
Communication Complexity
and Intrinsic Universality

in Cellular Automata∗

E. Golesa, P.-E. Meunierc, I. Rapaportb, G. Theyssierc,∗

aFacultad de Ingenieria y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
bDIM, CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile

cLAMA, Université de Savoie, CNRS, 73 376 Le Bourget-du-Lac Cedex, France

Abstract

Let F be a cellular automaton (CA). This paper establishes necessary condi-
tions for F in order to be intrinsically universal. The central idea is to consider
the communication complexity of various “canonical problems” related to the
dynamics of F . We show that the intrinsic universality of F implies high com-
munication complexity for each of the canonical problems. This result allows
us to rule out many CAs from being intrinsically universal: The linear CAs,
the expansive CAs, the reversible CAs and the elementary CAs 218, 33 and 94.
The notion of intrinsic universality is related to a process by which we change
the scale of space-time diagrams. Therefore, in this work we are answering
pure dynamical question by using a computational theory. This communica-
tion complexity theory, on the other hand, provides a finer tool than the one
given by classical computational complexity analysis. In fact, we prove that for
two of the canonical problems there exists a CA for which the computational
complexity is maximal (P-complete, or Π0

1-complete) while the corresponding
communication complexity is rather low. We also show the orthogonality of the
problems. More precisely, for any pair of problems there exists a CA with low
communication complexity for one but high communication complexity for the
other.

Key words: cellular automata, communication complexity, intrinsic
universality.

1. Introduction

Since the pioneering work of J. von Neumman [16], universality in cellular
automata (CAs) has received a lot of attention (see [13] for a survey). Histori-
cally, the notion of universality used for CAs was more or less an adaptation of
the classical Turing-universality. Later, a stronger notion called intrinsic uni-
versality was proposed: A CA is intrinsically universal if it is able to simulate
any other CA [3, 10, 13].

∗Corresponding author (guillaume.theyssier@univ-savoie.fr)
∗Partially supported by programs Fondap and Basal-CMM, Fondecyt 1070022 (E.G) and

Fondecyt 1090156 (I.R.).

Preprint submitted to Elsevier April 5, 2010

This definition of intrinsic universality –which relies on a notion of simulation
formalized later in this paper– may seem very restrictive. Nevertheless, the
intrinsic universality property can be very common in some natural families
of CAs [1]. But, most importantly, by completely formalizing2 the notion of
universality, we facilitate the proof of negative results.

In fact, in this paper we will explain how to rule out particular elementary
CAs from being intrinsically universal (notice that CA Rule 110 is Turing-
universal [2] and no elementary CA in known to be intrinsically universal). More
precisely, we are going to show that the tool of communication complexity seems
to be a particularly good candidate in order to obtain such negative results.

The notion of intrinsic universality is related to a process by which we change
the scale of space-time diagrams. Therefore, in this work we are answering pure
dynamical question by using computational tools.

In Section 2 we give the basic definitions. One of the key definitions is the
following: Given a traditional computational problem P with an arbitrary input
w, we can split the input into two subwords w1 and w2; therefore, we can refer
to the “comunication complexity” of such problem (w1 is given to Alice while
w2 is given to Bob).

In Section 3 we introduce a family of “canonical problems” concerning vari-
ous aspects of the dynamics of a given CA. In other words, for any CA F and
any prototype problem P, we consider the problem PF . We study the com-
putational complexity of those problems showing that they are complete with
respect to the class they belong (choosing the right F in every case).

In Section 4 we explain how to infer deep properties of F from the study
of the communication complexity of PF . More precisely, we prove that if the
communication complexity of any canonical problem PF is not maximal, then F
is not intrinsically universal. In other words, we are introducing a powerful tool
for ruling out CAs from being intrinsically universal. We conclude that linear,
expansive and reversible CAs are not intrinsically universal. We also show the
orthogonality of the canonical problems: For any pair of these problems there
exists a CA with low communication complexity for one but high communication
complexity for the other.

In Section 5 we explain clearly why the communication complexity approach
appears to be a promising tool for ruling out CAs from being intrinsically uni-
versal. More precisely, we prove that for two of the canonical problems there
exists a CA for which the decison version is hard (P-complete, Π0

1-complete)
while the communication complexity is rather low.

Finally, in Section 6 we use our results for proving that some concrete elemen-
tary CAs are not intrinsically universal. Although looking at several space-time
diagrams of these CAs might give a strong intuition about their (non) universal-
ity, we stress that producing complete formal proofs for such a negative result
is a difficult task and, to our knowledge, has been never been done before.

2There is actually no consensus on the formal definition of Turing-universality in CA (see [3]
for a discussion about encoding/decoding problems).

