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Abstract

We study the existence and uniqueness of strong solutions for the equations of nonhomo-
geneous asymmetric fluids. We use an iterative approach and we prove that the approximate
solutions constructed by this method converge to the strong solution of these equations. We
also give bounds for the rate of convergence.
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1 Introduction

In this paper, we study the existence and uniqueness of strong solutions for the equations of a
nonhomogeneous viscous incompressible asymmetric fluid. These equations are considered in a
bounded domain  C R?, with boundary T, in a time interval [0,7]. Let u(z,t) € R3, w(z,t) €
R3, p(z,t) € R and p(z,t) € R, denote respectively, the velocity, angular velocity of internal
rotation, density and pressure at a point z € Q and at time ¢ € [0,7]. Then, the governing
equations are given by

0
o2 4 p(u- V)~ -+ ar) A+ Vp = 2pyrot w4 pf,

div u =0, (1.1)
8_11)
Pt

op B

+ p(u-V)w — (cq + cg) Aw — (co + ¢qg — ¢)V div w + 4p,w = 2u,rot u + pg,

in Qp :=Q x (0,7), with the following boundary and initial conditions

u(z,t) =0, w(z,t) =0 on T x (0,7),
u(z,0) = up(z), w(z,0) =we(z) in Q, (1.2)
p(z,0) = po(z) in Q.

Here, f(z,t) and g(z,t) are respectively, the densities of the linear and angular momentum. The
conditions on wug, wo and py are given in Section 2. The positive constants u, ur, co, Cq, Cd
characterize the isotropic properties of the fluid; u is the usual Newtonian viscosity; pr, co, Cq,
cq are the new positive viscosities related to the asymmetry of the stress tensor and consequently
related to the appearance of the field of internal rotation w; these constants satisfy ¢y +cq4 > ¢,. In
this paper, V, A, div and rot denote, the gradient, Laplacian, divergence and rotational operators
respectively (we also denote % by u:); the it component of (u - V)v in the cartesian coordinates
is given by [(u - V)v]; = Z?‘:l u]%

For the derivation of equations (1.1)-(1.2), and for its physical interpretations, see D.W. Con-
diff and J.S. Dahler [5], L.G. Petrosyan [17] and the recent book by G. Lukaszewicz [15]. We
observe that this model of fluids includes the classical Navier-Stokes equations as a particular case,
which has been thoroughly studied by several authors (see, for instance, the classical books of
O. Ladyzhenskaya [7], J.L. Lions [10] and R. Temam [20] and the references therein).



It also includes the reduced model of the nonhomogeneous Navier-Stokes equations, which
has been less studied than the previous case (see, for instance, S. Antontsev, A. Kazhikov and
V. Monakhov [2], J. Simon [19], J. Kim [6], O. Ladyzhenskaya and V. Solonnikov [8], R. Salvi [18],
J.L. Boldrini and M.A. Rojas-Medar [3], and P.L. Lions [11]).

Concerning the generalized model of an asymmetric fluid as considered in this paper, G. Lukasze-
wicz [14] established the existence of local weak solutions for (1.1)-(1.2) using linearization and a
fixed point theorem. In the same paper, G. Lukaszewicz mentioned the possibility of proving the
existence of strong solutions (under the hypothesis that the initial density is separated from zero)
by the techniques used in G. Lukaszewicz [12] and [13] (linearization and fixed point theorems,
under the assumption of constant density).

The first result on the existence and uniqueness of strong solution (local and global) for problem
(1.1)-(1.2) was proved by J.L. Boldrini and M.A. Rojas-Medar [4] using the spectral semi-Galerkin
method and compactness arguments. The rate of convergence of this method is also established in
[4].

In this paper, we use another approach to establish the existence and uniqueness of a strong
solution. We use here an iterative process, by considering a sequence of linear problems. For each
one of these problems it is easy to show the existence and uniqueness of a strong solution (for
instance, by using the spectral semi-Galerkin method as in J.L. Boldrini and M.A. Rojas-Medar
[4]). Then, we obtain a priori estimates for the sequence generated by the iterative process. Also
we show that the sequence is a Cauchy sequence in an appropriate Banach space, and consequently,
we obtain the strong convergence. From these convergences, the existence of a strong solution for
the original nonlinear problem (1.1)-(1.2) is easily obtained. The uniqueness of the solution is also
proved. Further, we obtain bounds for the rate of convergence.

We hope that the technique developed here can be adapted to the full discretization case. This
question is presently under investigation.

This paper is organized as follows: in Section 2, we state some well-known results that will be
used in the rest of the paper; and also describe the approximation method and state the result
of existence and uniqueness of a strong solution and the bounds for the rate of convergence. In
Section 3, we derive a priori estimates for the linearized systems. In Section 4, we establish that
the solutions of the sequence of linearized problems is a Cauchy sequence and we prove our main
result. Section 5 provides an existence and uniqueness result of the pressure.

Finally, as it is usual in this context, in order to simplify the notation we will denote by C', Cq,
Ci,...,M, My,... generic positive constants depending only on the domain and the fixed data of
the problem.

2 Preliminaries

Let Q be a bounded domain in R® with a smooth boundary I, T > 0 be an arbitrary real number.
The functions going to be cosidered in this paper are either R or R3-valued, and sometimes we will
not distinguish between them in our notation. This will be clear from the context itself. We will
consider the usual Sobolev spaces

WD) ={ f € LU Q) | 10% fllLe(py < 00, |af <m },



formeN, 1 <p<oo, D=Qor D = Qp, with the usual norm. When ¢ = 2 we denote
H™(D) = W™2(D) and HJ*(D) = closure of 2(D) in H™(D). We put

V() ={ve2(Q’|dive=0 in O}
H= closure of #(Q) in L%(Q)3,
V = closureof #(Q) in HY(Q)3.

It is well-known that
V={veHQ)|divo=0 in Q}.

We denote by V* the dual space of V and by H~! the dual space of H}(£2). We recall the Helmholtz
decomposition of vector fields L2(2) = H @ G, where G = {¢ | ¢ = Vp, p € H(Q)}.

Throughout this paper P denotes the orthogonal projection from L?(f2) onto H. Then, the
operator A : D(A) — H — H given by A = —PA with domain D(A) = V N H%(Q) is called
the Stokes operator. It is well known that A is a positive definite, self-adjoint operator and is
characterized by the relation

(Aw,v) = (Vw,Vv), Ywe D(A), veV.

If Q is of class V!, then the norms |lu||g2 and ||Au| are equivalent in D(A) (see C. Amrouche
and V. Girault [1]). We assume the other known properties of A, as given in O. Ladyzhenskaya
[7], J.L. Lions [10] or R. Temam [20]. The same remark is also valid for the Laplacian operator
B = —A with homogeneous Dirichlet boundary conditions in the domain D(B) = H}(2) N H2(9).

