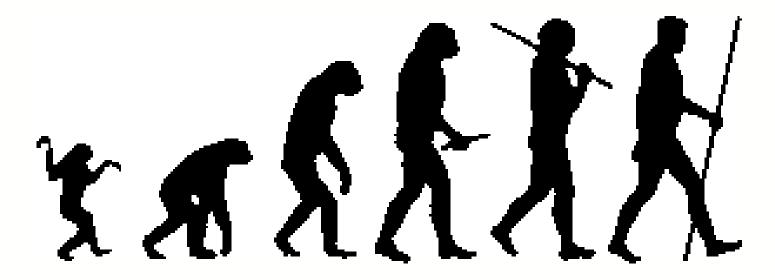


Olivier Bernardi, CNRS, Université Paris-Sud

Workshop on randomness and enumeration Temuco, November 2008

We consider quadrangulations as metric spaces: (V, d).

Question: What random metric space is the limit in distribution (for the Gromov-Hausdorff topology) of rescaled uniformly random quadrangulations of size n, when n goes to infinity?



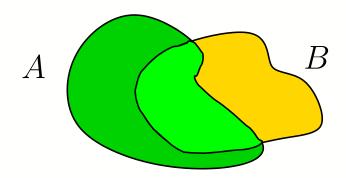
Outline

- Gromov-Hausdorff topology (on metric spaces).
- Brownian motion, convergence in distribution.
- Convergence of trees: the Continuum Random Tree.
- Convergence of maps: the Brownian map.

A metric on metric spaces: the Gromov-Hausdorff distance

How to compare metric spaces?

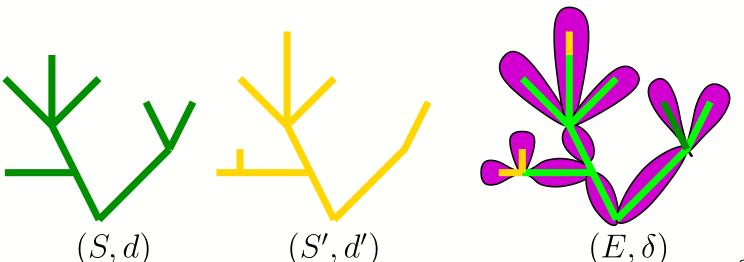
The Hausdorff distance between two sets A, B in a metric space (S, d) is the infimum of $\epsilon > 0$ such that any point of A lies at distance less than ϵ from a point of B and any point of B lies at distance less than ϵ from a point of A.



How to compare metric spaces?

The Hausdorff distance between two sets A, B in a metric space (S, d) is the infimum of $\epsilon > 0$ such that any point of A lies at distance less than ϵ from a point of B and any point of B lies at distance less than ϵ from a point of A.

The Gromov-Hausdorff distance between two metric spaces (S,d) and (S',d') is the infimum of $d_H(A,A')$ over all isometric embeddings (A,δ) , (A',δ) of (S,d) and (S',d') in an metric space (E,δ) .



Hausdorff distance and distortions

Let (S, d) and (S', d') be metric spaces.

A correspondence between S and S' is a relation $R \subseteq S \times S'$ such that any point in S is in relation with some points in S' and any point in S' is in relation with some points in S.

The distortion of the correspondence R is the supremum of |d(x,y)-d'(x',y')| for $x,y\in S$, $x',y'\in S'$ such that xRx' and yRy'.

Hausdorff distance and distortions

Let (S, d) and (S', d') be metric spaces.

A correspondence between S and S' is a relation $R \subseteq S \times S'$ such that any point in S is in relation with some points in S' and any point in S' is in relation with some points in S.

The distortion of the correspondence R is the supremum of |d(x,y)-d'(x',y')| for $x,y\in S$, $x',y'\in S'$ such that xRx' and yRy'.

Prop: The Gromov-Hausdorff distance between (S,d) and (S',d') is half the infimum of the distortion over all correspondences.

Hausdorff distance and distortions

Prop: The Gromov-Hausdorff distance between (S, d) and (S', d') is half the infimum of the distortion over all correspondences.

Corollary: The Gromov-Hausdorff distance between (T_f, d_f) and (T_g, d_g) is less than $2||f - g||_{\infty}$.

Proof: The distortion is $4||f-g||_{\infty}$ for the correspondence R between T_f and T_g defined by uRv if $\exists s \in [0,1]$ such that $u = \tilde{s}^f$ and $v = \tilde{s}^g$.

Prop: The Gromov-Hausdorff distance between (S, d) and (S', d') is half the infimum of the distortion over all correspondences.