2

2. Basic definitions

2.1. Communication complexity
Communication complexity is a measure introduced by A. C.-C. Yao in [17],

and designed at first for lower-bounding the amount of communication needed
in distributed algorithms. In that model he considered two players, namely
Alice and Bob, both with arbitrary computational power and communicating
to each other in order to decide the value of a given function. More precisely,
for a function ϕ : X × Y → Z, the question is “how much information do they
need to exchange, in the worst case, in order to compute ϕ(x, y), with Alice
knowing only x and Bob only y”.

This communication problem is solved by a protocol, which specifies, at
each step of the communication between Alice and Bob, who speaks (Alice or
Bob), and what she/he says (a bit, 0 or 1), as a function of her/his respective
input. This simple framework, and some of its variants we discuss in this article,
appears to be promising for studying CAs.

A protocol P over a domain X × Y with range Z is a binary tree where
each internal node v is labeled either by a map av : X → {0, 1} or by a map
bv : Y → {0, 1}, and each leaf v is labeled either by a map Av : X → Z or by a
map Bv : Y → Z.

The value of protocol P on input (x, y) ∈ X×Y is given by Av(x) (or Bv(y))
where Av (or Bv) is the label of the leaf reached by walking on the tree from
the root, turning left if av(x) = 0 (or bv(y) = 0), and right otherwise. We say
that a protocol computes a function ϕ : X × Y → Z if for any (x, y) ∈ X × Y ,
its value on input (x, y) is ϕ(x, y).

Intuitively, each internal node specifies a bit to be communicated either by
Alice or by Bob, whereas at the leaves either Alice or Bob determines the value
of ϕ when she/he has received enough information from the other party.

In our formalism, we do not ask both Alice and Bob to be able to give the
final value. We do so in order to consider protocols where communication is
unidirectional.

We denote by cc(ϕ) the (deterministic) communication complexity of a func-
tion ϕ : X × Y → Z. It is the minimal depth of a protocol tree computing ϕ.

One approach for proving lower bounds on the communication complexity
of an arbitrary function ϕ is based on the so-called fooling sets (for a deeper
presentation of this theory we refer to [9]).

Definition 1. Given a function ϕ : X × Y → Z, a set S ⊆ X × Y is a fooling
set for ϕ if there exists z ∈ Z with:

1. ∀(x, y) ∈ S, ϕ(x, y) = z,
2. ∀(x1, y1) ∈ S, ∀(x2, y2) ∈ S, either ϕ(x1, y2) ̸= z or ϕ(x2, y1) ̸= z.

The usefulness of fooling sets is given by the following lemma (see [9]).

Lemma 1. If S is a fooling set of size m for ϕ then cc(ϕ) ≥ log2(m).

In addition to ad hoc fooling set constructions, we will use the following
classical lower bounds on communication complexity (the proofs appear in [9]).

3

Proposition 1. Let n ≥ 1 be fixed. Let ϕeq, ϕip and ϕdisj be the functions
“equality”, “inner product” and “disjointness” defined from {0, 1}n × {0, 1}n to
{0, 1} by:

ϕeq(x, y) =

{
1 if (∀i)(xi = yi),
0 otherwise.

ϕip(x, y) =

{
1 if

∑
i xiyi mod 2 = 1,

0 otherwise.

ϕdisj(x, y) =

{
1 if (∀i)(xiyi ̸= 1),
0 otherwise.

The following lower bounds hold:

• cc(ϕeq) ≥ n.

• cc(ϕip) ≥ n.

• cc(ϕdisj) ≥ n.

2.2. Splitting the input of computational problems
Let us consider now classical computational input-output problems. In this

work we only take into account problems P : Q∗ → Z whose inputs are words
over some alphabet Q and outputs are elements of a finite set Z. Moreover, we
will always have Z = Q or Z = {0, 1} as output sets.

Given such type of problem P, we define, for any n, its restriction to words
of length n; i.e, we consider the restricted problem P|n : Qn → Z.

The key idea of the communication approach is to split the input into two
parts: For any 1 ≤ i ≤ (n− 1), we define P|in : Qi ×Qn−i → Z. More precisely,
for every x ∈ Qi, y ∈ Qn−i, we have P|in(x, y) = P|n(xy). Then, we can
consider the communication complexity cc

(
P|in

)
of the ith split function P|in.

Of course the choice of i matters and can alter the corresponding communication
complexity. Since we don’t want to rely on an arbitrary choice, we consider the
worst case. Putting all together, we associate to any problem a function as
explained in the following definition.

Definition 2. Let P : Q∗ → Z be a problem. The communication complexity
of P, denoted CC (P), is the function:

n 7→ max
1≤i≤n−1

cc
(
P|in

)
.

