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Abstract

In the broadcast version of the congested clique model, n nodes com-

municate in synchronous rounds by writing O(log n)-bit messages on a

whiteboard, which is visible to all of them. The joint input to the nodes

is an undirected n-node graph G, with node i receiving the list of its

neighbors in G. Our goal is to design a protocol at the end of which

the information contained in the whiteboard is enough for reconstruct-

ing G. It has already been shown that there is a one-round protocol for

reconstructing graphs with bounded degeneracy. The main drawback of

that protocol is that the degeneracy m of the input graph G must be

known a priori by the nodes. Moreover, the protocol fails when applied

to graphs with degeneracy larger than m. In this paper we address this

issue by looking for robust reconstruction protocols, that is, protocols

which always give the correct answer and work efficiently when the input

is restricted to a certain class. We introduce a very simple, two-round

protocol that we call Robust-Reconstruction. We prove that this pro-

tocol is robust for reconstructing the class of Barabási-Albert trees with

(expected) message size O(log n). Moreover, we present computational

evidence suggesting that Robust-Reconstruction also generates loga-

rithmic size messages for arbitrary Barabási-Albert networks. Finally, we

stress the importance of the preferential attachment mechanism (used in

the construction of Barabási-Albert networks) by proving that Robust-

Reconstruction does not generate short messages for random recursive
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trees.
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1 Introduction

The CONGEST model is a synchronous, message-passing model of distributed

computation in which each one of n nodes can send O(log n) bits along each of

its incident communication links in each round [24]. In the particular case where

the communication network is a complete graph all the information distributed

in the nodes becomes local. Therefore, the only obstacle to perform any task

is due to congestion. The main theoretical purpose of this model, known as

congested clique [4, 9, 10, 11, 14, 16, 19, 20, 23], is to serve as a basic model

for understanding the role played by congestion in distributed computation.

Besides, there are interesting connections between the congested clique and

popular models such as MapReduce [15]. Typically, the joint input to the n

nodes in the congested clique model is an undirected n-node graph G, with

node i receiving the list of its neighbors in G. Each node can send, in each

round, O(log n) bits along each of its n− 1 communication links.

In the much more restricted, broadcast version of the congested clique model,

each node can only broadcast a single O(log n)-bit message over all its links in

each round [11]. This setting –which is the one we consider in this paper–

is equivalent to the multi-party, number-in-hand computation model, where

communication takes place in a shared whiteboard [1, 2, 5, 6, 7, 11, 13, 17, 18].

Writing a message M on the whiteboard is equivalent to broadcasting M.

We assume that the ID of each node is a unique number between 1 and n

and that the only information each node has, besides n and its own ID, is the

list of IDs of its neighbors in G. At the end of the protocol the whiteboard must

contain enough information to answer some question which is usually related

to the topology of G. Typical goals are the following: (i) determine whether

G contains a particular subgraph H, (ii) decide whether G is connected, (iii)

reconstruct G.

There are two classical complexity measures:
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1. Round complexity: number of rounds, where in each round all nodes write

simultaneously one message on the whiteboard.

2. Message size complexity: number of bits of the longest message written

on the whiteboard during the process.

If there is no restriction on the message size then there is a trivial one-round

protocol that reconstructs any graph: given an arbitrary graph G and given

an arbitrary assignment of IDs to each of the n nodes of G, every node writes

on the whiteboard the 0-1 vector x ∈ {0, 1}n corresponding to the indicator

function of its neighborhood. With this information on the whiteboard, every

node can easily reconstruct G.

On the other hand, if we restrict the message size then reconstructing G

becomes much more difficult. Despite this, in [6] it was proved that if the

degeneracy m of G is bounded and known in advance, then it is possible to

reconstruct G with a one-round protocol of O(log n) message size. The degen-

eracy m of the graph is defined as follows: G is m-degenerate if one can remove

from G a vertex r of degree at most m, and then proceed recursively on the

resulting graph G′ = G− r, until obtaining an empty graph; the degeneracy of

G is the smallest m such that G is m-degenerate. Note that many graph classes

such as planar graphs and bounded treewidth graphs have bounded degeneracy.

For instance, the degeneracy of trees is 1.

In the one-round protocol of [6], the information that each node v writes in

the whiteboard corresponds to the following (m+ 2)-tuple:

• its identifier ID(v).

• its degree dG(v) in G.

• for each integer p, 1 ≤ p ≤ m, the quantity
∑

w∈NG(v)(ID(w))p (i.e., the

sum of p’s powers of the identifiers of the neighbors).

We stress that this protocol always fails when applied to graphs with degen-

eracy larger than m. In other words, the drawback of previous protocol is that

it is not robust. A protocol is said to be robust if it always gives the correct

answer and it works efficiently when the input is restricted to a certain class.
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The main purpose of this paper is to address this robustness issue in the

broadcast congested clique model. We will present a two-round protocol that

always reconstructs the input graph G and is guaranteed to be efficient if G is a

Barabási-Albert tree. This type of random tree is a particular case of a Barabási-

Albert network, which is a scale-free random graph model of bounded degen-

eracy which represents many real-world situations ranging from the genome to

the Internet [8]. We also report on simulations which strongly suggest that our

robust protocol not only reconstructs efficiently Barabási-Albert trees, but also

any Barabási-Albert network.