Corollary: The Gromov-Hausdorff distance between (T_f, d_f) and (T_g, d_g) is less than $2||f - g||_{\infty}$.

Proof: The distortion is $4||f-g||_{\infty}$ for the correspondence R between T_f and T_g defined by uRv if $\exists s \in [0,1]$ such that $u = \tilde{s}^f$ and $v = \tilde{s}^g$.

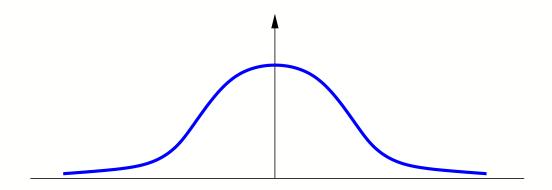
In particular, the function $f \to T_f$ is continuous from $(C([0,1],\mathbb{R}),||.||_{\infty})$ to (\mathbf{M},d_{GH}) .

4

Brownian motion, convergence in distribution

Gaussian variables

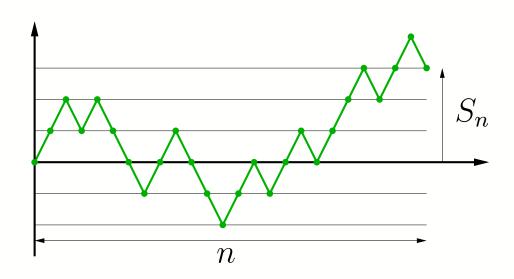
We denote by $\mathcal{N}(0, \sigma^2)$ the Gaussian probability distribution on \mathbb{R} having density function $f(t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{t^2}{2\sigma^2})$.



Gaussian variables

Let $(X_n)_n$ be independent random variables taking value ± 1 with probability 1/2 and let $S_n = \sum_{i=1}^n X_i$.

By Central Limit Theorem, $\frac{S_n}{\sqrt{n}}$ converges in distribution toward $\mathcal{N}(0,1)$.



Gaussian variables

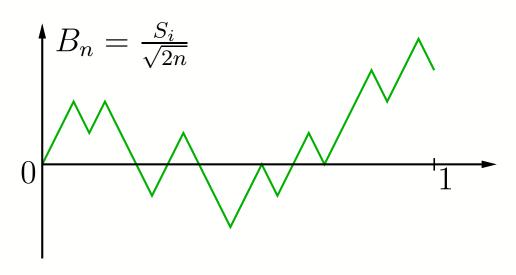
Let $(X_n)_n$ be independent random variables taking value ± 1 with probability 1/2 and let $S_n = \sum_{i=1}^n X_i$.

By Central Limit Theorem, $\frac{S_n}{\sqrt{n}}$ converges in distribution toward $\mathcal{N}(0,1)$.

Reminder: A sequence (X_n) of real random variables converges in distribution toward X if the sequence of cumulative distribution functions (F_n) converges pointwise to F at all points of continuity.

Let $(X_n)_n$ be independent random variables taking value ± 1 with probability 1/2 and let $S_n = \sum_{i=1}^n X_i$.

By considering $\frac{1}{\sqrt{n}}(S_1, \dots, S_n)$ as a piecewise linear function from [0, 1] to \mathbb{R} , one obtains a random variable, denoted B_n , taking value in $C([0, 1], \mathbb{R})$.



Distribution of rescaled random paths

Let $(X_n)_n$ be independent random variables taking value ± 1 with probability 1/2 and let $S_n = \sum_{i=1}^n X_i$.

By considering $\frac{1}{\sqrt{n}}(S_1, \dots, S_n)$ as a piecewise linear function from [0, 1] to \mathbb{R} , one obtains a random variable, denoted B_n , taking value in $C([0, 1], \mathbb{R})$.

Proposition: For all $0 \le t \le 1$, the random variables $B_t^n = B_n(t)$ converge in distribution toward $\mathcal{N}(0, t)$.

Distribution of rescaled random paths

Let $(X_n)_n$ be independent random variables taking value ± 1 with probability 1/2 and let $S_n = \sum_{i=1}^n X_i$.

By considering $\frac{1}{\sqrt{n}}(S_1,\ldots,S_n)$ as a piecewise linear function from [0,1] to \mathbb{R} , one obtains a random variable, denoted B_n , taking value in $C([0,1],\mathbb{R})$.

Proposition:

For all $t_0 = 0 \le t_1 \le t_2 \le \cdots \le t_k$, the random variables $B_{t_{i+1}}^n - B_{t_i}^n$ are independents and converge in distribution toward $\mathcal{N}(0, t_{i+1} - t_i)$.