2.3. Cellular automata
In this paper we are always going to consider one-dimensional CAs. A CA

is defined by its local rule f : Q2r+1 → Q (where Q corresponds to the set of
states and r denotes the radius of the local rule). For any n ≥ 2r + 1, we extend
f : Q2r+1 → Q to the more general f : Qn → Qn−2r by

f(u1 · · ·un) = f(u1 · · ·u2r+1) · · · f(un−2r · · ·un).

4

Moreover, for every 1 ≤ t ≤ ⌊(n− 1)/2r⌋, we define the t-steps local iteration
as f t : Qn → Qn−2·r·t by{

f1 = f

f t(u1 · · ·un) = f
(
f t−1(u1 · · ·un−2r) · · · f t−1(u2r+1 · · ·un)

)
We also define f∗ : Q∗ → Q∗ by

f∗(u) = f⌊
|u|−1

2r ⌋(u).

Intuitively, f∗ applied on u consist in iterating f as long as possible (until
ending up with a word too short for f). The result is a word of length at most
2r (depending on |u| mod 2r).

We denote by F : QZ → QZ the global rule induced by f following the
classical definition:

F (c)z = f(cz−r, . . . , cz+r).

Finally, we denote by F t : QZ → QZ the t-step iteration of the global function
F .

A global function F can be represented by different local functions. All
properties considered in this paper depend only on F and are not sensitive to
the choice of a particular local function. However, to avoid useless formalism,
we will use the following notion of canonical local representation: (f, r) is the
canonical local representation of F if f has radius r and it is the local function
of smallest radius having F as its associated global function.

Throughout this work we are going to refer to the CA F with (f, r) being
its canonical local representation.

3. The three canonical communication problems

In this section we define the three problems on which we are going to apply
the communication complexity approach. Before entering into details, we stress
that this set of problems tackles various dynamical aspects of CAs: Transient,
periodic and asymptotic regime starting respectively from finite, cyclic, or ul-
timately periodic configurations. Moreover, algorithmically speaking, they are
also very different since they belong respectively to the classes p, pspace, and
Π0

1 (and can be complete for these classes as we will see in this section).
Thus, they form an interesting set of prototype problems.

3.1. Prediction
The prediction problem consists in determining the far future of a cell given

the state of sufficiently many cells around it.

Definition 3. Let F be a CA. The problem PredF : Q∗ → Q is defined as
follows:

PredF (u) =
(
f∗(u)

)
1
,

where (f, r) is the canonical local representation of F while the “
(
f∗(u)

)
1
” no-

tation means that we take the first letter of the word f∗(u), which has length at
most 2r.

5

We could ask the classical algorithmic complexity questions such as the de-
cidability of PredF , time(PredF) or space(PredF). In this particular case
it is clear that time(PredF) ∈ O(n2).

As we have already said before, we can also view PredF as a communication
problem (see Figure 1): Given an initial configuration as input, we split the
initial configuration between Alice and Bob, and ask for the final value computed
by F on this input configuration, as represented in Figure 1(b).

.

(a) A space-time dia-
gram of Rule 110.

.

.Alice .Bob

.Result

(b) The commmunica-
tion interpretation of
PredF110 .

Figure 1: Problem PredF110 .

More precisely, for every 1 ≤ i ≤ (n− 1), PredF |in : Qi×Qn−i → Q is such
that PredF |in(x, y) = (f∗(xy))1. This function PredF |in can be represented
as a |Q|i × |Q|n−i matrix. In other words, we give i states to Alice (rows) and
n − i states to Bob (columns); i.e. X = Qi and Y = Qn−i. We denote by
Mn,i

F such a matrix. In the examples of Figure 2, we have n = 2i + 1 = 13 and
n = 2i + 1 = 15 (for the elementary CA Rule 178).

Figure 2: Matrices M13,6
178 and M15,7

178 , where “178” stands for the elementary CA Rule 178.

Remark. We can consider the more restricted one-round communication com-
plexity measure. In this setting only one party (either Alice or Bob) is allowed
to send information. This restriction is justified by the fact that, according to
a theorem of [9], by simply counting the number of different rows or columns
of a certain matrix we obtain the exact one-round communication complexity
of the function. In our framework, the one round communication complexity of
PredF |in corresponds to the minimum between the number of different rows and
different columns of Mn,i

F . Therefore, performing computational experiments in
order to infer the one-round communication complexity of PredF |in, becomes
an easy task.

6

Recall that, given a CA F , the communication complexity of PredF is
defined as:

CC (PredF) = n 7→ max
1≤i≤n−1

cc
(
PredF |in

)
.

Remark. In the above definition of PredF , we choose a canonical local repre-
sentation (f, r) for the CA F . Replacing f by another valid local representation
can change the problem and its communication complexity. However this change
would only introduce a multiplicative factor and therefore would not alter the
main point of this paper (Section 4.3).