Applying the orthogonal projection P to problem (1.1)-(1.2), we can rewrite it as follows: Find
u, w, p in suitable spaces (which will be defined later on), satisfying

P(put) + (p + pr) Au + Ppu - Vu) = 2, P(rot w) + P(pf), (2.1)
pwi + (cq + cqg) Bw + pu - Vw — (co + ¢4 — )V div w + dp,w

= 2u,rot u + pg, (2.2)
pt+u-Vp=0,

u(z,0) = ug(z), w(z,0) =wo(z), p(z,0) = po(z) in Q.

We consider the following iterative process for the approximate solution of problem (2.1)-(2.4).
Setting

ul(t) = e~ Hutnr) Ay, wh(t) = e~ Heatea) By p(z,t) = po(z),

where e Htt1r)A and e~Hcatea) B gre the semigroups generated by the Stokes and Laplace operators,
respectively. And for given u”, w" and p", we define u™+!, w"t! ntl
of the following system of linear equations,

and p as the unique solution

P(p"uf ™) + (i + pr) A"t P(p™u” - Vu™tT) = 20, P(rot w™) + P(p" f), (2.5)
pn,w?-l-l + (Ca + Cd)Bwn—H 4 pnun . an—H _ (Co +cg — Ca)v div wn—|—1 + 4Hrwn+1
= 2p,rotu™ + pg, (2.6)

p?—l—l 4+ Un—|—1 . Vpn—i—l — O, )
u" 1 (z,0) = ug(z), w"(z,0) =wo(x), " (z,0) = po(z) in Q. (2.8)



Concerning the initial density pg, we assume that it is a continuously differentiable function
(po € €'), and that there exist o, 3 such that

0<a<p(z)<pB VreQ.

In this paper, the external fields f and g are assumed to be L?(Q7) functions, small enough
with respect to the viscosities coefficients of the model u, u,, ¢, and ¢4. More precisely, f and g
are assumed to satisfy

2 2 B \3[1 /4 1\ ur  or]  A/*@
(||f||L2(QT) + ||g||L2(QT)) (m) |:§ + (X + Z)me S 16()0(22 (29)

where ® = min{j, g—z}, C = max{ a(ﬁfu L a(éff%)} and A is the smallest eigenvalue of the Laplace

operator B = —A in 2 with homogeneous Dirichlet boundary condition.

Notice that this hypothesis is fulfilled either if f and g are small enough with respect to the
viscosities u and u,, or if the viscosities are sufficiently large with respect to the data f and g.

In J.L. Boldrini and M.A. Rojas-Medar [4], the authors used the Galerkin method to solve this
linear system and showed that the solutions (u", w", p") enjoy the following conditions concerning
their regularity:

u € L¥(0,T;V), (2.10)
u € L*0,T;H), (2.11)
Au™ € L*(0,T;L*(Q)), (2.12)
w" € L*(0,T; H}(Q)), (2.13)
wl € L*0,T; L*(Q)), (2.14)
Bw"™ € L*(0,T;L*(Q)). (2.15)

We are going to prove on the one hand that these sequences are uniformly bounded in the
corresponding spaces. On the other hand, applying the method of characteristics to the continuity
equation (2.7), it follows immediately that whenever p" exists, it satisfies 0 < a < p" < 8. In
particular, we have that

{p"} is uniformly bounded in L*°(0,T; L*°()). (2.16)

Furthermore, the hypothesis on the density p™ make it possible to apply the Ladyzhenskaya-
Solonnikov’s results ([9], see Lemma 1.3, p. 705). Ip are alsee, we obtain that Vp™ and p”
L*>®(0,T; L*(92)) as n — oo.
we consider without loss of generality ug(z) = 0 and wo(z) = 0 (the general
/ introducing an appropriate lifting of the initial conditions). Let us first
esults obtained for the approximate solutions. In this case, it is clear that

w17 Pl) = (Oa 0, PO)

L2(0,T; L%()) and satisfy the conditions as given in (2.9), then the unique
f problem (2.5)-(2.8) are uniformly bounded in the respective spaces as given



Lemma 2.2. If the hypotheses of Lemma 2.1 are verified and assuming that f, g € L?(0,T; H'(Q))
and fi, gs € L*(0,T;L?(Q)), then the solution (u™,w™,p") of problem (2.5)-(2.8) satisfies the fol-
lowing estimates uniformly in n:

Sltlp(IIU?(t)IIQ+||w?(t)||2) < G,
t
/0(IIVU?(T)||2+IIVw?(T)II2)dT < C,
sgp(llAU"(t)IIQJrIIBwn(t)IIQ) < C,
t
/0(IIVu"(T)II%oo+||Vw"(T)II%oo)dT < C,

SItlpa(t)(IIVU?(t)IVJrIIVUJ?(t)IIQ) < C,

t
/0 o (1) (lufy (D11 + l[wii (7)) dr

IN
Q

t
/0J(T)(IIAU?(T)||2+IIBw?(T)II2)dT < G,

for allt € [0,T], where C > 0 is a constant independent of n and o(t) = min{1, t}.

Theorem 2.3. Let the conditions of Lemmas 2.1 and 2.2 be satisfied. Then the approximate
solutions (u™,w™, p™) converge to the limiting element (u,w, p) in the following senses

u™ — u strongly in L®(0,T; V)N L*(0,T;V N H*(Q)),

w" — w strongly in L*(0,T; Hg()) N L0, T; Hy () N H*(Q)),

ul — uy strongly in L*(0,T; H),

w — wy  strongly in L*(0,T; L*(Q)),

uff — uy weakly in L*(0,T; V)N L*(e, T;V N H*(Q)), Ve >0,

ult — uy weakly in L?(e,T; H), Ye >0,

w — wy weakly in L2(0,T; HE (Q)) N L%(e, T; HE (Q) N H?(Q)), Ve >0,
wht — wyy weakly in L*(e,T; L*(R)), Ve > 0.



The limiting element (u,w, p) is the unique solution of problem (2.1)-(2.4) and

sup{ [V (1) — Vu@)| + [V (0) - Vul?} < A4%%¥2%;,
Qﬁtmu?w»-—uxfnﬁ-%nw?u»-wafnﬁ>dr < wlf
AQmMﬂv)—AuvnP+an (r) - Bu()|P)dr < Aﬂ%%?%ﬁ,

sup ()~ pl < MG

sup (1) (1) — w0 + [ (0) — wi0)]P) < M%%Q%i
AZvNMMMﬂ—vam%waﬂﬂ—vam%m s.M%f?%?
s o(0) (|40 (1) ~ Au()? + B () - Bu()?) < I
supo(0)(Ju"(0) — u(t [} + ")~ wio)f) < arPEE
AZwMWMﬂ—wmmmﬂwww%vmmmmhs M%%%?