The Brownian motion (on [0,1]) is a random variable $B=(B_t)_{t\in[0,1]}$ taking value in $C([0,1],\mathbb{R})$ such that for all $t_0=0\leq t_1\leq t_2\leq \cdots \leq t_k$ the random variables $B_{t_{i+1}}-B_{t_i}$ are independents and have distribution $\mathcal{N}(0,t_{i+1}-t_i)$.

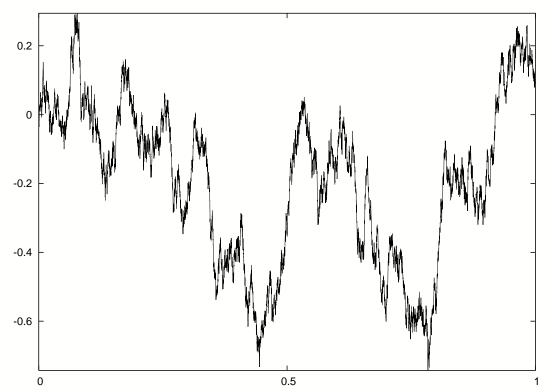


Image credit: J-F Marckert

The Brownian motion (on [0,1]) is a random variable $B=(B_t)_{t\in[0,1]}$ taking value in $C([0,1],\mathbb{R})$ such that for all $t_0=0\leq t_1\leq t_2\leq \cdots \leq t_k$ the random variables $B_{t_{i+1}}-B_{t_i}$ are independents and have distribution $\mathcal{N}(0,t_{i+1}-t_i)$.

Remarks:

• The distribution of a process $B = (B_t)_{t \in I}$ is characterized by the finite-dimensional distributions.

The Brownian motion (on [0,1]) is a random variable $B=(B_t)_{t\in[0,1]}$ taking value in $C([0,1],\mathbb{R})$ such that for all $t_0=0\leq t_1\leq t_2\leq\cdots\leq t_k$ the random variables $B_{t_{i+1}}-B_{t_i}$ are independents and have distribution $\mathcal{N}(0,t_{i+1}-t_i)$.

Remarks:

- The distribution of a process $B = (B_t)_{t \in I}$ is characterized by the finite-dimensional distributions.
- The existence of a process $(B_t)_{t \in [0,1]}$ with this distribution is a consequence of Kolmogorov Theorem.

The Brownian motion (on [0,1]) is a random variable $B=(B_t)_{t\in[0,1]}$ taking value in $C([0,1],\mathbb{R})$ such that for all $t_0=0\leq t_1\leq t_2\leq \cdots \leq t_k$ the random variables $B_{t_{i+1}}-B_{t_i}$ are independents and have distribution $\mathcal{N}(0,t_{i+1}-t_i)$.

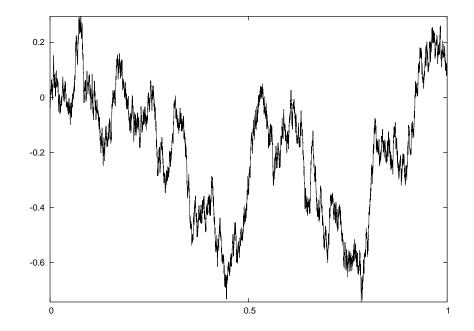
Remarks:

- The distribution of a process $B = (B_t)_{t \in I}$ is characterized by the finite-dimensional distributions.
- The existence of a process $(B_t)_{t \in [0,1]}$ with this distribution is a consequence of Kolmogorov Theorem.
- The existence of $(B_t)_{t \in [0,1]}$ with continuous trajectory can be obtained via a Lemma of Kolmogorov.

Properties of Brownian motion

Properties almost sure of the Brownian motion:

- The Brownian motion is nowhere differentiable.
- It is Hölder continuous of exponent $1/2 \epsilon$ for all $\epsilon > 0$.
- ullet For fixed $t\in]0,1[, t \text{ is not a left-minimum nor right-minimum nor . . .$
- The value of local minima/maxima are all distinct.



Convergence in distribution

A polish space is a metric space which is complete and separable.

For instance, $(C([0,1],\mathbb{R}),||.||_{\infty})$ and (\mathbf{M},d_{GH}) are Polish.

Convergence in distribution

We consider a Polish space (S, d) together with its Borel σ -algebra (generated by the open sets).

Definition: A sequence of random variables (X_n) taking value in S converges in distribution (i.e. in law, weakly) toward X if $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X_n))$ for any bounded continuous function $f: S \mapsto \mathbb{R}$.

Convergence in distribution

We consider a Polish space (S, d) together with its Borel σ -algebra (generated by the open sets).

