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Abstract

From the study of some smooth piecewise polynomial functions
defined over particular partitions of the space, we obtain a charac-
terization of B-spline functions. The key tools for this approach are
blossoms of polynomial functions, and H.P. Seidel generalization of
the De Boor - De Casteljau algorithm. Simplex splines appear as the
natural framework for multivariate B-splines, and B-patches provide
the right normalization. A new proof of the piecewise polynomial
reproduction formula is given.

Key Words : Multivariate B-splines, polar forms, blossoms, piecewise poly-
nomial functions, B-patches.

§1. Introduction

Since the work of Curry and Schoenberg [2], it is known that every C*—1
piecewise polynomial function S of degree k on a partition of IR defined by
distinct points ¢; can be represented as a linear combination of the B-splines
B;(u) based on k + 2 consecutive points ¢;,t; 41, ..., titkt1-

More recently, using the notion of blossom or polar form, L. Ramshaw
([8], [9]) gave an explicit expression for the coefficients :

S(u) = Z fi(ti+1, ey ti+k) BZ(U) (1)

<y/4

where f; is the blossom of Fj, the restriction of S to the interval [¢;,%;11].
Observe that :

filtiv1, o s tivk) = fira(tig1s - s tivw) = = firu(Civ1, - Lign)

To our knowledge, the preceding formula (1) cannot be directly extended to
the multivariate setting.
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Following the work of Curry and Schoenberg, C. De Boor proposed in [1]
a definition of multivariate B-splines : the simplex spline. Meanwhile, many
authors have tried to produce useful linear combinations of simplex splines
sharing some of the properties of the univariate B-splines, in particular, the
polynomial or piecewise polynomial reproduction property. Dahmen-Micchelli
and Hollig ([3], [7]), using combinatorial arguments, proposed convenient basis
of simplex splines that reproduce polynomials of degree k. But the reproduc-
tion of C*~1 piecewise polynomial functions on a given triangulation could
not be settled.

More recently, using the formalism of polar forms, Dahmen, Micchelli and
Seidel [5], and Seidel [12] obtained a general result similar to (1), but in the
s-dimensional space. Suppose that 7 = {A1} ez is a triangulation of R? with
Ar = {t},¢1,tI} and that a set of k+1 points th',o = tJI~, til, ey t][-,k is associated
with each vertex tf of the triangulation. If 3 = (B, f1,02) € (Z4)3, with

B = Bo + 1 + B2 = k, let us denote by t4 the following k-uplet :
| B g

I _ ,I I I I I I
tIB _— t0,07 ceey to,ﬂo_l’ t]_’o’ ceey tl,ﬂl_l’ t2707 ceey t2,ﬂ2_1

and by VﬁI the following set of k + 3 points :

I 1 1 I I I I
Vﬂ = {to’o, ceey t07ﬂ0, tl,o’ ey tlual’ t2,07 ceey t2,ﬂ2}.

Then, if S is any C*~! piecewise polynomial function of degree k on T,
it can be represented as the following double sum :

Sy = > fthNj(u) (2)

I€T |B|=k

where f! is the blossom of the restriction F! of S to A;. And NBI is the
simplex spline based on the set VﬂI for a convenient normalization

It can be observed that the formula (2) when particularized to the uni-
variate case does not lead to the formula (1).

The proof of (2) given by Dahmen, Micchelli and Seidel ([5], [12]) is
recurrent with respect to the degree and the multiplicity. The purpose of the
present paper is to give a direct proof (cf Th. 13) which allows a different
intuitive approach of this phenomenon. It also gives a result concerning the
C*~1 joining of 2 polynomials through a particular net of lines (cf Lemma, 7).

Note that we are considering more restrictive assumptions than [12]. All
the knot-lines of the simplex splines N, é are distinct, and in particular, mul-
tiplicity is 1.

