. If we consider a matrix F such that
ker(F ) = ran(X), from (4) we obtain Fy = Fe. Thus, if additionaly e is the unique
solution to the convex problem

min
s∈Rn

‖s‖1
F (s− y) = 0,

(5)

then it is possible to recover the signal f from e by solving the system

Xf = y − e. (6)

Hereafter we say that F has the exact recovery property of order k if, whenever ‖e‖0 ≤ k,

{e} = argmin{‖s‖1 : Fs = Fe}. (7)

Candes and Tao (2005) provide sufficient conditions for exact recovery for matrices F
satisfying a restricted isometry property. Zhang (2005) gives an account of necessary and
sufficient conditions for exact recovery. An important concept there is k- balancedness,
defined below

Definition 1 The vector subspace V is strictly k-balanced if for any set M ⊆ {1, ..., n} of
cardinality less or equal to k it holds∑

i∈M
|zi| <

∑
i∈N\M

|zi| for any z ∈ V

Zhang (2013, 2005) show that F has the exact recovery property of order k if and only
if ker(F ) is strictly k-balanced. In a recent result Juditsky and Nemirovski (2011, Theorem
1) show that F has the exact recovery property of order k if and only if γ̂k(F ) < 1/2, where
γ̂k(F ) is defined by

γ̂k(F ) = max
s∈kerF
‖s‖1≤1

max
M⊂N
|M |=k

∑
i∈M
|si|. (8)

Now we would like to compare this exact recovery result with statistical ones. As
already said there are not results in statistics considering analysis of noiseless data

In practice one expects that all observations carry some noise. A more realistic model
is

y = Xf + z + e, (9)
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where z is a dense, presumably small, vector of noise and e is an arbitrary sparse vector.
Under this model, exact recovery is not longer possible. The goodness of an estimator is
measured by its distance to some reference point, which can be f or some estimator of it.
If there is a bound on that distance which is finite for any e such that ‖e‖0 ≤ k, then the
RBP of the estimator is at least k. Moreover, fine bounds on the recovery error provides
not only an asymptotic description of an estimator, as RBP does, but also a more accurate
study of it in front of finite errors.

We will rather focus on the bounds by Juditsky and Nemirovski (2011), which are based
on necessary and sufficient conditions, for the noisy recovery problem

min
s∈Rn

‖s‖1
‖Fs− ỹ‖ ≤ σ.

(10)

In (10) it is supposed that the information Fe is not longer available with infinite precision,
but instead we receive a noisy version of it ỹ = Fe+ ξ, for some ‖ξ‖ ≤ ε. This framework
is adapted to the error model (9) for bounded b, since

ỹ = Fy = Fe+ Fz = Fe+ b̄,

where b̄ is the projection of z onto ran(X)⊥.
In order to compare the results of Juditsky and Nemirovski (2011) with those of Flores

(2014), we suppose that provided an optimal solution d to (10), we obtain g by solving
Xg = y − d in the least squares sense. Then

‖H(e− d)‖ = ‖X(fn − g)‖. (11)

where H = X(X>X)−1X> is the hat matrix.
In this way, we can bring back the errors bounds obtained for under-determined prob-

lems to compare with bounds available in the overdetermined case. Juditsky and Ne-
mirovski (2011) show the following

Theorem 1 Let M be a subset of N := {1, ..., n} with cardinality k ≤ n and F a p × n
matrix such that γ̂k(F ) < 1/2.

(i) If ỹ = Fe and d is a solution to Problem (5), then

‖d− e‖1 ≤
2

1− 2γ̂k(F )

∑
i∈N\M

|ei|

(ii) If ỹ = Fe+ ξ, ‖ξ‖ ≤ ε and d is a solution to Problem (10), then

‖d− e‖1 ≤
2

1− 2γ̂k(F )
(β(σ + ε) +

∑
i∈N\M

|ei|)

for some constant β > 0 large enough to satisfy certain conditions.
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For a n× p matrix X, define for every k ∈ {1, . . . , n} the leverage constants cK of X as

cK(X) = min
M⊂N
|M |=k

min
g∈Rp

‖g‖2=1

∑
i∈N\M

|x>i g|∑
i∈N
|x>i g|

(12)

and

m(X) = max
{
k ∈ N

∣∣ cK(X) >
1

2

}
. (13)

The quantity m(X) is an alternative representation of the breakdown point of the `1
estimator. Note that the condition ck > 1/2 is equivalent to say that ran(X) is strictly
k-balanced. The leverage constants are closely related to the constants γ̂k and s∗(F ) as
follows

Lemma 1 Let F be such that ker(F ) = ran(X) as in Section 2. Let γ̂k(F ) be defined
in (8) and s∗(F ) = max

{
k ∈ N | γ̂k(F ) < 1

2

}
. These constants are related to cK(X) and

m(X) via
cK(X) = 1− γ̂k(F ) (14)

and m(X) = s∗(F ).

Now we are in position to compare with the bounds in Theorem 1 with the bounds
available for robust regression

Theorem 2 Let y = Xf + z + e and M ⊆ N satisfying |M | = k ≤ m(X). Consider the
unique decomposition of z as z = Xg+b, where g ∈ Rp and b ∈ KerX>, and let fn = f+ ḡ
as above. Then the following hold for the `1 estimator f1.