Moreover,

u € €'([0,T); H) n¢([0,T); D(A)),
w € €'([0,T); L*(2)) N ([0, T]; D(B)),
p € € (Qr).

3 A Priori Estimates
In this section, we prove uniform a priori estimates in n for the approximate solutions.
3.1 Proof of Lemma 2.1

3.1.1 Uniform estimates for " and w" in L2(0,T;V)

From (2.7), we have (p}v,v) = —(div (p"u")v,v) = 2(p"u" - Vv,v) and consequently

2 dtH\/_ ||2 (ptv U) + (pn’l)t,’l)) = (pnu’n : VUa’U) + (pn’Uta’U)a Vv e H&a vy € LQ(Q)

With this identity in mind, multiply (2.5) by u"! and (2.6) by w™*!, to obtain respectively:
QﬁWWWW () [V 2 = 2 (ot ) o f ), )

5 dtll\/ PP (o + ca) [V P + (co + ca — ca) ldiv ™12 + dpp|Jw" 12
= 2u, (rot u™, w™ 1) + (p"g, w" ). (3.2)



We recall that for u € H (), we have
ot ull < [[Vull, |lullze < 2'2[u)/*|[Vul** and Jlul* < X7H|Val?, (3-3)

where ) is the smallest eigenvalue of the Laplace operator B = —A (see, for instance, O. Ladyzhen-
skaya [7]).

By Holder and Young inequalities, and (3.3), we get from (3.1) and (3.2) the following differential
inequalities

812 2ﬂ AL
T Jlw™ | + ||f||2
T

d
IV A G ) [V <

d .
IV TP 4 (ca + ca) [V TP + 2(eo + ca — ca) | div w"+1||2

442 (2
< 2+ 2 g,
Cq +Cq
Adding both inequalities and integrating both sides from 0 to ¢, we get the following integral
inequality (recall that ug = wg = 0):

o[l O + [w T OI) + (1 + pr) /Ot IVu+t (r) |2 dr

t t
+(ca—|—cd)/ ||Vw"+1(7-)||2d7+2(co+cd—ca)/ div w(7)|2dr

8:“’7“ 2 4:“’7" n 2ﬁ2 AT ' ’82
< e [+ 22 [ ritar+ 22210100, + S lolan
Then, there exist constants M and C, choose for example
8y 4p? 28227t B*
C = max r . r and M = ——||f +o—Ig )
{a(,u + pr) " a(ca + ca) s alp + pr) H ||L2(QT) 8 iy | ||L2(QT)

such that
1712 Loz B [f 1 2 catea [ 1 2
[ I + [ QI+ 5 [ u i@ Par + =5 [ gun (o) Par
« 0 a 0
¢
< C/ (™ (D)I* + [Jw™ (7)) dT + M. (3.4)

0

Thus, setting ¢, (t) = ||u™(#)|? + ||w™(t)||?, the last inequality implies

t
oni1(t) < M +C / o (7)dr.
0

Observing that ¢1(t) =0, a straightforward induction argument shows that, for all n,

n—1 k
<MY (1) (Ct).
k=0
Therefore, we conclude that for all n, we have
sup ([lu™(@)||> + |[w™(t)||?) < sup M exp(Ct) = M exp(CT) = M. (3.5)
: t€[0,T]
Notice that M; does not depend on n. Combining (3.4) and (3.5), we get
nt1)2 oM n+1)2 oM
1™ W72 0,7,y < T and [lw"* IZ2 0, () < o +C4 (3.6)

where the bounds are independent of n.



3.1.2 Uniform estimates for v" and w" in L*°(0,T;V)

Multiplying (2.5) by 6 Au™*!, and then by u?“ and integrating in {2, we obtain respectively

S(u+ pr)|[Au™ T2 = =6 (p"uftt, Au™ ) 4 2p, 6 (rot w™, Au™T)
+6 (p"f, A — §(p"u" . Vu T, AuT) (3.7)
and
Ve 2+ ESEE 2 var P = 2 ot w, wp ) + (07w )
—(p"u™. VT ul ). (3.8)

Then, using «a < p" < 3, we get

p+ e d
afuf P+ = S VUt 6 ) A2

2
<[5 (p"upt! Au"+1>|+|2ur6<rotw",Au"+l)|+\2ur<rotw" W] + [ f, up )|
18 (o f, A+ + [5(p"um VL, Autt)| + [ (. VL up ). (3.9)

Now, using Holder and Young inequalities, and (3.3), we get

|6(p"u" . VuHE, Aum )] 8 Bllu™ || pall V™| e[| Au"

<
< BV PVt | ]| Au |
< SBV2ATYHV |V | Au" (3-10)

Since H?(Q) — WH4(Q), for u € D(A), we have
IVullps < llullwis < Callullg> < CallAull, (3.11)

where Cq is a positive constant, independent of u. Thus, from (3.10) and (3.11), we obtain

16(o™ ™. Vum T, Aum )| < 6 B2 A8 C0 ||V ||| At 2. (3.12)
Similarly,
(T g ] Bl Vg
n+1(2
< vapx Vecaver (aawsp+ D).y

Using the above estimates for the last two terms and the classical estimates for the remaining terms
n (3.9), we obtain

d ﬁ21/2 /\—1/869
( + pr) V"2 +2( @ — 3p — 22— 22| wu®|| ) ul
dt 468
3
+26<(u + pir) — —ﬂ — 232 A—l/scnnvu"n) | Auntt|2

8urn | 2u7
<( 52 7 )IIVW”II2 (277+ )||f||2



where 7 is any positive real number. Integrating the above inequality in [0, ¢] we have

t 1/2 y-1/8
" B2 \~18C, n
(14 ) [V +1(t)ll2+2/0 (a—%—Tﬂllvu (O lluf ™ (r)|*dr

+25/ ( ot pr) = —ﬂ - B2%? )\_I/SCQHV'U'”(T)H) | Au™* ()| dr

8u 2u B2
11y 2 / IV (n)lPdrs (20 + )
47) 1 2u,.aM1 B?
< (2L oyZer—
<G+ DT 20+ D)
Then, by choosing 1 = % and § = (1(117;2'%), we have

t 391/2 \~1/8¢,
+ up) ||[Vu L (1)]? +2/ (g _p Vu™ (7 ) u"'H 2dr
(1 + ) @)l o\ oot ) [Vu"™ ()| ) [Jug™ ()]

t
+a(# + ,ur) / (,u + Uy B 1823/2 AI/SCQ”V’U,’”(T)”) ||Au"+1(7')||2d7'
0

232 4
2a? + 4@)#1%)% ¥ o (0 + 480 £ 3 gy = < say). (3.14)
We use the method of induction to prove that
IV @) < s (3.15)
Setting » = 1 in (3.14) and using that u' = 0, we get
(s + IV @I +2 [ ) + “(‘;;2“"’ / 42 o) P < €
0 0
then, for all ¢ € [0,7'], we have
IVl < oo (3.16)

We assume the inequality (3.15) for n = k and prove for n = k + 1. From (3.14), it suffices to show
that

391/2 y—1/8 93/2 \~1/8
g_ﬂ? A CQ8>0 and M-I—ur_,@ Cqe
4 a(p+p)3? 4 (1 + pr) /2
By using (2.9) one can prove the positivity of the above terms.
Therefore, for all n, we have proved that

> 0.