Now we show that some well-known properties of CAs induce small up-
per bounds for the communication complexity of the prediction problem. The
results below are adaptations of ideas of [4] to the formalism adopted in the
present paper.

Proposition 2. Let F be any CA and (f, r) be its canonical local representation.
If there is a function g : N→ N such that fn depends on only g(n) cells, then
CC (PredF) ≤ g(n)/2.

Following the work of M. Sablik [14], one can characterize the set of CAs hav-
ing a bounded number of dependant cells (i.e, a bounded function g(n)): They
are exactly these CAs which are equicontinuous in some direction (Theorem 4.3
of [14]). This set contains the nilpotent CAs (a CA is nilpotent if it converges
to a unique configuration from any initial configuration, or equivalently, if F t is
a constant function for any large enough t).

Corollary 1. If F is an equicontinuous CA in some direction then

CC (PredF) ∈ O(1).

Another set of CAs with that property is the set of linear CAs. A CA F with
state set S is linear if there is an operator ⊕ such that (S,⊕) is a semi-group
with neutral element e and for all configurations c and c′ we have:

F (c ⊕ c′) = F (c)⊕ F (c′),

where ⊕ denotes the uniform (cell-by-cell) extension of ⊕.

Proposition 3. If F is a linear CA then CC (PredF) ∈ O(1)

Proof. The proof appears in [4] in a different setting. The idea is that there is a
simple one-round protocol to compute linear functions: Alice and Bob can each
compute on their own the image the function would produce assuming the other
party has only the neutral element as input; then Alice or Bob communicate
this result to the other who can answer the final result by linearity.

3.2. Invasion
Let F be a CA and let u be a given word. Roughly, the problem Invu

F is
defined as follows: Given an input word w, we define the u-periodic configuration
pu on one hand, and the configuration pu(w) obtained by putting the word
w at the origin over pu on the other hand; the invasion problem consists in

7

. .u .u .Alice .Bob
.w

.u .u

Figure 3: The invasion problem

determining whether the differences between pu and pu(w) will expand to an
infinite width as time tends to infinity (hatched surface on Figure 3).

As we show in Proposition 5.2, the general case is, from the point of view of
the classical algorithmic theory, undecidable.

Now we give formal definitions.

Definition 4. Let u = u1 . . . ul be a finite word. Let pu be such that for all
i ∈ Z, pu[i] = u[i mod l].

• we consider the ultimately periodic orbit
(
F t(pu)

)
t
as the reference orbit;

• for each x1, . . . , xn ∈ Q, we define the configuration pu(x1, . . . , xn) ob-
tained by modifying pu as follows:

pu(x1, . . . , xn)z =

{
(pu)z for z ≤ 0 or z ≥ n + 1,

xz otherwise.

• for each t, we denote δl(t) and δr(t) the lefmost and rightmost differences
between the tth images of pu and pu(x1, . . . , xn):

δl(t) = min
{
z : F t(pu)z ̸= F t

(
pu(x1, . . . , xn)

)
z

}
,

δr(t) = max
{
z : F t(pu)z ̸= F t

(
pu(x1, . . . , xn)

)
z

}
.

• then Invu
F (x1 . . . xn) equals 1 if δr(t)− δl(t)→t ∞ and 0 otherwise.

As explained before, we associate to any F and u, the communication com-
plexity of Invu

F defined as CC (Invu
F).

Some CAs have by nature a trivial invasion complexity because their dynam-
ics consists in propagating errors systematically. This is the case of (positively)
expansive CAs. Recall that F is (positively) expansive if there is some ϵ > 0
such that:

∀x, y, x ̸= y ⇒ ∃t, d(F t(x), F t(y)) ≥ ϵ

where d is the Cantor distance.

Proposition 4. Let F be a positively expansive CA. Then for all u we have
CC (Invu

F) = 1.

8

Proof. Fix any u and consider any (x1, . . . , xn) such that pu(x1, . . . , xn) ̸= pu.
By classical results of P. Kůrka [8], there is a positive constant α (average
propagation speed) such that δl(t) ≤ −αt and δr(t) ≥ αt. Therefore, invasion
occurs if and only if:

pu(x1, . . . , xn) ̸= pu.

Testing this condition can be done with only 1 bit of communication: Either
Alice or Bob communicates whether she (or he) sees any difference between
her (or his) input and the corresponding part of pu; then the other party can
answer. The proposition follows.

3.3. Cycle length
For this last problem, we consider spatially periodic configurations. Since

there are only a finite number of such configurations of a given period size,
and the size of the period does not grow with time, then clearly the evolu-
tion becomes periodic (in time) after a certain number of steps (see Figure 4
where successive steps are represented by successive concentric circles). Roughly
speaking, the cycle problem consists in determining whether the length of this
ultimate (temporal) period is small, starting from a given (spatially) perodic
initial configuration. The formal definition follows.