Our approach was inspired by the work of Raghavan and Spinrad [25] in the

non-distributive, centralized setting. The authors in [25] motivated their work

by saying that “it is often not easy to determine whether the input is of the

form for which the algorithm is designed; the recognition problem for the input

class may be open or even NP-hard or worse.” They illustrate this by studying

the problem of finding the maximum independent set of well covered graphs

(these are graphs for which every maximal independent set is also maximum).

Obviously, there is a polynomial time algorithm for finding a maximum inde-

pendent set if the input is restricted to well covered graphs. Nevertheless, in [25]

Raghavan and Spinrad prove that there is no polynomial time robust algorithm

for finding a maximum independent set for well covered graphs unless P=NP.

2 Preliminaries

Definition 1 Let G be a class of (possibly randomly generated) graphs. We say

that a protocol P is robust and reconstructs G with message size O(f(n)) if and

only if

• P is deterministic and reconstructs every graph G.

• If G = (V,E) ∈ G (is generated by some random mechanism) then, when P
is applied to G, for every node i the (expected) size of the longest message

broadcasted by node i is bounded above by O(f(|V |)).

The following simple proposition states that if we want to design robust

protocols with O(log n) message size, then they need to have at least two rounds.
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Proposition 1 Suppose that P is a one-round protocol that reconstructs trees

with message size O(f(n)). Then, if P is robust, we have f(n) = Ω(n).

Proof Suppose that P is a robust one-round protocol. Since the class of all

labeled graphs with n vertices has cardinality 2
n(n−1)

2 , there must be some n ∈ N

and a graph Gn of size n for which some messages have at least 1
n

n(n−1)
2 = n−1

2

bits. Now suppose that v is the node of Gn that writes the longest message. It

is always possible to design a tree Tn of size n with a node v having the same

neighborhood in both Tn and Gn. �

In this paper we define a very simple, two-round robust protocol that gen-

erates short messages when applied to Barabási-Albert networks, which are de-

fined in Section 2.2. The protocol, which we call Robust-Reconstruction,

is defined as follows. Let G = (V,E) be an arbitrary graph and let V =

{v0, v1, v2, . . . , vn−1}.
Robust-Reconstruction

• Round 1. Each node vi writes on the whiteboard its own ID and its

degree dG(vi).

• Round 2. Each node vi writes the IDs of its neighbors having degree

greater than or equal to dG(vi).

After the second round, it is clear that there is enough information on the

whiteboard to reconstruct every graph, regardless of its topology. Although the

correctness of the algorithm is apparent, proving that it is efficient for a given

family of graphs can be non-trivial.

Remark 1 The length of the message written by any node in the first round is

O(log n).

2.1 Local popularity

Given a graph G and a vertex v of G, we write θ(v) to denote the number of

neighbors of v that have at least as many connections as v. More precisely, θ(v)

denotes the number of neighbors u of v such that dG(v) ≤ dG(u).

Let Gn be a random graph of size n generated by some random mechanism.

We say that the class of graphs associated to such mechanism is locally popular
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if for every node v ∈ Gn the expectation of θ(v) is bounded above by some

constant independent of n. If k is an upper bound then we say that the class of

graphs is k-locally popular. The following proposition is obvious.

Proposition 2 If we apply Robust-Reconstruction to a k-locally popular

graph then, for every node v, the expected length of both messages is logarithmic.

Moreover, the expected length of the second message written by v is bounded

above by k log n.

2.2 Barabási-Albert networks

Barabási-Albert networks are scale-free graphs which represent many real-world

situations ranging from the genome to the Internet [8]. They are generated by a

stochastic process that uses a preferential attachment rule [3]. The well-known

Barabási-Albert stochastic process proceeds in discrete time steps. The state of

the process at each time step n ≥ 0 is a connected graph Gn. At the beginning,

G0 is a clique of m + 1 nodes. At each time step n ≥ 1 the graph Gn−1 is

augmented with a new node vn that is connected to m already existing nodes

(i.e., nodes of Gn−1). It is easy to deduce from this rule that the degeneracy of

Gn is m. The m nodes are chosen in Gn−1 following a preferential attachment

rule, which means that the new node vn is connected to node w ∈ V (Gn−1)

with a probability proportional to the degree of w in Gn−1.

2.3 Our results

We conjecture that Robust-Reconstruction generates short, logarithmic ex-

pected size messages when it is applied to Barabási-Albert networks. In other

words, we conjecture that Barabási-Albert networks are locally-popular. In

Section 3 we provide results from computational experiments which strongly

suggest this.

Contrasting the simulation-based approach, in Section 4 and Section 5 we

provide an analytic result for the restricted case of Barabási-Albert trees (m =

1). More precisely, we prove that these trees are 31
20 -locally popular. Our proof

does not scale naturally to cases using m > 1, as the nice recursive structure of

Barabási-Albert trees is missing

In Section 6 we study random recursive trees [22]. These are trees where

nodes also arrive one by one (and therefore older nodes have higher degree in

6



expectation), but each arriving node is attached to a node which is chosen uni-

formly among the existing ones. We prove that these trees are not locally popu-

lar. More precisely, we prove that the local popularity of the root is Ω(
√
log n).