&

sup ||V (#)]| < (3.17)

t€[0,7] (b4 pe )12
From (3.14) and (3.17), we have
Lo 322 AY8Che\ | nit, wio

alp + pr) /t<u+ur B 232 \"1/8¢Cq 6) n+1 2 2
+ — A dr < eg”°.
262 . 1 ( 1')1/2 || U (7')|| T<¢€

10



Therefore, we conclude that there exists a constant C', independent of n, such that
t t
/ (1) P + / | 4w (r)|2dr < C. (3.18)
0 0
Similarly, for all n, we obtain

(ca + ca) [Vu™ )2 + ez / |Bw™ (7)|%dr + o / @) 2dr <0, (3.19)
and the proof of Lemma 2.1 is complete.

3.2 Proof of Lemma 2.2

3.2.1 Uniform estimates for 2"in the space L>(0,7;L%(Q)) N L?(0,T;V(2)) and Au™ in
L>(0,T; L*(%))
Differentiating (2.5) with respect to ¢, we obtain

P(ppup™) + P(p"ufth) + ( + pr) Aup ™
= 2, P(rotwf’) + P(pf f) + P(p" f1) — P(pju" - Vu"*1)
—P(p"uf - Vu" ) — P(p"u™ - V). (3.20)

Multiplying (3.20) by u?'' and after some simple computations, we get
T + |V
1
—5 (ot up ™) 4 2y (votwi, uf ) + (of £rup ™) + (07 frup )
—(p?u" . vun—H un—l—l) _ (pnu?_vun—kl un—l—l) ( vun—l—l n+1))
1
= —(div( Pu™ a2, (Wi rot uf T — (div (p"u™) £, ufth))

( nft, n+1) (diV (pnun)un_vun—l—l’ u?—f-l) _ (pnu? . Vun—H, u?—'—l))
—(p"u™ - Vup (3.21)
since from (2.3), pf = —div (p"u").

Using classical estimates, each of the seven terms in the right hand side of (3.21) can be bounded
as follows. The first one:

_( vun—l—l n—l—l)

1 ..
S (div (pmumyup 1wt

< o ||Loo||u"||L4||w?+1||||ut+1||L4
< BNV [ Vuf g A gt
< O upt g A
< Cplluf P+l Va7
The second term is simply bounded by
2y (wi, rot uf ) < Cyllwf | + nl| Vug 2. (3.22)

11



For the third one, integration by parts gives:

—(div (p"u") f,uf*)

(VANPVAN

(" ) + (a9
P T PR T P [
Ol IV < Coll 1 + IV 2

For the fourth term, one can easily obtain

Vup ™ f)

(0" frruy ™) < Coll fell? + mll V1%

Integrating by parts the fifth term gives

(div (p"u™)u"

n+1 . n+l
-V up ™)

IA

IA A

0 1 1
( 1(5a; qu' )qut' dz

> / 0
!.75
9 ni1y, ntl
= / 8% gt s
5]5
).77 /
n,n n n+1 8 n+1 d
_Z p U’Z ’u] —uk )(a—l‘iuk’t ) ¥h
’]’
CﬁIIU”IILGIIVu”IILGIIVu”“Illlu e
+C Blu" |76 | Au | luft | 1o
+C Bllu™176 I VU | ol Vup |
C || Au™[|[|[Vup ™| + C || Au ||| Vup |

a— a_un—H) n—}};ldm

Co(llAu™[[* + [ Au™ ) + 2] Va2,

The sixth and the seventh terms can be bounded respectively as:

(p"ul - VTt

and

(P V)

IN N IA

IN N IA

Using all these bounds in (3.21) we obtain:

Bllug V™ s lup ) s
C lluf [l A" [
Clluf | Au™*H? + nl| Vug 2.

Bllullze | Vg™l o
ClIVag [l 2 Vg 2
Cyllug 17+l Vg 2.

5 VA 4 ()| Vi 2
< Gyl U2 + Cyllwf | + Gyl 7 s + Cyll P + G du”|

+Cy | Au™ T Z + Cyllu [P Au™ 17 + Colluf THI + 8[|V 1%

12
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H+
16

By choosing n = , we get

d . )
%le/p”ut“H? + (1 + ) || VU2
< C 2 + C |l + CIf 1% + Clfl? + C | Au™|? + C || Aum |2
+C luf || Au™ 1 + C . (3.24)

In order to get a bound for ||Au™"||?, multiply (2.5) by Au"t!, we obtain

(,u +Hr)||Aun+1||2 — _(pnu?—i—l’Aun—}—l) + 2y (I‘Ot wn,Aun—H) + (pnf’ Aun—|—1)
—(p"u™.Vu" T, AT, (3.25)

Consider the right hand side of (3.25),

|(p"u™ VuHE, Aut )| Bl Ll Va1 pal| Au"

<
< C||Vun+1||1/4||Aun+1“7/4 < C&HV’UIH—HHZ +6||Au"+1||2,

Using the above result with classical estimates in (3.25), we get
(1 + ) | AU < Csllug 12 + Csl| V" |2 + Coll F1I? + Csl [ Vu | + 4.6 ]| Au™ %,
Then, taking § > 0 sufficiently small, from the previous inequality, we obtain the bound:
|Au™L? < Clul ™2 + C. (3.26)
Thus, rewriting (3.24), we obtain
SV 4 () [V

< Clluf ™ + Cllwf|? + C £l + C A
+C [l | lug I + C lluf|* + C.

Integrating the above inequality from 0 to ¢, we get
all O + (-t ) [ 190
<0 [[OE @I + IO + 15Ol + 10
+0 [P e @R+ o [ s

+Bluf ™ (0)]” + Ct.

From equation (3.8), we can easily bound the rightmost term ||u?*'(0)|/2. In fact, d/dt||Vu™t*(t)||?
is non negative at t = 0, since Vu"*1(0) = 0. Applying (3.18), (3.19) and the hypotheses on f and
ft, we get

t t
g @)1 + / IV (r)|2dr < C + © / e ()P g () 2.

13



M

If we denote ¢(t) = ||[u?"*(¢)||?, the above inequality can be written as
t

o)) <C+C [ lupIPedr
By Gronwall’s lemma,
o)) < Cop(C [ bl dr).
Using (3.18) we conclude that
luf FE @)1 + /Ot IVui ' (n)[dr < C.