‖X(f1 − fn)‖1 ≤
1

2ck − 1

 ∑
i∈N\M

|b̄i + ei|+

∑
i∈N\M

|b̄i + ei|2

max
i∈N\M

|b̄i + ei|

 . (15)

Note that, by Hölder inequality,∑
i∈N\M

|b̄i + ei|2

max
i∈N\M

|b̄i + ei|
≤

∑
i∈N\M

|b̄i + ei| (16)

then (15) can be simplified to yield

‖X(f1 − fn)‖1 ≤
1

ck − 1/2

∑
i∈N\M

|b̄i + ei|. (17)
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From here, if b = 0 and |M | = | supp(e)| ≤ m(X) = k we rediscover that exact recovery
occurs for noiseless data if and only if ran(X) is strictly k-balanced.

Altogether, (15), (14), (11) and (16) show that neither of the bounds in Theorem 1
improve the existing results in robust statistics. In particular, the bounds for the noisy
decode problem (10) do not improve the bounds for the pure `1 estimator, contrarily
to Huber M-estimator, which improves the bound (15) by reducing the noise (Flores,
2014, Theorem 3). To be fair we should mention that Problem (10) is intended to solve
the under determined problem while the bounds in Flores (2014) are specialized to the
over determined case. Some cruder bounds based on restricted isometry constants for the
underdetermined case have been derived for the Dantzig selector, a variant of (10) (Candes
and Tao, 2007), and for the regularized least squares problem (Zhang, 2009).

3 The breakdown point of `1 regression for large p

Until now, we have seen that all the results obtained in compressed sensing have a counter-
part, often sharper, in robust regression. However, there is one result related to the Kol-
mogorov diameter of balls dig out by compressed sensing researchers (cf. Yin and Zhang,
2008; Zhang, 2005; Candes et al., 2006) which has deep consequences when applied to
robust regression.

Theorem 3 Let p and n be any natural numbers with p < n. There exists a set Ξ of
n × p matrices with positive Grassmanian measure such that any design matrix in Ξ has
breakdown order k whenever

k

n
< αφ

(
n− p
n

)
for an absolute constant α > 0 independent of n and p, where φ(t) = t/(1− log(t)).

Remark 1 The function φ is monotone and satisfies 0 < φ(t) ≤ 1 for 0 < t ≤ 1,
limt→0 φ(t) = 0 and φ(1) = 1. In particular lim inf

n→∞,p→∞
φ((n − p)/n) > 0 whenever

lim inf
n→∞,p→∞

p/n < 1.

Theorem 3 disproves a common belief in robust regression that M -estimators and `1
estimation in particular have a breakdown point going to 0 as p increases. This belief
originated in a result by Maronna et al. (1979) showing that if the rows of X are sampled
from a spherically symmetric distribution, then the breakdown point of X for `1 estimation
behaves like (2p)−1/2 for large p. Concrete examples of matrices achieving the abstract
result of Theorem 3 has concentrated the essential of the research effort in compressed
sensing, and it has been well stablished that properly scaled gaussian matrices do so with
high probability.
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4 Conclusions

We have explored the connection between the problems of robust regression and sparse re-
covery by `1 norm minimization. Both theories have independently arrived to the common
fundamental results. However, the treatment of the problem in both cases differ greatly. In
robust regression, most of the results on `1 minimization have been presented in a negative
way, in contrast to high-breakdown point estimators, despite the fact that the later are
not computable in practice, except for very small datasets. For this reason, we can hardly
find in the robust regression literature examples where the `1 estimator gives right answers
in contaminated observations. On the contrary, compressed sensing theory focused from
the very beginning in identifying the most favourable cases and prving positive results.
This explains in our opinion the fact that Theorem 3, which a cornerstone in compressed
sensing, was still unknown in robust regression.

References

Candes, E., Romberg, J., and Tao, T. (2006). Robust uncertainty principles: exact sig-
nal reconstruction from highly incomplete frequency information. IEEE Trans. Inform.
Theory, 52(2):489–509.

Candes, E. and Tao, T. (2005). Decoding by linear programming. IEEE Trans. Inform.
Theory, 51(12):4203–4215.

Candes, E. and Tao, T. (2007). The dantzig selector: statistical estimation when p is much
larger than n. Ann. Statist., 35:2313–2351.

Donoho, D. (2006). Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289 –1306.

Flores, S. (2014). Sharp non-asymptotic performance bounds for `1 and Huber robust
regression estimators. Test, xx:x–xx.

He, X., Jurečková, J., Koenker, R., and Portnoy, S. (1990). Tail behavior of regression
estimators and their breakdown points. Econometrica, 58(5):1195–1214.

Juditsky, A. and Nemirovski, A. (2011). On verifiable sufficient conditions for sparse signal
recovery via `1 minimization. Math. Program., 127(1).

Maronna, R., Bustos, O., and Yohai, V. (1979). Bias- and efficiency-robustness of general
m-estimators for regression with random carriers. In Gasser, T. and Rosenblatt, M.,
editors, Smoothing Techniques for Curve Estimation, volume 757 of Lecture Notes in
Mathematics, pages 91–116. Springer Berlin / Heidelberg.

Yin, W. and Zhang, Y. (2008). Extracting salient features from less data via `1-
minimization. SIAG/OPT Newsletter: Views & News, 19(1):11–19.

7



Zhang, T. (2009). some sharp performance bounds for least squares regression with l1
regularization. Ann. Statist., 37:2109–2144.

Zhang, Y. (2005). A simple proof for recoverability of `1 minimization: Go over or under?
Rice University CAAM technical report, TR05-09.

Zhang, Y. (2013). Theory of compressive sensing via `1-minimization: a non-RIP analysis
and extensions. J. Oper. Res. Soc. China, 1(1):79–105.

8