The paper is organized in two parts : the univariate case (§2) gives a
simple presentation of the results and allows to introduce the notations in
an easy way. Then, the bivariate case (§3) can be expressed in a very similar
form.
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§2. The Univariate Case

Let [to,t1] be an interval of R (g < t1). Around ¢y and ¢; we consider a
“cloud” of k additional points ¢;1,...,¢;%, ¢=0or 1. Sett;o=1;,¢=0,1,
for convenience. For each 3 = (B, 31) € (Z4)?, such that |3| = By + 31 < k,
we define :

Apg = [to,g,,t1,8,] (3)
and suppose that
Q= () intAg #0 (4)
1BI1<k

This is equivalent to

max tg; < min %y ;
=0,k 0 T =0,k

Observe that this assumption is satisfied if the additional points ¢; ; are chosen
sufficiently close to the initial points ¢;, 2 = 0, 1.

For a multi-integer 8 € Zi, we shall use the notation :

tg = (t0,0,t0,15--->t0,Bo—1,t1,00t1,1, -, t1.8,—-1) € R/

and for each of the k£ 4+ 1 multi-integers 3 such that |3| = k, we consider the
following linear functional defined on Py (the space of polynomials of degree
less or equal k) :

Lg: FePr,— f(tp) (5)
where f is the blossom of F'.
Theorem 1. The functionals Lg are linearly independent.

Proof : This is a consequence of the extension of the De Boor - De Casteljau
algorithm due to H.P. Seidel [10]. Let us define the following linear mapping :

L:F eP,— {Ls(F),|B| =k} € RF+!

Obviously, the linear functionals Lg are linearly independent iff the linear
mapping L is injective. This follows from the fact that, from the values

Lp(F)=cp, [Bl=Fk (6)

it is possible to construct F'(u) at an arbitrary point u. Setting :

cpu(u) = f(tpu”) (7)

forv =0,...,k and |f| = k — v, where u” means “u repeated v times”, we
observe that :
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cpo(u) = cp (8)

and

cok(u) = F(u) 9)

The condition (4) allows us to define A\g o(u) and Ag 1(u) as the barycen-
tric coordinates of u with respect to Ag, that is :

u = )\[370(u)t0,50 + )\g71(u)t1,51, with )\@0(’&) + Aﬂ,l(u) =1.

Using the fact that the blossom is affine with respect to each variable
separately, cg, = f(tgu”~'u)) can be computed in terms of

CBteow—1(u) = f(tau’ 't g,) and cgye, v—1(u) = f(tgu’ 't1 )

(where eg = (1,0) and e; = (0,1)) by :

¢ (1) = Ap0(u)Cptegv—1(u) + Ag1(U)care,v—1(u). W (10)

Definition : Let us denote by Bg, |3| = k the dual basis in Py of the func-
tionals Lg, i.e. the k + 1 polynomials of degree k, such that

e ={y 410 (1)

forall B (|| =k) and all v (|y| = k).

The k + 1 polynomials Bg are called the B-weights associated with the
to; and t14, j = 0,...,k — 1 (observe that they do not depend on ¢¢j and
t1,%). If the ¢o ; are all equal to to = 0 and the ¢; ; are all equal to t; = 1,
then the Bg are just the classical Bernstein polynomials.

By definition, for any polynomial F' € Py we have :

F(u)= ) Ls(F)Bg(u)

1Bl=k

- Fu)= 3 F(ts) B(w) (12)

1Bl=k

where f is the blossom of F'. The representation of a polynomial in this basis
is called the B-patch representation. Observe the similarity of this formula
and the formulas (1) and (2).