Moreover, from (3.26) we have for all n

sup || Au" T (2)]|2 < C.
t

Similarly, for all n, one can prove the following:

t
lwp ()] +/ IVwit(7)|?dr < € and  sup||Bw"* (1) < C.
0 t

3.2.2 Uniform estimates for u" in L?(0,T; W)
Let us write (2.5) as

(4 + ) Au™! = P(F)
where

F = 2p,rot w™ + p"f — p"uf ™! — ptu™ . VL

(3.27)

(3.28)

(3.29)

(3.30)

From the estimates given in Lemma 2.1, together with the estimates (3.27) and (3.28), we can prove
that F € L?(0,T; L%(2)) and consequently by the Amrouche-Girault’s results (1991), we obtain
uniform bounds for »™ in L?(0,T; W%(Q)). Also, by using the Sobolev embedding, one can show

that 4" is uniformly bounded in L?(0,T; W1>=(Q2)).

3.2.3 Three estimates on the second order derivatives

Now, multiplying (3.20) by u}™', and using (2.16), (3.1#), Lemma 2.1, the estimates for p”
0lder and Young inequalities, we obtain

5 <
+Ce|[Au [ + Ce[| Va2 Au™ 1
+Ce |V | + Telugy .

14
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Choosing ¢ = % and observing (3.27)-(3.28), we have

n d n
o [luf P+ () [V P < OV + CIFIP + C LA + C Va2

dt
+C || Vur 2 + C

and multiplying by o(t) = min{1, ¢}, results

d
o) + (4 + pr) - (@@ VU )
< (n+ pn)o' @IVur P + Co)(IVur | + [Vor )
+Ca@)(IFI1* + 1£ell*) + C o) (IVuf T +1). (3.31)

As a consequence of (3.27), there exists a sequence g, — 0, such that e, | V™ (g4,)||?> < C. Since
o(t) <1 and o/(t) <1 a.e. in [0,7], applying (3.27)-(3.29) and integrating (3.31) from g, to ¢, we
obtain

t
a/ o () lugg ™ ()12 dr + (1 + pr)o (@) Vu T (@12 < C + C (1 + pr)o(er) | Vuy ™ (er)|” + C.
€k

Taking limit as ¢, — 0, for all n, reduces the previous inequality to
/OtU(T)IIUZ%“(T)IIer +o@®)|Vulrti@)]? < C.
Analogously, for all n,
/OtU(T)Ilw?tH(T)IIQdT +o(t)||[Vurt (@)|? < C.

To prove the last estimate given in Lemma 2.2, we observe from (3.20) that
. 1012 ; 2

(et i) [ oA @) Par < [ otr)e(o)Par

where
G™ = 2urotwl! + ptf + p"fr — pluf Tt — ptultt — plu™ . V!

—p U Vutt — pty™ . Vi
All the above estimates imply that ¢/?(¢)G™ is uniformly bounded in L*(0, T'; L?(Q)). Analogously,
one can prove the estimates for w™.

Remark. Using arguments of compactness and the estimates given in Lemmas 2.1 and 2.2,
it is possible to prove that the approximate solutions (u",w™,p™) converge to a strong solution
of the problem (1.1)-(1.2). This can be done in exactly the same way as in J.L. Boldrini and
M.A. Rojas-Medar [4].
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4 Proof of Theorem 2.3

4.1 Convergence analysis

On this subsection we show that u", w™ and p™ are Cauchy sequences. Let us introduce the
following notation for the difference of two terms of a sequence. For n, s > 1,

u™*(t) = u" T (t) —u (), Wi (t) = w" () — w"(t) and p™*(t) = p"TO(t) — " (2).
With these notations, we observe that v™*, w™?* and p™* satisfy the following equations

P(p" o) + (p+ pr) Au™® = 2, Prot w™1) + P(p" 1 f) — P(p"~H*uf)
—P( n— 1+s n—1+s | vun,s) _ P(pn71+sun71,s . Vun)

_P(pr byt ) (4.1)
PV w 4 (cq + cg) Bw™® — (co + cg — ¢a)V div w™® + 4p,w™*
= 2pr(rot u %) + p" g — pt TS — ph ISy L gy
g syl gy gneLsynlygyn (4.2)
pe’ +u™ V" " V™ = 0. (43)

The following lemma, which can be easily proven, is fundamental in order to obtain error
estimates.

Lemma 4.1. Let 0 < ¢1(t) < M for all t € [0,T] and assume that for all n > 2, n € N, we have
the following inequality

t
0< galt) <C /0 b (7)dr

where C > 0 is a constant independent of n. Then,

(Ct)"il < (CT)nfl

(n—1! =" (n—-1)!

for allt € [0,T) and n > 2. Therefore, ¢pp(t) — 0 as n — oo, Yt € [0,T].

Pn(t) < M

4.1.1 Bounding the error of the density sequence

The density sequence can be bounded in terms of the velocity sequence, as stated in the following
lemma.

Lemma 4.2. Under the hypotheses of Lemma 2.2, we have

t
1™ @)% < © /0 IV (1) 2dr.

Proof. Multiplying (4.3) by (p™*)5 and integrating over ), we obtain

1
n,s|6 _ n,8 n+s/ mn,5\5 = n n,5\6
6dt/ | Pdr = /Qu V"5 (") dx G/QU V(p™*) dx

1
< /Iu”’SIIVp"“IIp”’sPder—/ div u"™(p™*)%dz
Q 6 Jo
< ||Vpn+3||Loo(0,T;Loo(Q))/Q|“n’8||/)n’s|5d37
1/6 5/6
< of fra) (i)
Q Q

16



This implies

1d

ool 5 < C o o™ e,
but,

Ed—tHP"’SHLG = ||Pn’s||L6d—t||Pn’s||L6a

then, since H'(Q2) < L5(9), we obtain

d
—l"*llrs < C[Vu™?]].
dt

Integrating the last inequality from 0 to £ and applying the Cauchy-Schwartz inequality, we conclude
that

t t 1/2
1p™*(@)lLs < C/O [Vu™*(r)||dr < C(/O IIVu”’s(T)IIZdT) - (4.4)

4.1.2 Convergence of " and w" in L*®(0,T; H} (1))
Multiplying (4.1) by dAu™*, integrating over Q and estimating as usual, we obtain,
S+ pr) [ A2 <l |2+ 0l Vw502 gl " | el £ 7
+nllp" o e Va2 4l Va2
1
+n[ Va2 4l o 7 + 552(/'”14”"’5”2 (4.5)

where 7 is a positive parameter and C is a constant independent of n. Similarly, multiplying (4.1)
by uy”®, we get

n,8 (12 /J+UT d n,8 (|2
) _ V 3
offup |2 + ESE S v
< Gyl Vw012 + Cyllp™ 017611 £ 1125 + Cllp™ 0|76l Vuip |12
+C[|Vu™* |12 + Cy[[ VU112 + Cyll 0" %176 + 6l |12 (4.6)

where C), is a constant independent of n.
Adding (4.5) and (4.6), we get

, n+pe d
allug”®|[* + T’"EIIW"’SII2 +6(u + o) || Au™*|?