Definition: A sequence of random variables (X_n) taking value in S converges in distribution (i.e. in law, weakly) toward X if $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X_n))$ for any bounded continuous function $f: S \mapsto \mathbb{R}$.

Remarks:

- There are other characterizations of convergence in distribution (Portmanteau Theorem).
- When $S = \mathbb{R}$, convergence in distribution is equivalent to the convergence pointwise of the cumulative distribution function at all points of continuity.

4

We consider a Polish space (S, d) together with its Borel σ -algebra (generated by the open sets).

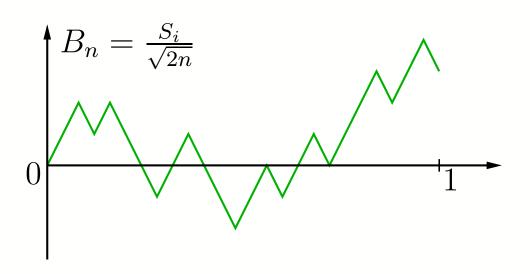
Definition: A sequence of random variables (X_n) taking value in S converges in distribution (i.e. in law, weakly) toward X if $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X_n))$ for any bounded continuous function $f: S \mapsto \mathbb{R}$.

Remarks:

- Convergence almost sure implies convergence in distribution.
- Skorokhod Theorem gives a reciprocal: If $X_n \stackrel{\text{dist}}{\longrightarrow} X$, then there are couplings \tilde{X}_n, \tilde{X} such that $\tilde{X}_n \stackrel{\text{a.s.}}{\longrightarrow} \tilde{X}$.

4

Let B_n be (as before) the random variables taking values in $C([0,1],\mathbb{R})$ and obtained from the uniform distribution on rescaled lattice paths on \mathbb{N} .



Let B_n be (as before) the random variables taking values in $C([0,1],\mathbb{R})$ and obtained from the uniform distribution on rescaled lattice paths on \mathbb{N} .

We have seen that the finite-dimensionals of B_n converge (in distribution) toward the finite-dimensionals of the Brownian motion B.

This proves that if (B_n) converges in distribution in $(C([0,1],\mathbb{R}),||.||_{\infty})$ it must be toward the Brownian motion.

However, this does not prove convergence and we need to use a tightness argument.

Let B_n be (as before) the random variables taking values in $C([0,1],\mathbb{R})$ and obtained from the uniform distribution on rescaled lattice paths on \mathbb{N} .

A sequence (X_n) taking value in S is tight if $\forall \epsilon > 0$ there exists a compact $K \subseteq S$ such that $\forall n, \ \mathbb{P}(X_n \in K) > 1 - \epsilon$.

Theorem (Prohorov): If (X_n) is tight, then (X_n) converges in distribution *along a subsequence*. In particular, if the limit X is uniquely determined, then (X_n) converges to X in distribution.

A sequence (X_n) taking value in S is tight if $\forall \epsilon > 0$ there exists a compact $K \subseteq S$ such that $\forall n, \ \mathbb{P}(X_n \in K) > 1 - \epsilon$.

Theorem (Prohorov): If (X_n) is tight, then (X_n) converges in distribution *along a subsequence*. In particular, if the limit X is uniquely determined, then (X_n) converges to X in distribution.

Here, to prove the tightness of (B_n) , one uses the compacts $K_{(\delta_n)} \subseteq C([0,1],\mathbb{R})$ of (δ_n) -uniformly continuous functions, that is, the set of functions f such that $|s-t| \leq 2^{-n} \implies |f(s)-f(t)| \leq \delta_n$.

Brownian excursion

The Brownian excursion is a random variable $e = (e_t)_{t \in [0,1]}$ with value in $C([0,1],\mathbb{R}^+)$ satisfying $e_0 = 0$, $e_1 = 0$ and having finite-dimensional distributions (...).

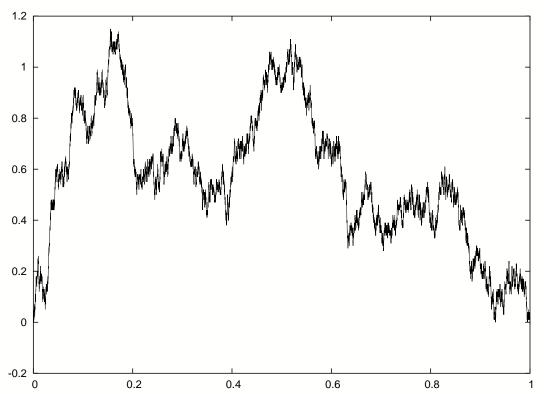


Image credit: J-F Marckert

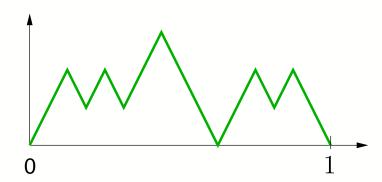
÷

Brownian excursion

The Brownian excursion is a random variable $e = (e_t)_{t \in [0,1]}$ with value in $C([0,1],\mathbb{R}^+)$ satisfying $e_0 = 0$, $e_1 = 0$ and having finite-dimensional distributions (...).