For simplicity, we now suppose that the 5 ;, 7 =1,...,k, are all dis-
tinct. Let us denote by S the set of piecewise polynomial functions of degree k
on the partition of IR defined by the £ + 1 points ¢y j, j=0,...,k, which
belong to C*~1(RR).
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We shall denote by ag the affine function defined on R such that

ap(tos,) =0 and ag(tip,)=1 (13)

and by ®g the polynomial of degree k£ defined by :

©p(u) = ag(u)”

We observe that the blossom of ®g is just :
k
QSﬂ(’U,l, ceey Uk) = H aﬁ(uj)
j=1

Theorem 2. For arbitrary given polynomials F~ and F+ of degree k, there
erists a unique function S € S, such that :

o foru<ty;, j=0,....k S(u) = F~(u),
e foru>to;, j=0,....k S(u) = F*(u).
Moreover, the function S can be written in the following form :
_ k
S(u) =F~(u)+ Y pp(ap(w))] (14)
1B|=k

where the reals pg satisfy the following relations :

D s dslty) = f(ty) (15)

|B|=Fk
Bo>70

for all v, |y| = k (where f is the blossom of F = F* — F~ ), which determine
them uniquely.

Proof :

As the function [ag(u)]% is proportional to the truncated power function
[u—t0,8,]% , any function belonging to S can be written in the form (14). Now,
for u > ¢, j =0,...,k, we have [ag(u)]® = ®g(u) and thus, the pg must
satisfy :

D up0p(u) = Fu),
1Bl=k
or equivalently, using Th. 1 :
Ly(D np®p) = Ly(F), for all v, || = k,
|Bl=Fk
i.e., explicitly :

Z ll'ﬂgbﬂ(t’)’) = f(t’y)7 for all v, h/| = k.
|Bl=F
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Now, as the g ; are distinct, we observe that (see (13)) :

¢p(ty) = 0iff fo <o

and we obtain the relations (15).
These relations allow to compute the pg recursively. For v = (k,0), we
have explicitly :

_ [ty
= 5 10)

Suppose that v = (v0,71) satisfies v1 > 0 (i.e. 70 < k) and that all pg such
that By > 7o have been computed. Then p., can be obtained by :

F(ty) =22 1=k 1p Dp(ty)

— Bo>70 [ 17
IU"Y ¢’Y (t,y) ( )

Corollary 3. If F~ and F* are two polynomials of degree k which have a
contact of order k — 1 at ty, then the function S € S defined in Th. 2 is just
given by :

F~(u) if u<t

S(u) = {F+(u) if u >t (18)

1.€. as no arscontinuily o (& erivative a € RNOtStg 5,7 = L,..., .
.e. S h discontinuity of the k*" derivative at the knotstg j, j =1 k

Proof : If the polynomials '~ and FT have a contact of order k —1 at ¢, the
function S defined by (18) obviously belongs to S and necessarily coincides
with the unique function defined in Th. 2. W

Remark : It can be observed that if '~ and FT have a contact of order
k —1 at to, the blossom f of F = F* — F~ takes the value 0 for all k-uplets
containing at least one time ¢y (see [8]), that means :

f(tg) =0, for all B, || = k such that Sy > 0.
This implies, using (17), that :
py =0, for all v, |y| = k such that v > 0
and for v = (0, k) :

_ flt)
#2 (1)

My

Let us suppose now that the 2k + 2 points ¢; ;, j = 0,...,k, 4 = 0,1, are
distint. For 8 = (fy, /1) such that |G| = k, let us denote by Vp the following
set of k + 2 points :
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Ve = {to,0,t0,15--, 0,805 t1,0,t1,1, - - -, t1,8, }

It is well known that there exists a piecewise polynomial function of
degree k on the partition of R defined by V3 which belongs to C*~1(IR) and
whose support is co V. This function is unique up to a multiplicative factor.
The following theorem shows that this factor can be chosen in such a way
that this function coincides with Bg on the interval €2 (see (4)) between the
two “clouds” of points £y, 7 =0,...,kand £, ;, j=0,...,k.

Theorem 4. For all B8, |B| = k, there exists a unique function Ng piece-
wise polynomial of degree k on the partition of IR defined by V3, belonging to
Ck=1(IR), with support co Vi and whose restriction to Q coincides with Bg.