<26y ||V ™12 + 20, 1" 2s £ 7 + 2Cy 11" 26 Vui |12
+2C,[[Vu™*||? + 2Cy|[Vu™ 1| + 2Cy 0" ™| 76 + 6nllug”||?

_ATL,SZ.
44|

17



Cs?

By choosing n = % and ¢ > 0 such that (u+ pr)d — e > 0, we reduce the previous inequality to
]
d
alluf® |1 + (u + MT)EIIVU"’SII2 + Cif| Au™|?
< OV 1|2 + Cllp" 2| Z6ll £l s + Cllp™ 2|76V |?
+O[Vu™*|? + C|[Vu" 22|12 + Cll" | 26 (4.7)

with positive constants C;, C independent of n
From (4.2), we have

pnfl—l—sw?,s -l-L’LU"’S +4,Urwn’s

n—l,S) n—1,s, n

= 2y, (rot u +p" g — p" P —p
_pn—l—l—sun—l,s Vo — pn—l,sun—l -V (4.8)

n—1+sun—1—|—s V™

where Lw™® = (cq + ¢q) Bw™® — (co + ¢q — ¢,)V div w™*. Since L is a strongly elliptic operator
(see O. Ladyzhenskaya, V. Solonnikov, and N. Uralceva, [9] p. 70), there exists a positive constant
N depending exclusively on ¢, + ¢4, ¢g + ¢qg — ¢q and T" such that

(L™, Bu™) > (cq + ca) [ Bu™ |2 — N[ V™2 (49)

Multiplying (4.8) by 6 Bw™?, using (4.9) and estimating as usual, we have

O(ca +ca) | Bw™ > < 0C[Vw™|? + Cllw*|* + ¢IIVu" 12 + o™l 6 lgll7
"7V P + ¢ V™ || + ¢ Vun =]

n—1,s)12 020 Buw™* 2 4.10
+Cllp ||L6+—4C [Bw™*|". (4.10)
Multiplying (4.2) by w}"®, standard estimates yield
Cqt+cgd co+tcg—cod . d
| + g O S iy 2 2, |
< Cllvu N2 + Cellp™ M 76llglI e + Cello™II2s [ Va? |1®
+C[[Vw™* |2 + C¢[[ Va2 + Ccllp"H°|[76 + 6¢ [l || (4.11)
Adding (4.10) and (4.11), we get
d
o |2 + AL g2 40 + )| Bur P
cot+cg—cq d .. d
DR T i w4 2, S 0™
< AC Va2 + 20 1o s llglZe + 2C o™ 1 [V |12
_ Co?
+(0+ 1)Cc[[Va™*|[* +2C¢ || p" |76 + 6¢Jwy* || + QIIBW"’SIIQ-
Now, choosing ( = 2 and 6 = M and setting Cp = (Cateal’a o ooy
) g 12 25,82 ) g L2 (258)Z g

0‘”“’?’8”2 + (ca + Cd)_dtH Vw"’sH2 + (12||Bw"’s||2 + (co+cq — ca)_dt ||div 'w"’s||2
d 3 . ~
4Hrdt ||,w77/75||2 < CH Vu" 1’8”2 + CHpn 1’5”%6”_9”%3 + CHpn 1’s||%6||V’LU?H2

+C|[Vu™|* + Cllp™"*|[76. (4.12)
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Adding (4.7) and (4.12), and integrating the result from 0 to ¢, we obtain

t
(1 + pr) | V™5 ()| + (ca + ca)[[Vw™* ()]|* + 04/0 (lug>* (T))|? + [Jwp® (7)]1)dr
t t
+01/ ||Au”’5(7)||2d7+02/ 1Bw™ (7)[2dr + (co + ca — ca)||div w™* (2)|2
0 0
t
< C/ (Va5 (1) |12 + || Vw15 (7)||*)dr
0
t 1 2 2 2
+C/0 ™ ()16 I F(TI7s + llg(T)|5s)dT
t
+C/O 1™ 2 (P26 (Vg (T))1? + VWi (7)|1?)dr

+0 [V @I + Vo @ Par 40 [ 1wl @
From (4.4),V 7 € (0,t), 0 <t < T, we have
Il < [ IVt () 2 < C / [ ) P
and replacing this last inequality in (4.13), we obtain

Cs(|Va™ @) + V™ (@)]*) + Cs /Ot (g ()17 + llawg* (7)) dr
+Cs /Ot (lAu™* ()| + | Bw™* (7)||*)dr + Cs|div w™* (¢) |
< C/Ot (Va5 (D)1 + [V =5 (7)) dr
+C/0t Va1 (t1) |2 dts /Ot(llf(T)llis +lg(7)|17s)dr
+C/0t [Vu"=2 (1) ]| *dty /Ot(IIVU?(T)II2 + |V (7)[[*)dr
+0 [ A @I + Vo @ ar + 07 [ v )Par
where C5 = min{ p + p, ¢4 + cq, @, c1, co }. Then,
IVu™* (@)1 + [[Va™* @)]|* + /Ot (g™ (DI + > (7)) dr + /Ot | Au™ (1) *dr
+ [ 1B ar <o [ Ava @ + 1ver ) e

t
+C/ (V™ ()| + | Vw™* (1) |*)dr.
0
Applying Gronwall’s inequality (see W. Varhorn [21], Lemma 3.10 p. 122), we get
t t
[Vu™* (@) + [[Vw™ (1) +/0 (llug”” ()17 + [l (7)) dr +/0 | Au™*(7)||*dr

t t
+ [ 1B < [ (98 @) Ve ) r (4.14)
0 0
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Thus, we have
t
[Vu™*(@)]* + | Vw™ (¢)]* < M / (Va5 (D)) + [ Vw2 (1) |?)dr.
0

Since |[Vu™*(t)? + ||[Vw™*(t)||> < M, Vn,s and t € [0,T], using Lemma 4.1, we obtain

M t)n—l (MlT)n_l
n,s 2 n,8 2<M( L < M . 4.1
IV + Va0 < e < (415)
We observe that
t t M T)n—2 (M t)n—l
M n=Ls(7)|1? n=1s(7r)|12)d <M/ PO BT
A T e B T L TN (R
Therefore, from (4.14) and (4.16), we have
t M t)n—l (M T)n—l
n,s 2 Buw™* 2 <M( 1 _<]\471 4.1
[ e+ 1w yar < il < il (417)
from which we obtain the convergence in L?(0,T; H%(f2)), and
t M t)nfl (M T)nfl
ms ()2 + [ (1) [2)dr < M A <M 4.1
[ @ + oy 2yar < M < (418)

which gives the convergence of u} and w} in L?(0,T; L%(Q)).