.

.Period .Transition .Period

Figure 4: The Cycle problem on elementary CA Rule 33. Zeros are white, and ones are
black. Initial configuration: 011011.

Definition 5. Let F be a CA and let k ≥ 1. For any u ∈ Q∗ we denote by λ(u)
the length of the ultimate period of the orbit of configuration pu under F :

λ(u) = min
{
p : ∃t0,∀t ≥ t0, F

t(pu) = F t+p(pu)
}
.

The problem Cyclek
F is then defined by:

Cyclek
F (u) =

{
1 if λ(u) ≤ k,

0 otherwise.

One of the interests of the cycle length problem lies in the following com-
plexity upper bound for reversible CA.

Proposition 5. Let F be any reversible CA. Then, for any k, we have:

CC
(
Cyclek

F

)
∈ O(1).

9

Proof. For a reversible CA, orbits of periodic configurations are not only ulti-
mately periodic but also periodic. More precisely, for any periodic configuration
c, the cycle length starting from c is less than k if and only if:

∃t ≤ k : F t(c) = c.

Therefore, the following protocol of constant communication cost solves the
problem Cyclek

F |n on input c:

• Alice and Bob each know the evolution of a part of the configuration
during the k first steps so they can communicate the list of time steps
t ≤ k for whichthe part of the configuration they know becomes identical
to the corresponding part of c.

• The part of the configuration that neither Alice nor Bob can know during
the k first steps does not depend on n; therefore, after a constant amount
of communication, Alice or Bob can have all the information to know this
part during the k first time steps and produce the list of t ≤ k such that
this part of the configuration becomes identical to the corresponding part
of c;

• Finally, Alice or Bob can answer by simply checking whether the above
lists of time steps have a non empty intersection.

4. The three corresponding necessary conditions for intrinsic univer-
sality

In this section we show that intrinsic universality implies that the commu-
nication complexity of the three canonical problems described above must be
maximal. Before giving precise definitions, recall that a CA is intrinsically uni-
versal if it is able to simulate any other CA. We are going to proceed in two
steps:

• we show that the simulation of F by G implies a reduction from any
canonical problem for F to the corresponding problem for G in such a way
that the communication complexity is preserved (up to some distortions
involving only multiplicative factors);

• we show the existence of maximal communication complexity CAs for each
of the canonical problems.

Before developing these two steps, we give formal definitions for simulations
and intrinsic universality.

4.1. Simulations and universality
The base ingredient is the relation of sub-automaton. A CA F is a sub-

automaton of a CA G, denoted by F ⊑ G, if there is an injective map ι from
QF to QG such that ι ◦ F = G ◦ ι, where ι : QZ

F → QZ
G denotes the uniform

extension of ι.

10

A CA F simulates a CA G if some rescaling of F is a sub-automaton of
some rescaling of G. The ingredients of the rescalings are simple: packing
cells into blocs, iterating the rule and composing with a translation. Formally,
given any state set Q and any m ≥ 1, we define the bijective packing map
bm : QZ →

(
Qm

)Z by:

∀z ∈ Z :
(
bm(c)

)
(z) =

(
c(mz), . . . , c(mz + m− 1)

)
for all c ∈ QZ. The rescaling F<m,t,z> of F by parameters m (packing), t ≥ 1
(iterating) and z ∈ Z (shifting) is the CA of state set Qm and global rule:

bm ◦ σz ◦ F t ◦ b−1
m .

The fact that the above function is the global rule of a cellular automaton
follows from Curtis-Lyndon-Hedlund theorem [6] because it is continuous and
commutes with translations. With these definitions, we say that G simulates
F , denoted F 4 G, if there are rescaling parameters m1, m2, t1, t2, z1 and z2

such that F<m1,t1,z1> ⊑ G<m2,t2,z2>.
We can now naturally define the notion of universality associated to this

simulation relation.

Definition 6. F is intrinsically universal if for all G it holds that G 4 F . F
is reversible universal if for all reversible G it holds that G 4 F .

We consider the following relation of comparison between functions from N
to N:

ϕ1 ≺ ϕ2 ⇐⇒ ∃α, β, γ ≥ 1,∀n ∈ N : ϕ1(αn) ≤ βϕ2(γn).

Remark. All the functions we will compare by ≺ are in O(n) since they come
from a communication complexity problem. Moreover, the set of such functions
that are in Ω(n) form an equivalence class for ≺. Although we sometimes give
more precise bounds, most of the paper focus on whether some functions belong
or not to this class.

Proposition 6. If F 4 G then CC (PredF) ≺ CC (PredG).

Proof. We consider successively each ingredient involved in the simulation rela-
tion.

Sub-automaton: if F ⊑ G then each valid protocol to compute PredG|in
is also a valid protocol to compute iterations of PredF |in (up to state
renaming).