Proof : Consider a fixed «, |a] = k, and use Th. 2 with F* = B, and
F~ = 0. If f denotes the blossom of F = F+ — F~ = B,, then, by definition,
the values of f(t,) are all zero, except for v = a. Using the expression (17) of
the p., we observe that it only uses the values of f(tg) for By > 7o. Hence p.,
will be non zero only if g > 7o, i.e. the expression (14) uses only the knots

t(),o, ey tO,ao-
A similar argument around the point ¢; shows that F has discontinuities
only around the points ¢19,...,%1,a,.- W

Remark : The set Vg contains k + 2 distinct points. Suppose that Vg =
{&0,&1,---,&k+1} where & < &;+1. The classical B-spline on the &; is defined
by :

(k1 — &0)[€o- - - 1] (- — EF

where [p . .. {k+1] denotes the divided differences operator of order k41 based
on the k + 2 points ;. The function Ng is proportional to this function but
not equal (except in the case where the ¢o;, j =0,..., By are decreasing and
the t1;, 7 = 0,..., 31 are increasing). In the same way, if My denotes the
B-spline based on the points of Vg whose integral is equal to 1, then Np is
also proportional to Mg :

Ny = 12 0) g

Theorem 5. Let F' be a polynomial of degree k and f its blossom. The func-
tion :
> Fltp) Na(u)

1Bl=k

18 piecewise polynomial of degree k on the partition of IR defined by the 2k + 2
points to; and t1;, j = 0,...,k. Its support is contained in co{to ;,j =
0,...,k;t1;,5=1,...,k} and its restriction to  is equal to F'.
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Proof : For each 3, N3 is piecewise polynomial and
Support Ng C co{toj,7=0,....k;t1;,7=1,...,k}

As for u € Q, we have Ng(u) = Bg(u), the result follows from (12). W

Now, consider a bi-infinite sequence ¢;, ¢ € Z such that ¢; < ¢;41 and
R = Usez[ti, tiv1[. Suppose that, around each ¢;, we have a “cloud” of k + 1
distint points t; 0 = t;,ti 1, ..., ti k. We define :

and suppose that for all : € Z :

Q; := |,3r|1kmt A = ]ji%??ik ti g ajzn(f)l’i_l_f}’k tit,[ # 0 (20)

For each interval [t;,¢;11] we build (as above for the interval [to,1]) the
B-weights Bj(u), || = k and the k + 1 normalized B-splines NV} (u), |3 = k.
Then we have the following result (Seidel [12]) :

Theorem 6. Let S be an arbitrary piecewise polynomial function of degree k
defined on the partition of R defined by the t;, i € Z, belonging to C*~'(IR),
k > 1. Let us denote by F* the restriction of S to [t;,t;y1] and f* its blossom.
Then :

S(u) =" > [ith) Ni(u) (21)

i€Z |B|=k

where ty = t5,0,ti1,5 -« 5 ti,Bo—15tit1,0, Lit1,15 -+ - bit1,8 -1

Proof : By Th. 5 we have for v € €; :

Fiu)= Y f(th) Nj(u)
1B1=

Thus, as the support of N é’ has an empty intersection with €; for i’ # i,
the formula (21) is already satisfied for any v € Q;, i € Z.