4.1.3 Convergence of the density sequence in L*°(0,7; L*°(2))

Now, from (4.3), we have

p?;s_i_un.vpn,s — _un,s.vpn—f—s
pP0) = 0.

Let z"(x,t,7) be the solution of the Cauchy problem

4 = W)

Z2" = g for T=1t.

Then, using the characteristic method, we have

P (x,t) = —/0 u™s(2"(1),7).Vp" (2" (1), 7)dr.

Bearing in mind the properties of 2" (see O. Ladyzhenskaya and V. Solonnikov [8], pp. 93-96), we
get

t t
1075 () || e < ||Vpn+s”Loo(0’T;Loo(Q))/0 |u™* (1) peo dr < C/() | Au™* (7)]|dr.

Hence, applying the Cauchy-Schwartz’s inequality and observing (4.17), we have

t M+t n—1 M-+T n—1
@l < [ lawemiar < T <D

(n—1! =7 (n—1)!"° (4.19)
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4.1.4 Convergence of u" and w" in L%(g, T; WH>®(Q))

The following bounds in the lemma require some technical manipulation. Let us differentiate (4.1)
with respect to ¢, and multiply the result by u;”° and integrate the resultant on 2. We get

S LIV P 4+ ) [

1
= =5 (o0 ) 4 2ot wf L up ) + (o7 i)

(pn uttaut ) — (p?—l-l-sun—l-i—s . V’un’s,’l]/?’s)
(pn 1—|—s n 1+s Vu™s u?,é’) _ (pn—1+sun—1+s . Vu?,s’u?,S)
(P? 1—|—s n—1,s -V Uy ,S) _ ( n—1+s n—l,s V" u?,S)
(pn 1—|—s n—1,s Vu?,u?’s) ( n—1,s n 1 Vu ut )
(pn 1,s u 1 Vut, )+(ptn 1sf’u?5)

—1, 1, ,
) — (T ),

Let us group the terms containing p %, namel
t y

ho = (0} M foul®) — (o) Pul, ul®) — (o) L vl ),

and denote the remaining terms by h;. Then, we have

LT 42 (k)| VI = 2+ 2

Multiplying this equation by o(t) = min{l,¢} and integrating the result from 0 to ¢, we get
t
OISO O +2u+ ) [ o)V () Par
/ OV ()l ()P + 2 Hy(8) + 2 Ha 1) (4.20)

where Hy(t) = /0 o(r) h(r)dr and Ha(t) = /0 o () ho(7) dr.

Now, we estimate the right-hand side of the above equation. From the fact that 0 < o'(t) <1
a. e. in t € [0,T], we have

t t n—1
o VT (e ()Pdr < B [ () 2ar < g ST (4.21)
0 0 (n 1)-

as a consequence of (4.18). It is easy to show that

n—2 t
H(t) < C (J(‘ff)z)! T /0 o ()| Vel () | 2dr. (4.22)

For each term in ho(t), using (4.3) and integrating by parts, we can obtain the same kind of
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bound. In fact,

() = (T ) — (@ V)
= (@) + (o )
e V)
< 0| al V"R oo ([ | o
o™ sl oo [V g || 5
o™ s e | oo [V (|9 3
< CIva™ 9 IVu® | + Cllo™ 52| sl Vg
< Gyl vur e P12 4 Colle™ 5 176 19 15 + 20l Vaug™® |12,
. . _ o ] n . I e
Taking respectively 9 = f, 9 = uy and ¢ =u - Vuy', choosing n = o1 we have

t t
() < C /0 IVun=5 (1) 2] £ (r) | 2dr + C /0 o™= (1) 26 1 £ () s

t t
e / IVun=5 ()| Pdr + C / 05 (1) |26 |Vl () |2
0 0

t t
_ +
+0 [l s + 2 [ ooV o) Par

Now, using (4.4), (4.15) and (4.16), we obtain

n—2 t
ma(t) < ML 4 o) gu o Par.

Therefore, carrying (4.20) and (4.22) in (4.24), we obtain

me [ ()"
O+ [ oIV ()Par < T

whidr prveshihargmuergsraee feimilar.

f convergence in the Theorem is directly obtained from (4.5). Similarly, the
rgence is consequence of the previous bound, thanks to the Sobolev embedding

-ate of convergence of Theorem 2.3 is obtained by repeating the same arguments
(see equation (3.29)). That is, write (4.1) as

(4 + pr)Au™® = P(F)

— 2/111“ rot wnfl,s _l_pnfl,s‘f _ pnfl,su? _ pan—s . Vun,s

_pnfl—}—sunfl,s SV — pnfl,sunfl LV — pn71—|—su?,s.

ep consists in showing that F € L?(0,T; L%(Q)) and in applying the Amrouche-
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4.2 Passage to the limit

Once the convergences have been established, the passage to the limit is a standard procedure. We
obtain

T
/<put+pu-Vu—pf—2urrotw—(u+ur)Au,v)¢(t)dt=0,
0
T
/(pwt—l—pu-Vw—pg—Zurrotu%—ll,u,w—(ca+cd)Aw
0
—(co + cg — ¢ca)Vdivw, z )9p(t) dt = 0,

for all z, v € L2(Q) and ¢, ¥ € L>®(0,T).
These equalities together with the Du Bois - Reymond’s Theorem imply

(put+pu-Vu—pf—2protw— (u+ pr)Au,v) =0,

(pwe+ pu-Vw—pg—2urotu+4p, w— (cg + cg)Aw — (co + ¢4 — ¢g)Vdivw, z ) = 0,
a. e. in [0,71], for every v € H, z € L?(2). These last two equalities imply

P(pus+pu-Vu—pf—2purotw — (p+ pr)Au) =0 and

pwi+ pu-Vw—pg—2purotu+4pu, w— (cqg + cg) Aw — (co + ¢4 — ¢g) Vdivw = 0.
For the density, we proved that

u" — u strongly in L%(0,T; L*()),
pF — py, and Vp" — Vp weakly in L?(0,T; L*(Q)).

Thus, when n — oo in the approximated continuity equation, we obtain
pt+u-Vp=0 inthe L2*(0,T;L*(f)) — sense.