This result stresses the importance, at least in the setting of the Robust-

Reconstruction protocol, of the preferential attachment mechanism, which

is the defining characteristic of the Barabási-Albert networks.

2.4 Open problems

It should be pointed out that if we fix the degeneracy m ∈ N of the graph,

then there is a trivial two-round robust protocol for which the message size is

bounded above by O(log n) when G is m-degenerate. To see this, consider the

following protocol: in the first round apply the protocol (appeared in [6]) that we

have already described, which reconstructs G with message size upper bounded

by O(log n) if G is m-degenerate and answers “no, G is not m-degenerate”

otherwise; if the answer is negative then, in the second round, use the proto-

col that reconstructs G using the indicator functions, which are long messages

of size n. The problem with this protocol is that, in contrast to Robust-

Reconstruction, the parameter m must be known a priori by the nodes.

Since Robust-Reconstruction produces short messages for a subclass of

degenerate graphs (the Barabási-Albert ones), a natural open question arises:

Is there a two-round protocol that reconstructs every network G such that the

message size is upper bounded by O(κdeg(G) log n), where κdeg(G) denotes a

parameter that depends exclusively on deg(G), the degeneracy of G?

In this work we prove that, for Barabási-Albert trees, maxk E(θ(vk)) ≤ 31
20 .

In the future, besides finding a formal proof for general Barabasi-Albert net-

works, it seems natural to study the value E(maxk θ(vk)), which is a much harder

problem. Based on numerical simulations and by analogy with the case of the

maximum of n exponentially distributed random variables, we speculate that

E(maxk(θ(vk))) should be roughly proportional to log n. This is still interesting

if we consider the length of the messages in bits. It would mean that the “worst

case” message, in the expected sense, is about m log2 n bits long, which is still

short.
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2.5 Related work

2.5.1 Broadcast congested clique

Drucker, Kuhn and Oshman [11] gave an upper bound to the round complexity

of the subgraph detection problem. They made the following remark: the de-

generacy of H-free graphs can be bounded above in terms of the Turán number

ex(n,H), which is the maximal number of edges of an n-node graph which does

not contain a subgraph isomorphic to H. Plugging this into the reconstruction

protocol introduced by Becker et al. [6], they designed a randomized protocol

that solves theH detection problem inO(ex(n,H) log2 n/(nb)+log3 n/b) rounds

with high probability (where b is the number of bits each node can broadcast in

each round).

Kari et al. [18] tackled the problem of detecting induced subgraphs. They

provided a one-round, randomized logarithmic message size protocol for detect-

ing an induced P4 (a path of length 4) in the input graph G. Ahn, Guha and

McGregor [1, 2, 13] introduced a powerful technique that allows one to decide

in one round whether G is connected using messages of size O(log3 n), with high

probability.

Some negative results have also been obtained. For instance, deciding deter-

ministically in one round whether a graph has a triangle requires messages of

size Θ(n) [6]. On the other hand, if instead of bounding the number of rounds we

bound the message size b, then the best known result is the following: detecting

deterministically a triangle requires Ω(n/(eO(
√
logn)b) rounds [11].

In [7], the authors consider three variants of the broadcast congested clique

model: randomized protocols with public coins, randomized protocols with pri-

vate coins and deterministic protocols. They showed that this choice affects the

message size complexity of some problems. More precisely, they introduced a

problem called Translated-Twins. They proved that if only one round is

allowed then the message size complexity is Θ(n) in the deterministic case and

O(log n) in the randomized, public coin case. For the private coins setting the

message size complexity is bounded below by Ω(
√
n) and bounded above by

O(
√
n log n).
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2.5.2 Congested clique

No lower bounds are known for the general model, where nodes may send dif-

ferent messages to each of its neighbors. Drucker, Kuhn and Oshman [11] gave

a possible explanation for such difficulty. In fact, they proved that in this case

it is possible to simulate powerful classes of bounded-depth circuits (and there-

fore lower bounds in the congested clique would yield lower bounds in circuit

complexity).

The intrinsic power of the model has allowed some authors to provide ex-

tremely fast protocols for solving some natural problems: O(1)-round protocols

for routing and sorting [19, 23], a O(n(d−2)/d/ log n)-round protocol for find-

ing a particular d-vertex subgraph [10], a O(log log log n)-round protocol for

finding a 3-ruling set [16], O(n0.158)-round protocols for counting triangles, for

counting 4-cycles and for computing the girth [9], a O(1)-round protocol for

detecting a 4-cycle [9], and a O(log log log n)-round protocol for constructing a

minimum spanning tree [14]. Dolev, Lenzen and Peled [10] describe a protocol

for reconstructing deterministically any graph in O(|E|/n) rounds. This result

is interesting for sparse graphs. In particular, this means that graphs with

bounded degeneracy m can be reconstructed in O(m) rounds. This protocol

relies heavily on the possibility given by the general model to perform a load

balancing procedure efficiently.

3 Local popularity of Barabási-Albert networks

Our experiment is as follows: fix values of N (the total number of nodes) and

m. Generate 2000 random graphs using these parameters. For each k ≤ N we

compute θ(vk), where vk is the vertex attached at time k. We estimate E(θ(vk))

as the mean of the 2000 experiments. Call these estimators θ̄k. To approximate

maxk E(θ(vk)), it could in principle be inaccurate to simply use maxk θ̄k. This

biased estimator would overestimate the real result as the statistical noise tends

to drive the value up because of the max function. Therefore, we use a localized

linear polynomial smoothing technique to reduce the noise first, and then we

compute the max.