The function S defined by the double sum on the right side of (21) coin-
cides with F? on €; and with F*~1 on Q,;_;. As F* and F*~! have a contact
of order k — 1 at t¢;, applying Cor. 3, the function S has no discontinuity of
the k" derivative at the knots ¢; j, 5 =1,...,k, hence S =S. W
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§3. The Bivariate Case

Let {to,t1,t2} be a set of 3 affinely independent points of R? and A,
the corresponding triangle. Around each point #; we consider a “cloud” of
additional points ¢;; , 7 =1,...,k, (ti0 = ti). For each 8 = (Bo, b1, 2) €
(Z +)3, such that |3| = By + B1 + B2 < k we define :

Aﬂ = co {tOhBU ) tl:ﬂl’ t27ﬁ2} (22)
and we suppose that
Q= () intAg#0 (23)
1BI<k

This assumption implies that all triangles with vertices 9 g,,%1,8,,%2,8,,
(|I8] = k) are non degenerate and have the same orientation (see [5]). Intu-
itively the assumption (23) is satisfied if the additional points t; ; are chosen
sufficiently close to the ;.
We shall use the notation :

tg = (t0,05-->t0,80—1,61,0---+11,8-1,t2,0,- - -5 t2,8,1) € RIPI (24)

On the space Pg (]RQ) of polynomials of degree less or equal k on R?, the
dimension of which will be denoted by dr = (k + 1)(k + 2)/2 we consider the
dy, linear functionals Lg defined for each 8 (|5] = k) by :

Lg: Fe 'Pk(IRQ) — f(t,g) (25)

where f is the blossom of F'.

The functionals Lg (|8| = k) are linearly independent. Like for the one-
dimensional case (Th. 1) this is a consequence of the Seidel-De Boor-De Castel-
jau algorithm : The value F(u) of the polynomial F' € Py(IR?) satisfying
Ls(F) = cg, |B| =k, can be obtained by the following recurrence relation :

cpo(u) =cp
g (u) = Z Ag,i (W) cre;v—1(u) (26)

cok(u) = F(u)

where the cg,(u) are defined as in (7), e; denotes the canonical basis of
R? and the Ag (u) are the barycentric coordinates of u with respect to the
triangle Ag.

Let us denote by By (B-weights), |3| = k the dual basis in Py (IR?) of the
dy linear functionals Lg, i.e., the di polynomials of degree k£ such that
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L) ={y 113 7

for all B (|8] = k) and all v (|y| = k). If the t;; are all equal to t;, for
l=1,...,k,7=0,1,2, then the Bg are just the classical Bernstein polynomials
in two variables.

For any polynomial F € Pj(IR?) we have

F(u)= ) Ls(F)Bp(w)

1Bl=k
F(u)= ) f(ts) Bs(u) (28)
|Bl=k

where f is the blossom of F'.
For |3| =k, let us denote by ag the affine function on IR? defined by :

ag(tos,) =0 ag(tip) =0 ap(tap,) =1
We define :
Lg = {u |ag(u) =0}
LE = {u|ag(u) > 0}
Ly ={u|ag(u) <0}

The set Lg is the straight line spanned by ¢y g, and ¢ g, . It corresponds to
the edge of Ag opposite to the vertex t2 g,. As |3| = k implies that So+0:1 < &,
the number of lines Lg is equal to the dimension dj of Py (IR?).

The assumption (23) implies that the set

D= () L} (29)
1Bl=k

is non empty.

If w € €, the straight line L spanned by w and t; necessarily intersects
each line Lg (|3] = k). Thus, the set

D= () L (30)
|Bl=k

is also non empty.
Observe that every line parallel to L also intersects each line Lg.

From now, we shall assume that

all the lines Lg are distinct (31)
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Then, it is clearly possible to choose a line parallel to L which intersects
the lines Lg in dj, distinct points. More generally, one can find 2 lines L’ and
L"”, distinct and parallel to L, such that the open region |L’, L"[ between them
intersects the lines Lg in dj, pairwise disjoint segments Ig (cf Fig. 1).

Figure 1. Example in the quadratic case

The lines Lg (|8] = k) define a partition P of IR. Let us denote by Sp
the space of piecewise polynomial functions of degree k£ on P which belong to
CFH(R?).