Now, we prove the continuity established in Theorem 2.3 for the solution (u,w, p). Firstly, given
that u € L*°(0,T; D(A)) and u; € L?(e,T; D(A)), by interpolation (see R. Temam [20], p. 260) u
is a.e. equal to a continuous function from [e, T'] into D(A), i.e.,

u € €([e,T); D(A)) Ve >0.
On the other hand, since u; € L?(e,T; D(A)), uy € L?(e, T; H), by interpolation we have
u € €([e,T); V), Ye>0.
Therefore,
u€ € e, T; V) N€ (e, T); D(A)), Ve >O0.
Analogously, we prove that

w € €'([e,T); Hy () N € (e, T]; D(B)), Ve > 0.
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To prove the continuity at ¢ = 0, we proceed as follows. It is easy to show that
li t) —u(0)]| =0, i Vu(t) — Vu(0)|| = 0.
Jim () — u(0)]] Jim [[Va(t) — Vu(0)]]

To prove that

lim ||Au(t) — Au(0)|| = 0.
t—0+
it is sufficient to show that
lim, sup | Au(?)] < || Aol
t—0+
since we already know that u(t) — ug in H'((Q).
Multiplying (2.5) by Au?*! and integrating in Q, we have

w+prd
BB Sl 4w T2 4 oo+ 2

= —(p"u" - Vu" T, Aul ) 4 24, (ot w™, AuP ) + (p" f, AulT)

—(Vp" - VT th).

Then, integrating from 0 to ¢, we get

Au"TL @I < || Augll? +
I A" < [[Augl| P

+p" () f (1), A" (2)) — (= pfu™(0) - Vg™ + 2prot w

[(=p™()u" (2) - Vu" () + 2p,r0t w"()

2
+pnf 0 Aun+1 4 N(¢
510 A + N ()
uniformly in n and where
t
N(t) = / |(pPu™ - Vu™ T 4 phul - Va4 ™ - VT — 2p,rot w
0

t
—pf — p" i, Au"th)| dr +/0 (V" - V™ up ™| dr
t
< c /0 (V™| + IV + [ Va2 + V]| + £+ 1 fell) dr < ct/?

by virtue of Holder inequality and the estimates as given in Lemma 2.2.
From this, we conclude that

[Au@)[? < [ Auoll® + e [(=p(t)u(t) - Vu(t) + 2urrot w(t) + p(t) f (¢), Au(t))
—(—=pou(0) - Vug + 2u,rot wg + pof(0), Aug)] + C /2.

Since p(t)u(t) - Vu(t) — poug - Vug, p(t)f(t) — pof(0), rotw(t) — rotwy in L?()) and
Au(t) — Aug weakly in L?(Q) as t — 0", we obtain the desired result. From this, it is easy to
show

lim ||Jug(t) — ue(0)|| = 0.
50+ ” t( ) t( )H
The results for w are proved in the same way.
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4.3 Uniqueness of the strong solution

To prove uniqueness, let us assume that (u,w,p) and (u1, w1, p1) be two solutions of (1.1)-(1.2)
with the same regularity as stated in Theorem 2.3. Now, define:

U=y —u, W=w —wand R=p; —p.

These auxiliary functions verify a set of equations similar to (4.1)—(4.3). If we multiply the first
equation by U, the second by W and the third by R and repeat the argument as given in the proof
of Lemma 2.1 in 3.1.1, we obtain for (t) = |[U(t)||? + [|[W(#)||> + ||R(?)||?> an inequality of the
following type:

p(t) < C/O p(7)dr

which, by Gronwall’s inequality, is equivalent to assert U = 0, W = 0 and R = 0. The proof of
Theorem 2.3 is completed.

5 Existence and Uniqueness of the Pressure

Lemma 5.1. With the hypotheses of Lemma 2.1, for each n, there exists p™ € L(0,T; H*(Q2)/R)
such that (u™, w", p",p") is an approzimate solution of problem (1.1)-(1.2), where (u™,w™, p") are

given by Lemma 2.1. In addition, with the hypotheses of Lemma 2.2, p™ is uniformly bounded in
L>(0,T; H(Q)/R).

Proof. One can prove this lemma from (3.29) and the Amrouche-Girault’s results (1991).

Lemma 5.2. Under the hypotheses of Lemma 2.2, we have

t n—1
n+s n 2 7(M1T)
10 = ) ymtr < M
n+s n 2 (MIT)H_Z

sup o (0)p" (1) = 2" (Ol oy m < M =557

for allt € [0,T].

Proof. We denote p™* = p"*ts —p" Vn > 1. Then, from (2.5) and (4.1), we have

—(p + pr) Au™® + Vp™© = J (5.1)
where J = 2;,671‘01] wn—l,s + pn—l,.s’f _ pn—l,su? _ pn—1—|—sun—1+s V™
_pn—l—f—sun—l,s . Vau — pn—l,sun—l . Vau — pn—l—f—su?,s. (52)

Moreover,

1712 < CIVarb I +C o™ sl fll2s + C 10" |36 uf |3 + C [Vun*|
FO T2+ C " BVl Es + C . (53)
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Now, (5.1)-(5.3) and the Amrouche-Girault’s results [1], imply

™ I ) < CIII? (5.4)
@)/
and integrating it from 0 to t, we get
(MlT)n_l (MIT)n—l /t 9
< M
[ @ ayptr < om [SEEE L B [y o) ar
M) [ o2 (MT)"
+W/0 [Vui (7)|[7dr + ——
(M, 7)™ /t ngi2g o M)
o ) @+ S ]
by virtue of (4.4), (4.16) and (4.18). Therefore,
t n—1
n,8 2 (MlT)
/0 lp (T)”Hl(ﬂ)/RdT < MW
Also, from (5.2) and (5.4), with o(t) = min{1,¢}, we have
slp™ If@mr < IVW" 22+ Cllp" 1= IF17 + C llp" | 7e

+C ||Vun,s“2 +C Hvun—l,sHQ +C ||ﬂn_1’s||%6 + CO’( )”un,sHQ

n—2 n—2 n—1
M, T)"1 M. T)*—1 M. T2
+o D™ (nl—)l)! + CMi( (nl—)l)! + CMi( (nl—)Z)!

by virtue of (4.4), (4.15), (4.18) and (4.19). Therefore, by interpolation, f € C([0,T]; L?(12)).
From the last inequality, we conclude

(MIT)n—Z
(n—=2)! "~
Theorem 5.3. Under the hypotheses of Lemma 2.2, the approrimate pressure p" converge to the

limiting element p in L?(0,T; H'(Q)/R) and (u,w, p,p) is the unique solution of (1.1)-(1.2), where
(u, w, p) is the solution given in the Theorem 2.3. Moreover, we have the following error estimate

o (0) 07 () 2ys oy < M (5.5)

(MlT)n_l
/ 1™ (r) = p(7) |71 (0 rdT < M= =

Also, p™ converges to p in L*®(e,T; H'(Q)/R), for all € > 0 and is satisfy the following error
estimate
(MIT)n72

sgp a(t)|lp™ (1) —p(t)H%{l(Q)/R < MW
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