There are qualitative similarities in all the results, regardless of the choice

of N and m. Consider for example Figure 1 (top and bottom). They represent

the values of θ̄k computed from the 2000 graphs generated with N = 1000 and
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m = 1. The first two nodes (the ones in the complete graph that seeds the

process) have relatively low values of θ̄. There is a sharp increase of θ̄ when k is

slightly bigger than two. Then the graph peaks, and then decreases “smoothly”

(ignoring the local noise) until the value of θ reaches 1. This decay is monotonic

and θ(k) looks convex, if we ignore the first few points.

0 200 400 600 800 1000
0.9

1

1.1

1.2

1.3

Time of attachment

θ̄

0 200 400 600 800 1000
0.9

1

1.1

1.2

1.3

Time of attachment

θ̄

Figure 1: Top: values of θ̄ for N = 1000 and m = 1. Bottom: detail of the first

100 nodes.

In Figure 2 (top) we consider the simulations of graphs generated using

m = 64 and N = 1000. If we increase N , while keeping m fixed, the change in

the behavior is small. For instance, in Figure 2 (bottom), we used m = 64 but

now N = 10000 (ten times larger than before). If we neglect the first 100 nodes

or so, and adjust the horizontal scales, the plots are essentially the same. We

see the same features, except that the decay after the peak is almost linear.

Finally, Table 1 shows how the numerical estimations (using smoothing)

of maxk E(θ(vk)) change with m and N . Because of the scaling property, the

heights of the peaks do not change much if one only modifies N , and therefore
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Figure 2: Values of θ̄. Top: N = 1000 and m = 64. Bottom: N = 10000 and

m = 64.

we see little change within each column. These heights do change with m, but

in a predictable way. We note that our estimation for maxk E(θ(vk)) is never

larger than m+ 1 and this bound seems to get tighter as m and N increase.

m

1 4 16 64 128

N

1000 1.23 4.42 16.54 64.56 128.57

10000 1.31 4.53 16.68 64.76 128.79

100000 1.36 4.58 16.74 64.88 128.93

Table 1: maxk θ̄k, for different values of N and m.

We summarize our conjectures:

(i) Given a family of Barabási-Albert graphs generated using parameters N and
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m, for all k ≤ N , E(θ(vk)) ≤ m + 1 − o(1). Furthermore, the bound is tight if

N,m → ∞ and m ≪ N .

(ii) E(θ(vk)) is scale independent. Informally, E(θ(vk)) is mostly determined

by k/N . This is suggested by comparing experiments that use the same m but

different N , such as those described in Figure 2.

4 Local popularity of Barabási-Albert trees

Contrasting the simulation-based approach, we provide an analytic result for

the restricted case of Barabási-Albert trees, which are simply Barabási-Albert

graphs generated choosing m = 1. Recall that in particular this means that we

start with a clique of size 2, so at the beginning we have the tree T0 = (V0, E0)

where V0 = {v0, v′0} and E0 = {v0v′0}. Note that the degree of v0 (and v′0) at

the beginning is 1. Let dT (v) denote the degree of the vertex v in the tree T .

The process evolves in discrete time steps n = 1, 2, . . . as follows:

1. We choose a unique wn ∈ Vn−1 according to the following probability

distribution:

∀v ∈ V n−1, P(wn = v|Tn−1) =
dTn−1

(v)
∑

u∈Vn−1

dTn−1
(u)

2. V n = V n−1 ∪ {vn} and En = En−1 ∪ {wnvn}.

We state now the main result of the paper:

Proposition 3 The class of Barabási-Albert trees is 31
20 -locally popular.

As will become clear in the proof, this result can be slightly sharpened to say

that the class of Barabási-Albert trees is “asymptotically” 3
2 -locally popular, in

the sense that a Barabási-Albert tree of size n is ( 32 + o(1))-locally popular. As

a direct consequence of Propositions 2 and 3 we obtain a bound on the maximal

expected length among all messages written when applying Robust-Recons-

truction to Barabási-Albert trees.

12



Corollary 1 If we apply Robust-Reconstruction to Barabási-Albert trees

then the expected length of the messages written by every node is bounded above

by 31
20 log n.

Before turning to the proof of Proposition 3 let us provide the intuition be-

hind it. We first study how the degree of the root v0 compares to the degree of its

children as the tree grows (by symmetry the same will apply to v′0). Informally,

we want to bound E(θ(v0)). This is done by studying a process similar to the

conventional Barabási-Albert tree construction algorithm but considering only

attachments involving the root or its children. To bound E(θ(v0)) we study

the “contest for higher degree” that occurs between the root and each child

individually. This competition process is described using a Pólya-Eggenberger

urn model. After we obtain a bound for E(θ(v0)), the recursive structure of

Barabási-Albert trees allows us to extend the result to all the remaining nodes.

We can partition the Barabási-Albert tree Tn into two subtrees:

• T v0
n , the v0-subtree rooted at v0.

• T
v′

0
n , the v′0-subtree rooted at v′0.