We have the following result :

Lemma 7. Given two polynomials of degree k, F~ and FT, there exists a
unique function S € Sp such that :

o forueD™ : S(u) = F~(u),

o forueDT : S(u) = FT(u).
Moreover, the function S has the following form :

S(u)=F~(u)+ 3 g (ap(u)” (32)

1Bl=k

where the reals pg satisfy the following relations :

Z 1 pp(ty) = f(ty) (33)
ﬁoZ’)’lfl,:g1271

for all v, |v| = k, where f is the blossom of F = F* — F~ and

k
QOﬁ(’U,l, ceey uk) = H a,g(uj)
i=1
15 the blossom of

Bp(u) = ag(u)”
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Proof : Choose an open region |L’, L"[ as above which intersects the dj, lines
Lg in dy, disjoint intervals. On this domain the function S has the following
form :

_ k
S(u)=F~(u)+ > ps(ap(w))]
|B|=Fk
For u € D™, we have S(u) = F~(u). Now, as for u € DT, ag(u)k =
®g(u), the pg must satisfy :

> s ®p(u) = F(u)

1Bl=k
or equivalently, using the fact that the dj linear functionals £, are indepen-
dent :

£ X no®a) = £4(F) for g, ol =k
|1B|=k

i.e. explicitly :

> sps(ty) = f(ty), for all vy, |y| = k.
|BI=k

Now, observing that :

wp(ty) =01iff By < v or B1 < 71,

we obtain the relation (33).
The relation (33) allows to compute recursively the ug : for v = (yo, 71,
v2) such that v = 0 (i.e., v0 + 1 = k), we have explicitly :

_ Sty
Ky = <P7(t7) (34)

Suppose now that v = (o, v1,Y2) satisfies v > 0 (i.e., vo+v1 < k), and
that all g such that o + 31 > o + 71 have been computed. Then ., can be
obtained by :

f(ty) — Z 1g pa(ty)

|8|=Fk
Bo>v0 » B1>mM1
(/807ﬂ1)¢(70771)

P~ (ty)

Observe now that the expression of the ;153 does not depend on the chosen
region |L’, L"[. As the number of intersections between the lines Lg is finite,
it is possible to build a finite number of such regions, the union of which is
dense on IR%. Hence, using a continuity argument, the expression (32) is true
on all R”. W

Hy = (35)
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Corollary 8. If F~ and F+ are two polynomials of degree k which have a
contact of order k — 1 along the line L, with v = (0,0, k), then the function
S € Sp defined by Lemma 7 is just given by :

F~(u) if uely

Sw) = {F+(u) if ue L (36)

(i.e. S has no discontinuity of the k" derivative along the lines Lg, |3| = k,
except for B =-y).

Proof : If F~ and F* have a contact of order k — 1 along L., the function
S defined by (36) obviously belongs to Sp and necessarily coincides with the
unique function defined in Lemma 7. W

Remark : It can be observed that if F~ and FT have a contact of order k—1
along L., (with v = (0,0,k)), the blossom f of FF = F™ — F~ takes the value
0 for all k-uplets containing at least one point on L., that means :

f(tg) =0, for all B, |B| = k, such that By > 0 or 5, > 0.
This implies, using (35) that :

py =0, for all y, |y| = k, such that vo > 0 or 71 > 0,
and for v = (0,0, k) :

f(ty)
P (ty)

My =

For B = (Bo, 41, P=) such that |3| = k, let us denote by V3 the following
set of k + 3 points :

Ve ={t0,0,---,t0,80511,0,- - - 11,81, 2,0, - -, L2,8, }

From now we suppose that for all 3, || = k, the points of the set Vj are
in general position, i.e. that no three points of V3 are on a same straight line.

W. Dahmen and C.A. Micchelli have shown (see [4]) that the simplex
spline based on such a set Vj of k + 3 knots in general position is the unique
(up to a multiplicative factor) piecewise polinomial function of degree k on
the partition defined by these knots (that is, the partition of R? induced by
all segments between each pair of knots) which is C*~! on R? and whose
support is co (V). The following result shows that, for a convenient choice of
the multiplicative factor, this fonction coincides with Bg on (2.