Iterating: we have CC (PredF t)(n) = CC (PredF)(t · n).

Shifting: this operation only affects the splitting of inputs. Since we always
take in each case the splitting of maximum complexity, this has no influ-
ence on the final complexity function.

Packing: let F be any CA and n be fixed. Consider the problem PredF <m,1,0> |jn
for some j. Now consider any sequence of valid protocols (Pi), one for each
problem PredF |inm. It follows from the the definition of packing maps

11

that PredF <m,1,0> |jn can be solved by applying m suitably chosen proto-
cols in the sequence (Pi). Therefore

CC (PredF <m,1,0>)(n) ≤ m ·CC (PredF)(n)

.

Reciprocally, one has for all n:

CC (PredF)(n) ≤ CC
(
Predf<m,1,0>

)
(⌈n/m⌉) + m

where the additional constant m is used to deal with input splittings of
PredF |n which have no equivalent in Predf<m,1,0> |⌈n/m⌉ because they
do not cut the input at a position which is multiple of m.

Therefore we have: CC (PredF) ≺ PredF <m,t,z> , PredF <m,t,z> ≺ CC (PredF)
and if F ⊑ G then CC (PredF) ≺ PredG. The proposition follows.

The following result shows that the invasion complexity is increasing with
respect to simulations.

Proposition 7. If F 4 G then for all u there is v such that

CC (Invu
F) ≺ CC (Invv

G).

Proof. The simulation relation 4 is such that ultimately periodic configurations
of F are converted into ultimately periodic configurations of G. Hence, the
invasion problem of F reduces to the invasion problem of G. More precisely, it
is sufficient to check the following properties, each dealing with an aspect of the
simulation relation 4:

• for any CA F , any u and any rescaling parameters m, t, z, we have

CC (Invu
F) ≺ CC

(
InvU

F <m,t,z>

)
where U is the period of the configuration bm(pu);

• if F ⊑ G then, for any u, CC (Invu
F) ≺ CC (Invu

G);

• for any CA F , any rescaling parameters m, t, z, any U (over the alphabet
of F<m,t,z>) CC

(
InvU

F <m,t,z>

)
≺ CC (Invu

F) where u is the period of the
configuration b−1

m (pU).

The result follows by composition of the 3 properties above.

Finally, we show a similar result for the cycle length problem. The problem
is parametrized by an integer k and the following proposition establishes that
for suitable but arbitrary large values of this parameter the complexity of the
problem is conserved.

Proposition 8. If F 4 G then for all k0 there is k and k′ such that:

• k ≥ k0 and k′ ≥ k0;

• CC
(
Cyclek

F

)
≺ CC

(
Cyclek′

G

)
.

12

Proof. The effect of rescaling transformations on cyclic orbits of periodic config-
urations is to change the (spatial) period length as well as the (temporal) cycle
length. More precisely, we have:

• if F ⊑ G then, for any k, CC
(
Cyclek

F

)
≺ CC

(
Cyclek

G

)
;

• for any k,

– CC
(
Cyclek

F

)
≺ CC

(
Cyclek

F <m,1,0>

)
and

– CC
(
Cyclek

F <m,1,0>

)
≺ CC

(
Cyclek

F

)
;

• for any t and any k we have:

CC
(
Cyclek

F <1,t,0>

)
≺ CC

(
Cyclekt

F

)
;

• for any t and any k such that k mod t = 0 we have:

CC
(
Cyclek

F

)
≺ CC

(
Cycle

k/t
F <1,t,0>

)
.

The proposition follows.

4.2. Existence of CAs with maximal complexity
This section is devoted to the following existence result.

Proposition 9.

1. There exists a reversible CA F with CC (PredF) ∈ Ω(n).
2. There exists a reversible CA F and a word u with CC (Invu

F) ∈ Ω(n).

3. There exists a CA F s.t. for any k ≥ 1, CC
(
Cyclek

F

)
∈ Ω(n).

We now define the reversible CA of assertion 2 of Proposition 9 called G in
the sequel. It is made of 3 layers:

• flag layer Qf = {0, 1},

• circulation layer Qc = {W} ∪ {0, 1} × {0, 1},

• test layer Qt = {0, 1} × {0, 1}.

The flag layer is simply the identity over Qf . The circulation layer does not
depend on other layers and has the following behaviour.

• normal states in {0, 1}×{0, 1} represent two sub-layers (top and bottom)
and, if no W state is in the neighbourhood, the top sub-layer simply shifts
to the right and the bottom sub-layer simply shifts to the left.

• W states are walls: They stay unchanged forever. Moreover, a normal cell
on the right of a wall has the following behaviour: The top value shifts to
the right and the bottom value goes to the top. A normal cell on the left
of a wall has a symmetric behaviour: The bottom value shifts to the left
and the top value goes to the bottom. See figure 5.