The existence of *e* can be obtained either

- by brute force: Kolmogorov,
- by conditioning the Brownian motion,
- by rescaling a well-chosen piece of the Brownian motion,
- ullet as the limit of uniform Dyck paths rescaled by $\sqrt{2n}$.



Brownian excursion

The Brownian excursion is a random variable $e = (e_t)_{t \in [0,1]}$ with value in $C([0,1],\mathbb{R}^+)$ satisfying $e_0 = 0$, $e_1 = 0$ and having finite-dimensional distributions (...).

Properties almost sure:

- The Brownian excursion is nowhere differentiable.
- It is Hölder continuous of exponent $1/2 \epsilon$ for all $\epsilon > 0$.
- ullet For fixed $t\in]0,1[, t \text{ is not a left-minimum nor right-minimum nor . . .$
- The value of local minima/maxima are all distinct.

Limit of random discrete trees: the Continuum Random Tree

The Continuum Random Tree (Aldous 91)

The Continuum Random Tree is the real tree T_e encoded by the Brownian excursion e.

This is a random variable taking value in the space (\mathbf{M}, d_{GH}) of compact metric spaces.

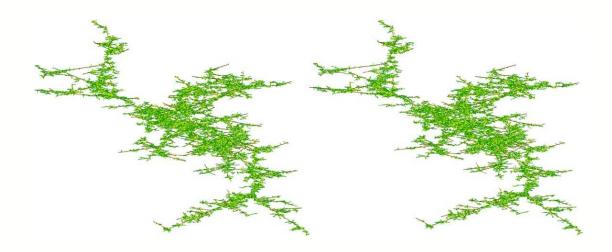


Image credit: G. Miermont

The Continuum Random Tree (Aldous 91)

The Continuum Random Tree is the real tree T_e encoded by the Brownian excursion e.

This is a random variable taking value in the space (\mathbf{M}, d_{GH}) of compact metric spaces.

Properties almost sure of the CRT:

- Any point has degree 1, 2 or 3.
- There are countably many points of degree 3.
- \bullet For the measure inherited from the uniform measure on [0,1], a point is a leaf with probability 1.
- The Hausdorff dimension is 2.

Hausdorff dimension

Definition: The Hausdorff dimension $dim_H(X)$ of a metric space (X, d) is defined as follows:

for
$$\alpha > 0$$
,

$$C_H^{\alpha} = \lim_{\epsilon \to 0} \inf(\sum_i r_i^{\alpha}, \text{ where } r_i < \epsilon \text{ and } \exists x_i, \ X = \bigcup_i B(x_i, r_i)),$$

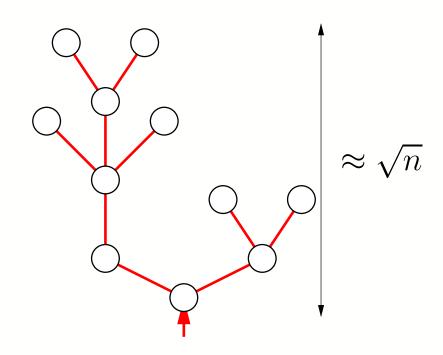
and

$$\dim_H(X) = \inf(\alpha : C_H^{\alpha}(X) = 0) = \sup(\alpha : C_H^{\alpha}(X) = \infty).$$

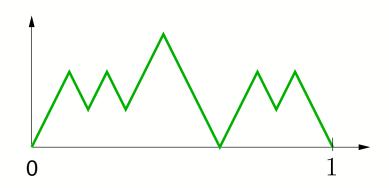
For instance, the Hausdorff dimension of a non-degenerate subset of \mathbb{R}^d is d.

The height of a uniformly random Dyck path of length 2n is of order \sqrt{n} .

Hence, the typical (and maximal) distance in a uniformly random tree of size n is of order \sqrt{n} .



Let E_n be the random variable taking value in $C([0,1],\mathbb{R}^+)$ obtained from uniformly random Dyck paths of length 2n rescaled by $\sqrt{2n}$.



Let E_n be the random variable taking value in $C([0,1],\mathbb{R}^+)$ obtained from uniformly random Dyck paths of length 2n rescaled by $\sqrt{2n}$.