Theorem 9. For all 8, |B| = k, there exists a unique function Ng that is
piecewise polynomial of degree k on the partition of R* defined by Vs, belongs
to Ck_l(]R2), has as support co Vg, and whose restriction to 2 coincides with
Bg.
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Proof : Consider a fixed 3, |3| = k. Let Mg be the simplex spline correspond-
ing to the knots V. This function has already all the properties required in
Th. 9 except that its restriction to {2 does not necessarily coincide with Bg.

Consider the straigth lines L., |y| = k, defined before Lemma 7, joining
the knots ¢ , and 1 ,, for vo+71 < k. Let us apply Lemma 7 for F~(u) =0
and F*(u) = F, where F is the restriction of Mg to  and f is its blossom.
As the support of Mg is co (Vj), the discontinuity along L., is zero for vy > By
or 1 > (1. Using the expression (33) of Lemma 7, we obtain that f(t,) =0
for |y| = k such that vy > By or v1 > 1.

Using the same argument with the straight lines joining the knots ¢, ,,
and tg 5,, for 41 + 2 < k, we obtain that f(¢,) = 0 for all v (|y| = k) such
that v1 > (1 or v2 > (2. And similarly for the lines joining the knots ¢, ,,
and 2o ,, for yo +v2 < k.

Finally, for all v (|| = k) satisfying o > Bo or 71 > B or 72 > [a2, we
have :

i.e. for all v such that v # .
As f(tg) # 0 (otherwise F' would be identically zero) the polynomial
F/f(tg) satisfies (27), i.e. is equal to Bz and consequently the function :
Mg
f(tp)

is the unique function satisfying the conditions of the Theorem. H

Np =

Remark : Using the theory of simplex splines, in particular the recurrence
relation they satisfy, it is possible to obtain that :

Vola(Ap)
dg

i.e. that f(tg) = dix/Vola(Ap), (see [5]).

Theorem 10. Let F € Py(IR?) and f be its blossom. The function :

> Fltp) Na(u)

1Bl=k

Np(u) = Mp(u)

18 a piecewise polynomial function of degree k belonging to Ck_l(R2) whose
restriction to €2 is equal to F'.

Proof : For each 3, we have N(u) = Bg(u) for u €  and the result follows
from (28). W

Let {t},t1 1} and {tJ,t{,tJ} be two sets of 3 affinely independent points
of R?, such that the corresponding triangles A’ and A7 are adjacent. For
instance, suppose that :
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th =tJ and tf =+¢]

and suppose that we introduce at each vertex a “cloud” of k additional points

I _ J —
e = I=1,... k
tl,l - tl,l , l - 17...’k’
I J —
t2,l ? t2,l ? l - ’k

We assume that :

and similarly for Q7.

Figure 2. Two adjacent triangles

Let us define :

I __ g4I I
Vﬂ - {t0,07-- toﬂ(),th’.. t1ﬂ17t207...,t2,ﬂ2}

(and likewise Vﬂ‘] ) and suppose that for all g, |3| = k, the points of VﬂI

and those of VJ) are in general position. Let A} be the normalized B-spline
B B

associated with Vﬁl as defined in Theorem 9 (and similarly N, ,é] ).

Theorem 11. If two polynomials F! and F’ (whose blossoms are denoted by
fI and f7) have a contact of order k —1 along L., with v = (0,0, k), then the

function :
SN + > F ) NG (w) (37)
1Bl=k 1Bl=k

have no discontinuities of the k** derivative along the segments ]toﬂ tl ,31[
for all By, B1, Bo + 1 < k except for By =0 and B, = 0.