13

.

.x1 .xn .0 .0.0

.0 .0 .yn .y1.0
.0 .0.1

.W .W

.x1 .xn.0 .0 .0 .0.xk

.0 .0 .0 .0.yn .y1.yk

.0 .0

.0
.0

.1
.1

.0
.0

.1
.1

.1
.1

.1

.W .W

Figure 5: Above: initial configuration. Below: the configuration k steps later.

Finally, the test layer is made of two sub layers (top and bottom) wich are
independant. The top layer does the following:

• if the flag layer of the cell is 1 and if the circulation layer contains the
state (1, 1) then invert bit and shift right;

• in any other case, simply shift right.

The bottom sub-layer does the same but replace right by left.

Proof of Proposition 9.

• We first show that G defined above has the properties of assertion 2 of the
proposition. First, it is reversible: flag and circulation layers are reversible
by themselves and test layer is reversible when knowing flag and circulation
layers.

Now let q0 be the state where flag layer is 0, circulation layer is (0, 0)
and test layer is (0, 0). Consider input bits x1, . . . , xn on one hand and
y1, . . . , yn on the other hand. Let Xi be the state with flag layer 0, test
layer (0, 0) and circulation layer (xi, 0). Similarily let Yi be the state with
flag layer 0, test layer (0, 0) and circulation layer (0, yi). Let M be the
state of flag layer 0, circulation layer W and test layer (0, 0). Finally let
T be the state of flag layer 1, circulation layer (0, 0) and test layer (0, 0).
Consider the configuration C(x1, . . . , xn, y1, . . . , yn):

ωq0 M Xn · · ·X1 T Y1 · · ·Yn M qω
0

We can consider this configuration as an instance of the invasion problem
Invu

F 2n+3 where u = q0. The only possible invasion in such an instance
comes from the test layer. It follows from the definition of G that there is
invasion on this instance if and only if

∃i, xi = yi = 1.

Hence, the disjointness problem reduces to the invasion problem through
such instances. Using proposition 1, we conclude that CC (Invq0

G) ∈ Ω(n).

14

• Assertion 1 of the proposition can be proven with a CA F simpler than
G, but using similar ideas. F has radius 1 and its state set is the product
of 3 components:

– left circulation with state set {0, 1},
– right circulation with state set {0, 1},
– test with state set {0, 1}.

The behaviour is the following:

– each of the left and right circulation components are independent
of the other components and consists in simple shift (left and right
respectively),

– the test component simply flips its value if both left and right circu-
lation components have value 1 and stays unchanged else.

F is clearly reversible (circulation layers are independent shifts and test
layer is reversible knowing other components). Moreover, the inner prod-
uct problem reduces to the prediction problem of F . Indeed, for any
x, y ∈ {0, 1}n consider the word

u = X1 · · ·XnZYn · · ·Y1

where Xi is the state equal to xi on the right circulation component and 0
elsewhere, Yi is the state equal to yi on the left circulation component and
0 else, and Z is the state equal to 0 everywhere. It follows from definition
of F that

PredF |n(u) = 1 ⇐⇒
∑

xiyi mod 2 = 1.

Proposition 1 implies that CC (PredF) ∈ Ω(n).

• Assertion 3 of the proposition is proven by proposition 4.4.3.

4.3. Necessary conditions for universality
The following corollary is the main tool provided by this paper to prove

negative results about (intrinsic) universality.

Corollary 2. Let F be an intrinsically universal CA. Then it holds that:

1. CC (PredF) ∈ Ω(n),
2. there exists u s.t. CC (Invu

F) ∈ Ω(n),

3. there exists k s.t. CC
(
Cyclek

F

)
∈ Ω(n).

Moreover, if F is only reversible-universal, then 1 and 2 still holds.

Proof. It follows from Propositions 6, 7 and 8 on the one hand, and Proposition 9
on the other hand.

A first application of this corollary to the complexity upper-bounds presented
in Section 3 yields the following necessary conditions for universality. A first
proof of these results appears in [15]. However, our approach allows us to
formulate much simpler and more elegant proofs.

15

Corollary 3. Let F be an intrinsically universal CA, then F cannot be:

• neither expansive

• nor linear

• nor reversible.

Moreover, a reversible universal CA can not be expansive or linear.

4.4. Uncomparability of the three conditions
Here we show the “orthogonality” of our three problems: For any pair of

problems (P0,P1), we exhibit two CAs, A and B, such that:

• CC
(
PA

0

)
∈ o(CC

(
PA

1

)
), in which case we say that A is “hard” for P1

and “easy” for P0.

• CC
(
PB

1

)
∈ o(CC

(
PB

0

)
), in which case we say that B is “hard” for P0 and

“easy” for P1.