We consider the random real tree T_{E_n} encoded by E_n .

In other words, T_{E_n} is the real tree corresponding to the uniformly random discrete tree of size n.

Let E_n be the random variable taking value in $C([0,1],\mathbb{R}^+)$ obtained from uniformly random Dyck paths of length 2n rescaled by $\sqrt{2n}$.

We consider the random real tree T_{E_n} encoded by E_n .

Theorem: The sequence (T_{E_n}) converges in distribution toward the CRT T_e , in the space (\mathbf{M}, d_{GH}) .

Proof: The random variables E_n converges toward the Brownian excursion e in distribution (in $C([0,1],\mathbb{R}^+)$). Moreover, the mapping $f \to T_f$ is continuous.

Let E_n be the random variable taking value in $C([0,1],\mathbb{R}^+)$ obtained from uniformly random Dyck paths of length 2n rescaled by $\sqrt{2n}$.

We consider the random real tree T_{E_n} encoded by E_n .

What about the random discrete metric space $T_n = (V_n, \frac{d}{\sqrt{2n}})$?

Let E_n be the random variable taking value in $C([0,1],\mathbb{R}^+)$ obtained from uniformly random Dyck paths of length 2n rescaled by $\sqrt{2n}$.

We consider the random real tree T_{E_n} encoded by E_n .

What about the random discrete metric space $T_n = (V_n, \frac{d}{\sqrt{2n}})$?

Theorem: The sequence (T_n) converges in distribution toward the CRT, in the space (\mathbf{M}, d_{GH}) .

Proof: The Gromov-Hausdorff distance $d_{GH}(T_n, T_{E_n})$ is at most $\frac{1}{\sqrt{2n}}$.

Let E_n be the random variable taking value in $C([0,1],\mathbb{R}^+)$ obtained from uniformly random Dyck paths of length 2n rescaled by $\sqrt{2n}$.

We consider the random real tree T_{E_n} encoded by E_n .

What about the random discrete metric space $T_n = (V_n, \frac{d}{\sqrt{2n}})$?

Theorem: The sequence (T_n) converges in distribution toward the CRT, in the space (\mathbf{M}, d_{GH}) .

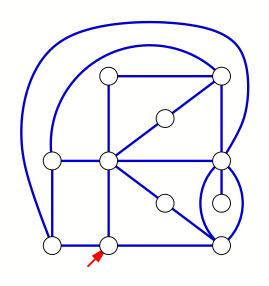
- More generally, many families of discrete trees (Galton Watson trees) converge toward the CRT.
- The theorem can be reinforced to deal with *measured metric space*: the uniform distribution on the vertices of discrete trees leads to a measure on the CRT which is the image of the uniform measure on [0,1].

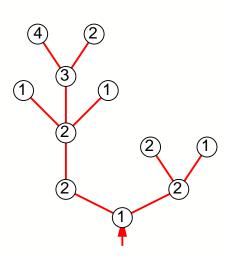
nber 2008 Clivier Bernardi – p.18/25

Limit of quadrangulations the Brownian map

From previous lecture:

Quadrangulations are in bijection with well-labelled trees.





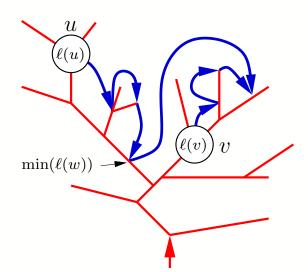
Quadrangulations are in bijection with well-labelled trees.

The distance between vertices u, v in the quadrangulation is less than

$$d_Q^0(u,v) = \ell(u) + \ell(v) + 2 - 2\min(\ell(w) : w \in u \iff_T v)$$

hence less than

$$d_Q^*(u,v) = \min_{u=u_0,u_1,\dots,u_k=v} \sum_i d_Q^0(u_i,u_{i+1}).$$



Brownian map (Marckert & Mokkadem 06)

Recall that if T_f is a real tree and $g \in C(T_f, \mathbb{R}^+)$ satisfies $g(\rho) = 0$, then $T_{f,g}$ denotes the real quadrangulation obtained by quotienting T_f by the relation $D^*(u,v) = 0$, where

•
$$D^{0}(u, v) = g(u) + g(v) - 2\inf(g(w) : w \in u \iff_{T} v).$$

•
$$D^*(u, v) = \inf_{u=u_0, u_1, \dots, u_k=v} \sum_i D_Q^0(u_i, u_{i+1}).$$

Brownian map (Marckert & Mokkadem 06)