These two subtrees are joined by the edge v0v
′
0. More precisely: V (Tn) =

V (T v0
n ) ∪ V (T

v′

0
n ) and, in terms of edges, E(Tn) = E(T v0

n ) ∪ {v0v′0} ∪ E(T
v′

0
n ).

In order to estimate E(θ(v0)) we study the subtree T v0
n rooted at v0. For

that purpose, we only need to focus on what happens in the first 3 layers of T v0
n .

More precisely, we will study how the degree of the root v0 changes compared

to the degrees of its children. The process in this case is exactly the same as the

general one except that, when adding a new node, we only consider as possible

neighbors those nodes that are at distance at most 1 from v0 (including v0 itself,

which is at distance 0).

We start the process with n = 0 and we stop it with n = N . Note that

the generated tree, that we denote by TN , will have 3 layers. This is equivalent

to considering the process in the complete v0-subtree up to the time when the

number of nodes at distance at most 2 from the root v0 first equals N .

Definition 2 Let us consider the situation after the n-th node is added to the

3-layer tree Tn. More precisely, let us define the following random variables.
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• d0n = the degree of node v0 in step n. Recall that d00 = 1 and therefore

d01 = 2.

• dkn = the degree of the k-th neighbor of v0 (v is the k-th neighbor of v0 if

k − 1 neighbors of v0 arrived before v; when v0 has less than k neighbors

we impose dkn = 0).

• Sk
n =







1 if dkn ≥ d0n,

0 otherwise.

• Mn =
∑n

k=1 S
k
n. In other words, Mn is the number of neighbors of v0

having degree greater than or equal to the one of v0.

Since E(Mn) =
∑n

k=1 E(S
k
n), we will bound E(Sk

n) for every fixed k. In

other words, we only need to worry about the dynamic competition between

two nodes: v0 and its k-th neighbor vk. This dynamic competition corresponds

exactly to the Pólya-Eggenberger urn model [12]. In this model, the urn starts

with r red balls and b black balls; one ball is drawn randomly from the urn and

its color observed; it is then replaced in the urn, and an additional ball of the

same color is added. The process is repeated.

In our case, the competition between v0 and vk starts as soon as the degree

of v0 becomes equal to k + 1 and the degree of vk becomes 1 (i.e., as soon as

vk is connected to v0). This is equivalent to starting the urn process with k+1

red balls and 1 black ball. Define Jk
n as the fraction of black balls in step n.

Remark 2 It is known that Jk
n

n→∞−−−−→
a.s.

Jk
∞, where Jk

∞ ∼ β(1, k+1) and β(1, k+

1) denotes the Beta distribution with parameters 1 and k+1 (for a comprehensive

treatment of the subject see for instance [21]).

The corresponding density function is given as follows:

fβ(1,k+1) =
Γ(k + 2)

Γ(k + 1)Γ(1)
(1− x)k = (k + 1)(1− x)k.

Proposition 4 Let k ∈ N, k ≥ 2. Then, for all n ∈ N,

P

(

Jk
n ≥ 1

2

)

≤ P

(

Jk
∞ ≥ 1

2

)

.
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On the other hand, for the case k = 1 we have

P

(

J1
n ≥ 1

2

)

=
1

4
+ o(1) and P

(

J1
n ≥ 1

2

)

≤ 3

10
.

Proof See next section. �

As a consequence we obtain the following result.

Corollary 2 E(Mn) ≤ 1
2 + o(1) and, for all n ∈ N, we have E(Mn) ≤ 11

20 .

Proof For k ≥ 2

P

(

Jk
∞ ≥ 1

2

)

=

∫ 1

1
2

fβ(1,k+1) dx = (k + 1)

∫ 1

1
2

(1− x)k dx

=
1

2k+1
.

It follows that

E (Mn) =

n
∑

k=1

E(Sk
n) =

n
∑

k=1

P

(

Jk
n ≥ 1

2

)

≤ P

(

J1
n ≥ 1

2

)

+

n
∑

k=2

P

(

Jk
∞ ≥ 1

2

)

≤ 3

10
+

n
∑

k=2

1

2k+1
=

3

10
+

1

4
=

11

20
.

�

Proof of Proposition 3 Consider now the general Barabási-Albert tree. Since

T i, the subtree rooted at any node vi, is also a Barabási-Albert tree, it follows

that at any time of the process, the expected number of children of vi having

degree greater than or equal to dT i(vi) is bounded by 11
20 . Nevertheless, the

parent of vi could eventually have more neighbors than vi. Therefore,
11
20+1 = 31

20

is an upper bound for E(θ(vi)) and Proposition 3 follows. �
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Remark 3 Proposition 3 gives a bound for the local popularity of every node in

the tree. For the two particular sibling nodes v0 and v′0 from which the Barabási-

Albert process starts, this bound can be improved. In fact, the expected number

of children of v0 (resp. v′0) having degree larger than or equal to the degree of v0

(resp. v′0) is bounded above by 1
2 + o(1) thanks to Proposition 4. On the other

hand, by symmetry, the probability that the degree of v0 is larger or equal to

than the degree of v′0 is also 1
2 + o(1) (this is because the probability that both

have the same degree goes to 0 as n → ∞). Therefore, the local popularity of

these two nodes is bounded above by 1
2 + 1

2 + o(1) = 1+ o(1). This particularity

can be seen in the first two points of Figure 1 (bottom).