Proof : With our assumptions, the dj lines Lg, |3| = k, joining t ﬂ and
tl, g, for Bo + p1 < k, are distinct. It is possible to choose two points wl e Qf
and w’ € Q7 such that the line L defined by them crosses these lines Lg in d,
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distinct points. In the same way, one can choose two lines L' and L” parallel
to L such that the open region |L’, L[ contains L and intersects the dy lines
in dy, disjoint intervals Ig.

The lines Lg induce a partition of ]I/, L"[. Let us denote by D! the
component which intersects Q! and by D’ the one intersecting Q7. Consider
the piecewise polynomial function on |L', L"[ of the form (32) which coincides
with F7 on DT and with F/ on D7,

Now as

Qln Support./\/'ﬂj =0 and QN SupportNﬂI =0

the expression (37) coincides with F'I on Qf and with F'/ on Q7 (cf. Theorem
10). But F’ and F” have a contact of order k — 1 along L., with v = (0,0, k);
then following Lemma 7 (and Corollary 8 restricted to |L’, L"), there are
no discontinuities along the segments Iy =]L', L"[N]t{ 4,1 4 [, for all By,
except for By = 0 and B, = 0.

Now it is known (see [6], lemma 1 and its corollary) that simplex splines
have constant jumps of the k" derivative along each segment joining two
knots, in particular along ]t& o t{, ,81[’ which completes the proof. W

In order to obtain the final result, expressing a piecewise polynomial
function on a triangulation of IR? we need the following Lemma, :

Lemma 12. Let Py, ..., P, € IR? be in general position and let P be the par-
tition of IR? defined by those points. Denote by 8;“, the space of C*~1 piecewise
polynomials of degree k on P whose support is contained in co{Py,...,Py,}.
Then :

Sp={0} iff m<k+1.

Proof : For m = k + 2, the simplex spline based on the points Py, ..., P, is
a non-zero element of 87’“,.

Let us suppose that m = k 4+ 1 and consider a straight line L which does
not contain any of the points P; but crosses co{ Py, ..., Ppn}. More generally,
consider a region |L’, L"[ with the same properties.

It is clear that the points P; are divided by |L’, L”[ into two groups. Let
us rename those from the one side as ¢o0,...,%0,3, and those from the other
side as, t1,0,...,t1,8, with 8o+ 31 = k.

The restriction of a function S € 8K to the region |L', L[, defines a
piecewise polynomial function which is C*~1. Moreover, the discontinuities
of the k" derivatives are located along the lines L. We can apply (adding
points if necessary) Lemma 7 with F* = F~ = 0 and conclude that S = 0.
|

Let 7 be a triangulation of R?

T={AT|IcT}
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with AT = co {tL, ¢!, ¢1}. With each vertex of the triangulation we associate a

“cloud” of k additional knots ¢} ,...,t5 , (t5, = t]). Observe that if t] =7,

then we have also tf,l = t;{l, l=1,...,k.

For each triangle we assume that :

Q= (] intAf#0

1BI<k

and that no triplet of points in V3, |3| = k are colinear.

Theorem 13. If S is a piecewise polynomial function of degree k on the
triangulation T which belongs to C*—1(IR?), then

Sw)y=_ > fthHN;w (38)

I€T |B|=k

where FI denotes the restriction of S to Al and f! is the associated blossom.

Proof : Let us denote by S the function defined by the right side of (38).

(i) For u € Q! we have using Theorem 10 :

S(u)= Y JT(thNj(u) = S(u)
|81=k

(ii) Consider two adjacent triangles A’ and A”. Suppose that t{ = ¢] and
t! = /. According to Theorem 11 the function S will have no discontinuities
alo;lgBthe gegments ]té,ﬂo’t{,ﬂl[ for all By, B1, Po + B1 < k except for By = 0
an 1 = VU

(ili) We have proved that S — S is a C*1 piecewise polynomial function
which is equal to zero everywhere except on the sets CJI = co{tj{o, e ,tik}.
Applying the Lemma 12 with m = k£ on a neighborhood of each of these sets
we see that S — S is identically equal to zero. W
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