Recall that if T_f is a real tree and $g \in C(T_f, \mathbb{R}^+)$ satisfies $g(\rho) = 0$, then $T_{f,g}$ denotes the real quadrangulation obtained by quotienting T_f by the relation $D^*(u,v) = 0$, where

•
$$D^0(u, v) = g(u) + g(v) - 2\inf(g(w) : w \in u \iff_T v).$$

•
$$D^*(u,v) = \inf_{u=u_0,u_1,\dots,u_k=v} \sum_i D_Q^0(u_i,u_{i+1}).$$

The Brownian map is the random real quadrangulation $(T_{e,\ell},D^*)$, where e is the Brownian excursion and $\ell=(\ell_v)_{v\in T_e}$ is a Gaussian process such that $\ell_\rho=0$ and $\ell_u-\ell_v$ has distribution $\mathcal{N}(0,d_T(u,v))$, conditioned to be non-negative.

[It is possible to make sense of this definition]

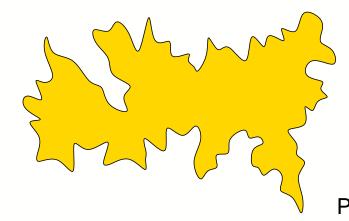
4

7

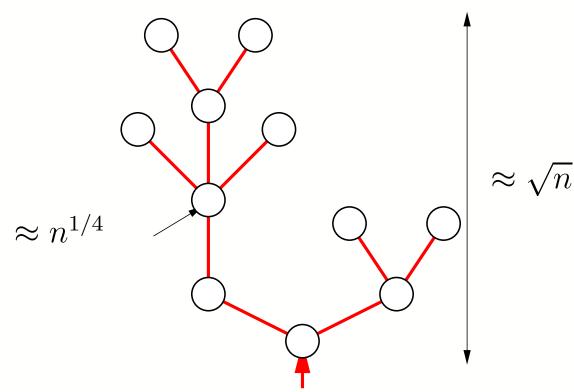
Brownian map (Marckert & Mokkadem 06)

The Brownian map is the random real quadrangulation $(T_{e,\ell},D^*)$, where e is the Brownian excursion and $\ell=(\ell_v)_{v\in T_e}$ is a Gaussian process such that $\ell_\rho=0$ and $\ell_u-\ell_v$ has distribution $\mathcal{N}(0,d_T(u,v))$, conditioned to be non-negative.

Theorem [Le Gall & Paulin 08]: Almost surely, the Brownian map is homeomorphic to the sphere and has Hausdorff dimension 4.



Proposition: A labelled tree of size n has height of order \sqrt{n} and labels of order $n^{1/4}$.



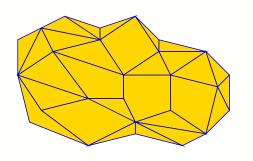
Brownian map as limit of maps

Theorem [Le Gall 08]: The uniformly random quadrangulation Q_n considered as a metric space

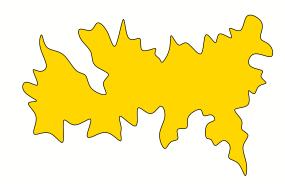
 $(V_n, \left(\frac{9}{8n}\right)^{1/4} D_n)$ converges in distribution for the

Gromov-Hausdorff topology toward $(T_{e,\ell},D)$ along some subsequences,

where $T_{e,\ell}$ is the Brownian map and D is a distance on $T_{e,\ell}$ which is bounded by D^* .



dist



Brownian map as limit of maps

Theorem [Le Gall 08]: The uniformly random quadrangulation Q_n considered as a metric space $(V_n, \left(\frac{9}{8n}\right)^{1/4} D_n)$ converges in distribution for the Gromov-Hausdorff topology toward $(T_{e,\ell}, D)$ along some subsequences,

where $T_{e,\ell}$ is the Brownian map and D is a distance on $T_{e,\ell}$ which is bounded by D^* .

Remarks:

- Almost surely, the space $(T_{e,\ell},D)$ is homeomorphic to the sphere (since the Brownian map is) and moreover it has Hausdorff dimension 4.
- The convergence holds for measured metric spaces.

Step 1. [Schaeffer 98] The uniformly random quadrangulation Q_n is represented by (E_n, L_n, D_n) , where

- $E_n \in C([0,1],\mathbb{R})$ is the Dyck path encoding the tree,
- $L_n \in C([0,1],\mathbb{R})$ encodes the labels,
- $D_n \in C([0,1]^2,\mathbb{R})$ encodes the distance.

Brownian map as limit of maps (proof)

Step 1. [Schaeffer 98] The uniformly random quadrangulation Q_n is represented by (E_n, L_n, D_n) .