5 Proof of Proposition 4

Definition 3 Let B̃k
n be the number of black ball draws in the Pólya-Eggenberger

urn after n draws, starting the process with 1 black ball and k + 1 red balls.

Lemma 1 Let n, k, i ∈ N, i+ 1 ≤ n. The following holds:

P(B̃k
n = i) = P(B̃k

n = i+ 1) · k + n− i

n− i
.

Proof The probability that the first i draws correspond to black balls and that

the next n− i draws to red balls is given by

1 · 2 · · · i · (k + 1) · (k + 2) · · · (k + n− i)

(k + 2) · (k + 3) · · · (k + n+ 1)
.

Any other order in which exactly i black balls are drawn corresponds to a

permutation of the terms in the numerator of previous expression (with the

same denominator). Therefore, the probability of drawing exactly i black balls

is
1 · 2 · · · i · (k + 1) · (k + 2) · · · (k + n− i)

(k + 2) · (k + 3) · · · (k + n+ 1)

(

n

i

)

. (1)

Using this we get

P(B̃k
n = i) =

i!(k + 1)(k + 2) · · · (k + n− i)

(k + 2)(k + 3) · · · (k + n+ 1)

(

n

i

)

=
(k + 1)(k + 2) · · · (k + n− i− 1)

(k + 2)(k + 3) · · · (k + n+ 1)

n!

(n− i− 1)!

k + n− i

n− i

= P(B̃k
n = i+ 1)

k + n− i

n− i
.
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�

Definition 4 Let Rk
n and Bk

n be the number of red and black balls respectively

in the Pólya-Eggenberger urn, after n draws, starting the process with 1 black

ball and k + 1 red balls. (Note that Bk
n = B̃k

n + 1).

Remark 4 Note that P
(

Jk
n ≥ 1

2

)

= P(Bk
n ≥ Rk

n). Hence, by Remark 2, it

follows that
(

P(Bk
n ≥ Rk

n)
)

n∈N
converges. Therefore, in order to prove Proposi-

tion 4 (for k ≥ 2), it would be enough to show that sequence
(

P(Bk
n ≥ Rk

n)
)

n∈N

grows monotonically. Nevertheless, as we will see below, this is not true. In-

stead, we will use the fact that this monotonicity holds if we focus separately on

the two subsequences for n even and n odd (which is enough for our purposes).

To this end, we need to distinguish the cases k even and k odd.

5.1 The case k even

Proposition 5 Let k, n ∈ N with k ≥ 2 even. It follows that

P(Bk
2n+2 ≥ Rk

2n+2) ≥ P(Bk
2n+1 ≥ Rk

2n+1).

Proof After 2n+ 1 draws, we will have a total of (k+ 2n+ 3) balls in the urn

(an odd number). Then,

P(Bk
2n+2 ≥ Rk

2n+2) = P

(

Bk
2n+2 ≥ Rk

2n+2|Bk
2n+1 =

k + 2n+ 2

2

)

· P
(

Bk
2n+1 =

k + 2n+ 2

2

)

+ 1 · P
(

Bk
2n+1 ≥ k + 2n+ 2

2
+ 1

)

+ 0 · P
(

Bk
2n+1 ≤ k + 2n+ 2

2
− 1

)

≥ P

(

Bk
2n+1 ≥ k + 2n+ 2

2
+ 1

)

= P(Bk
2n+1 ≥ Rk

2n+1).

�
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In view of this result, which tells us that P(Jk
2n+1 ≤ 1

2 ) ≤ P(Jk
2n+2 ≤ 1

2 ) for

each n, it is enough to verify that the sequence
(

P(Bk
2n ≥ Rk

2n)
)

n∈N
is increasing.

Proposition 6 Let k, n ∈ N with 2n ≥ k ≥ 2, k even. It follows that

P(Bk
2n+2 ≥ Rk

2n+2) ≥ P(Bk
2n ≥ Rk

2n).

Proof Proceeding similarly to the previous proof,

P(Bk
2n+2 ≥ Rk

2n+2) = P

(

Bk
2n+2 ≥ Rk

2n+2|Bk
2n =

k + 2n+ 2

2

)

· P
(

Bk
2n =

k + 2n+ 2

2

)

+ P

(

Bk
2n+2 ≥ Rk

2n+2|Bk
2n =

k + 2n+ 2

2
− 1

)

· P
(

Bk
2n =

k + 2n+ 2

2
− 1

)

+ 1 · P
(

Bk
2n ≥ k + 2n+ 2

2
+ 1

)

.

The following identity holds because the only favorable scenario for the event

inside is to draw black balls in the last 2 draws:

P

(

Bk
2n+2 ≥ Rk

2n+2

∣

∣

∣

∣

Bk
2n =

k + 2n+ 2

2
− 1

)

=
k+2n+2

2 − 1

k + 2n+ 2
·

k+2n+2
2

k + 2n+ 3

=
1

4
· k + 2n

k + 2n+ 3

Similarly, we have

P

(

Bk
2n+2 ≥ Rk

2n+2

∣

∣

∣

∣

Bk
2n =

k + 2n+ 2

2

)

= 1−
k+2n+2

2

k + 2n+ 2
·

k+2n+2
2 + 1

k + 2n+ 3

= 1− 1

4
· k + 2n+ 4

k + 2n+ 3
,

since now the only unfavorable scenario is to draw red balls in the last 2 draws.

From Lemma 1 (taking i = k+2n+2
2 − 2) we get

P

(

Bk
2n =

k + 2n+ 2

2
− 1

)

= P

(

B̃k
2n =

k + 2n+ 2

2
− 2

)

= P

(

B̃k
2n =

k + 2n+ 2

2
− 1

)

·
(

k + 2n+ 2

2n− k + 2

)

= P

(

Bk
2n =

k + 2n+ 2

2

)

·
(

k + 2n+ 2

2n− k + 2

)

.
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Putting all this together we deduce that

P(Bk
2n+2 ≥ Rk

2n+2) = P

(

Bk
2n ≥ k + 2n+ 2

2
+ 1

)

+

(

1− 1

4
· k + 2n+ 4

k + 2n+ 3

)

P

(

Bk
2n =

k + 2n+ 2

2

)

+

(

1

4

k + 2n

k + 2n+ 3

)(

k + 2n+ 2

2n− k + 2

)

· P
(

Bk
2n =

k + 2n+ 2

2

)

.

Now

1− 1

4
· k + 2n+ 4

k + 2n+ 3
+

1

4
· k + 2n

k + 2n+ 3
· k + 2n+ 2

2n− k + 2
≥ 1 (2)

because the inequality reduces to 1
4 · k+2n

k+2n+3 · k+2n+2
2n−k+2 ≥ 1

4
k+2n+4
k+2n+3 , which is equiv-

alent to k+2n+2
2n−k+2 ≥ k+2n+4

k+2n and holds whenever 2n ≥ k and k ≥ 2. Therefore,

P(Bk
2n+2 ≥ Rk

2n+2) ≥ P

(

Bk
2n ≥ k + 2n+ 2

2
+ 1

)

+ P

(

Bk
2n =

k + 2n+ 2

2

)

= P

(

Bk
2n ≥ k + 2n+ 2

2

)

= P(Bk
2n ≥ Rk

2n).

�

5.2 The case k odd

The following two propositions are analogous to Propositions 5 and 6. The proof

of the first one is analogous to the one for the case k even, so we omit it. The

second one is also proved similarly, but we need to deal with the case k = 1

separately.

Proposition 7 Let k, n ∈ N with k odd. Then

P(Bk
2n+1 ≥ Rk

2n+1) ≥ P(Bk
2n ≥ Rk

2n).

Proposition 8 Let k, n ∈ N with 2n+ 1 > k and k ≥ 3 odd. Then

P(Bk
2n+3 ≥ Rk

2n+3) ≥ P(Bk
2n+1 ≥ Rk

2n+1).
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On the other hand, for the case k = 1 we have

P(B1
2n+3 ≥ R1

2n+3) ≤ P(B1
2n+1 ≥ R1

2n+1).

Proof Proceeding analogously to the case k even leads to the identity

P(Bk
2n+3 ≥ Rk

2n+3) = P

(

Bk
2n+1 ≥ k + 2n+ 3

2
+ 1

)

+

(

1− 1

4
· k + 2n+ 5

k + 2n+ 4

)

P

(

Bk
2n+1 =

k + 2n+ 3

2

)

+

(

1

4

k + 2n+ 1

k + 2n+ 4

)(

k + 2n+ 3

2n− k + 3

)

· P
(

Bk
2n+1 =

k + 2n+ 3

2

)

(we omit the details). The statement for the case k ≥ 3 now follows from the

inequality

1− 1

4
· k + 2n+ 5

k + 2n+ 4
+

1

4
· k + 2n+ 1

k + 2n+ 4
· k + 2n+ 3

2n− k + 3
≥ 1,

which is analogous to (2) and holds for k ≥ 3. However, for k = 1 the opposite

inequality holds, which implies that the sequence
(

P(B1
2n+1 ≥ R1

2n+1)
)

n≥1
is

decreasing as claimed. �

Proof of Proposition 4 The case k ≥ 2 follows from Propositions 5, 6, 7 and 8

(together with Remark 4). To see this, consider the case k even. By Proposition

6 we have that the sequence
(

P(Jk
2n ≥ 1

2 )
)

n∈N
is non-decreasing, and thus

P(Jk
2n ≥ 1

2 ) ≤ P(Jk
∞ ≥ 1

2 ) (3)

for all n ∈ N. By Proposition 5 we have

P(Jk
2n+1 ≥ 1

2 ) ≤ P(Jk
2n+2 ≥ 1

2 ),

which means that the bound (3) also holds along odd times. The case k odd,

k ≥ 3 is analogous.