Step 2. [Chassaing & Schaeffer 04, Marckert & Mokkadem 06]

The variable $(\frac{E_n}{\sqrt{2n}}, (\frac{9}{8n})^{1/4} L_n)$ converges in distribution toward (e, ℓ) in $C([0, 1], \mathbb{R}^2)$.

Moreover, ℓ can be considered as a function from T_e to $\mathbb R$ and $T_{e,\ell}$ is the Brownian map.

Brownian map as limit of maps (proof)

Step 1. [Schaeffer 98] The uniformly random quadrangulation Q_n is represented by (E_n, L_n, D_n) .

Step 2. [Chassaing & Schaeffer 04, Marckert & Mokkadem 06]

The variable $(\frac{E_n}{\sqrt{2n}}, (\frac{9}{8n})^{1/4} L_n)$ converges in distribution toward (e, ℓ) in $C([0, 1], \mathbb{R}^2)$.

Step 3. [Le Gall 08] The variable

 $(\frac{E_n}{\sqrt{2n}}, (\frac{9}{8n})^{1/4} L_n, (\frac{9}{8n})^{1/4} D_n)$ converges in distribution in $C([0,1],\mathbb{R}^2)$ toward (e,ℓ,D) along some subsequences.

Sketch of Proof:

- ullet Bound the variations of D_n by those of D_n^0 .
- Prove the uniform continuity of the sequence D_n^0 .
- \Rightarrow Tightness of $D_n \Rightarrow$ convergence along subsequences.

Brownian map as limit of maps (proof)

Step 1. [Schaeffer 98] The uniformly random quadrangulation Q_n is represented by (E_n, L_n, D_n) .

Step 2. [Chassaing & Schaeffer 04, Marckert & Mokkadem 06] The variable $\left(\frac{E_n}{\sqrt{2n}}, \left(\frac{9}{8n}\right)^{1/4} L_n\right)$ converges in distribution toward (e, ℓ) in $C([0, 1], \mathbb{R}^2)$.

Step 3. [Le Gall 08] The variable

 $(\frac{E_n}{\sqrt{2n}}, (\frac{9}{8n})^{1/4} L_n, (\frac{9}{8n})^{1/4} D_n)$ converges in distribution in $C([0,1], \mathbb{R}^2)$ toward (e, ℓ, D) along some subsequences.

Step 4. The function D defines a distance on $T_{e,\ell}/\approx$, where \approx is the relation D=0. Moreover, the convergence $(V_n,\left(\frac{9}{8n}\right)^{1/4}D_n)\stackrel{\text{dist}}{\longrightarrow} (T_{e,\ell}/\approx,D)$ holds for Gromov-Hausdorff.

(Exhibit a distortion going to 0).

7

Brownian map as limit of maps (proof)

Step 1. [Schaeffer 98] The uniformly random quadrangulation Q_n is represented by (E_n, L_n, D_n) .

Step 2. [Chassaing & Schaeffer 04, Marckert & Mokkadem 06] The variable $\left(\frac{E_n}{\sqrt{2n}}, \left(\frac{9}{8n}\right)^{1/4} L_n\right)$ converges in distribution toward (e, ℓ) in $C([0, 1], \mathbb{R}^2)$.

Step 3. [Le Gall 08] The variable

 $\left(\frac{E_n}{\sqrt{2n}}, \left(\frac{9}{8n}\right)^{1/4} L_n, \left(\frac{9}{8n}\right)^{1/4} D_n\right)$ converges in distribution in $C([0,1],\mathbb{R}^2)$ toward (e,ℓ,D) along some subsequences.

Step 4. The function D defines a distance on $T_{e,\ell}/\approx$, where \approx is the relation D=0. Moreover, the convergence $(V_n, \left(\frac{9}{8n}\right)^{1/4} D_n) \stackrel{\text{dist}}{\longrightarrow} (T_{e,\ell}/\approx, D)$ holds for Gromov-Hausdorff.

Step 5. Almost surely, $T_{e,\ell}/\approx = T_{e,\ell}$. (Hardest part)

Properties and open questions

Theorem [Le Gall 08]: The uniformly random quadrangulation Q_n considered as a metric space $(V_n, \left(\frac{9}{8n}\right)^{1/4} D_n)$ converges in distribution for the Gromov-Hausdorff topology toward $(T_{e,\ell}, D)$ along some subsequences, where $T_{e,\ell}$ is the Brownian map and D is a distance on $T_{e,\ell}$ which is bounded by D^* .

- Similar results hold for 2p-angulations.
- It is an open question to know whether $D=D^{\ast}$. In this case, the convergence in distribution would hold for the whole sequence.