For k = 1, Proposition 8 gives

P(J1
2n+1 ≥ 1

2 ) ≤ P(J1
3 ≥ 1

2 ) =
3
10

for all n ≥ 1, where the equality follows from (1) by a simple calculation. Since

P(J1
2n ≥ 1

2 ) ≤ P(J1
2n+1 ≥ 1

2 ) we deduce that P(J1
n ≥ 1

2 ) is bounded by 3
10 for all

n ≥ 2.
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We are left showing that P(J1
n ≥ 1

2 ) =
1
4 + o(1). For this, take n ≥ 3 and

write

P

(

J1
n ≥ 1

2

)

=
2

3
P

(

J2
n ≥ 1

2

)

+
1

3
P

(

J̃2,2
n−1 ≥ 1

2

)

,

where J̃2,2
n denotes the same quantity as Jk

n but with the urn starting with two

balls of each color. The first probability is bounded by 1
8 by the case k even, so

P

(

J1
n ≥ 1

2

)

≤ 1

12
+

1

3
P

(

J̃2,2
n−1 >

1

2

)

+
1

3
P

(

J̃2,2
n−1 =

1

2

)

.

By symmetry, P
(

J̃2,2
n−1 > 1

2

)

= P

(

J̃2,2
n−1 < 1

2

)

, so they are both bounded by 1
2 .

Since = P

(

J̃2,2
n−1 = 1

2

)

−→ 0 as n → ∞, this means that

P

(

J1
n ≥ 1

2

)

≤ 1

12
+

1

6
+ o(1) =

1

4
+ o(1).

�

6 Local popularity of random recursive trees

Random recursive trees were first studied in [22]. As in the Barabási-Albert

case, nodes also arrive one by one; nevertheless, each arriving node is attached

to a node which is chosen uniformly among the existing ones. Let θn denote the

local popularity of the root at time n− 1, that is, when the tree has n nodes.

Proposition 9 E(θn) = Ω(
√
log n).

Proof Let f : N −→ N be given by f(n) = ⌊√log n⌋. Let df(n) denote the

degree of the root at time f(n) and define the event

An = {df(n) ≥ log f(n)}.

Let ξk be 1 if the vertex added at time k is connected to the root and zero

otherwise. Since the ξk’s are independent, with P(ξk = 1) = 1
k , we have

E(df(n)) = H1(f(n)) :=

f(n)
∑

k=1

1

k
,

and
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Var(df(n)) = H2(f(n)) :=
∑f(n)

k=1
k−1
k2 .

Thus, by the Lindeberg Central Limit Theorem and the fact that |H1(m)−
logm| is bounded in m,

P(An) = P

(

dfn−H1(f(n))√
H2(f(n))

≥ log f(n)−H1(f(n))√
H2(f(n))

)

−−−−→
n→∞

P(Z ≥ 0),

where Z is a standard normal random variable. We deduce that there exists

a constant p1 > 0 such that P(An) ≥ p1 for large enough n. Since E(θn) ≥
E(θn|An)P(An), we deduce that it is enough to show that

E(θn|An) = Ω(f(n)). (4)

Define the event

Bn = {at time n the degree of the log f(n)-th child

of the root is ≥ the degree of the root}.

Then we have

E(θn|An) ≥
log f(n)
∑

i=1

P
(

in step n the degree of the i-th (5)

child is ≥ the degree of the root|An

)

≥ log f(n)P(Bn|An).

Now let ∆m be the difference between the degree of the root and the degree

of the log f(n)-th child of the root at time m (if the log f(n)-th child has not

appeared by time m let ∆m = ∞), so that Bn = {∆n ≤ 0}. Let Kn be the

number of nodes which are attached to either the root or the log f(n)-th child

during the steps f(n)+1, f(n)+2, . . . , n. Conditional on Kn and the event An,

∆n has the distribution of a simple random walk started at ∆f(n) after taking

Kn steps, and so if Xn is a binomial random variable with parameters (Kn, 1/2)

then we have

P(Bn|An,Kn) = P
(

Xn ≥ 1
2 (Kn +∆f(n))|An,Kn

)

≥ P
(

Xn ≥ 1
2 (Kn + f(n))|Kn

)

,
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and where the inequality follows from the facts that df(n) ≤ f(n) and that, for

the event An, the log f(n)-th child of the root has already arrived by time f(n).

Reasoning as above, we deduce from the definition of ∆n and the Lindeberg

CLT that P(Kn ≥ log n − log f(n)|An) ≥ p2 for some p2 > 0 and large enough

n. On the other hand it is not hard to see that there is a constant p3 > 0 so

that if Kn ≥ Mn for some constant Mn and Yn is a binomial random variable

with parameters (Mn, 1/2), then

P
(

Xn ≥ 1
2 (Kn + f(n))

)

) ≥ p3 P
(

Yn ≥ 1
2 (Mn + f(n))

)

).

Therefore, letting Mn = log n− log f(n) we deduce that

P(Bn|An)

≥ P(Bn|An ∩ {Kn ≥ Mn})P({Kn ≥ Mn}|An)

≥ p2p3 P
(

Yn ≥ 1
2 (log n− log f(n) + 1

2f(n)
)

= p2p3 P

(

Yn− log n−log f(n)
2

2
√

logn−log f(n)
≥ f(n)

4
√

logn−log f(n)

)

.

By the Central Limit Theorem it follows that, for large enough values of n,

the last probability is approximately P(Z ≥ f(n)/(4
√

log n− log f(n))) with Z

a standard normal random variable.

Since f(n)/
√

log n− log f(n) −→ 1 as n → ∞, there is a p4 > 0 such that

P(Z ≥ f(n)/(4
√

log n− log f(n))) ≥ p4 for all n.

Using this above gives (4) and thus the result. �
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