This shows that our three necessary conditions for intrinsic universality are
really necessary: No condition is stronger than any other.

4.4.1. A CA easy for Pred and hard for Inv

The idea is to embed an equality test launching signals invading the whole
configuration, while keeping the prediction problem easy. For that purpose, we
consider CA F , a cartesian product of two layers:

1. A layer performing a test for equality, as described below, and initialy
containing a word over the alphabet {−→0 ,

−→
1 ,
←−
0 ,
←−
1 ,⊤, ∅,K}. On figure 6,

this layer is represented in black.
2. A layer with an automaton invading the configuration from a seed. We

need five states on this layer: {s, ∅,→,←,K}. We describe the rule below.
On figure 6, this layer appears in blue.

..−→0 .−→1 .−→0 .←−0.←−1.←−0.⊤

.⊤
.⊤.s
.⊤

.⊤

.−→0 .←−1

..→..←

Figure 6: A CA easy for Pred and hard for Inv

The simplest way to embed an equality test in CAs is to ask Alice and Bob
whether the input is a palindrom. There is an easy fooling set (see definition
1 or [9]) to ensure that this problem has a high deterministic communication
complexity. The K state is spreading on both layers, i.e. if it appears somewhere

16

in one layer, then it spreads everywhere on both layers. We use it to detect ill-
formed configurations where a −→x state is next to a ←−x , or there are several s
states on the second layer.

On configurations not involving the K state, the local rule is the right shift
on words containing only ←−x states, a ⊤ or ∅ state on their right, and the left
shift on words containing only −→x states, a ⊤ or ∅ state on their left, where x
ranges over {0, 1}. States in {⊤, ∅} remain unchanged, and all other transitions
yield state K.

Moreover, we introduce another rule to perform the equality test: when the
test is negative (i.e. a ⊤ state has a −→x on its left, a ←−y on its right, and x ̸= y),
then we place a s state on the second layer.

On the second layer, the K state is spreading, and for all input words not
containing K, the local rule is the following:

f(s, ∅, ∅) = →
f(→, ∅, ∅) = →
f(∅, ∅, s) = ←

f(∅, ∅,←) = ←
else f(x, y, z) = ∅

Proposition 10. The CA F described above is such that:

• CC (PredF) ∈ O(1),

• there is u such that CC (Invu
F) ∈ Ω(n).

Proof. A protocol for Pred needs to predict the content of both layers:

• On the first layer, the result will always be the result of a shift if the
initial configuration contains only −→x or ←−x states, or if the ⊤ state is not
the central cell of the configuration, and a ⊤ state else. This requires a
constant number of communicated bits.

• On the second layer, the result is a s state if and only if the leftmost state
of Alice’s differs from the rightmost state of Bob’s, and the central cell is
a ⊤ state. Else, it can be a → state (the ← case is symmetric) if there
was an s state on the left edge of the computation triangle: the protocol
for deciding this is the same as before, in a smaller triangle (see figure 7).
But this has only to be checked for the leftmost ⊤ state of Alice’s, since
even if other signals are to be generated afterwards, they do not appear
on the top of the bigger triangle.

In all other cases, the second component is empty.

In all cases, predicting the final state of this layer requires a constant
amount of communication.

Now we need to find hard instances for the Inv problem: With a repeated
word containing only ∅ states on both layers, on initial configurations of the
form (

−→
0 ,
−→
1)n⊤(

←−
0 ,
←−
1)n on the first layer, and ∅∗ on the second, we reduce the

equality problem to Inv. Proposition 1 is concluded.

17

.

.s

Figure 7: Our protocol.

4.4.2. A CA easy for Inv and hard for Pred

There is a natural example described in section 6.1. It remains to show that
the deterministic (possibly with several rounds) communication complexity of
the Pred problem is in Ω(log n). To show this, we construct a fooling set Sn

(see Definition 1 or [9]):

Sn = {(1n−k0k, 0k+11n−k, 0 ≤ k ≤ n}

We show that Sn is a fooling set for Rule 218: In fact, on all configurations of
the form 1n−k02k+11n−k, the result of PredF218 is always 0. On configurations
of the form 1n−i0i+j+11n−j where i ̸= j, it is always 1. This can be easily shown
from the collection of lemmas of [5], and we illustrate it on Figure 8. Thus, since
|Sn| = n + 1, we deduce that a deterministic protocol solving PredF n

218
can not

take less than log(n + 1) steps:

CC
(
PredF n

218

)
∈ Ω(log(n))

.

Figure 8: A configuration of the fooling set Sn for rule 218

However, from Section 6.1, the Inv problem can be solved within constant
communication.

4.4.3. A CA easy for Inv and hard for Cycle

We use the problem disj to build a hard Cycle problem. The idea is that
if Alice and Bob receive two disjoint sets as their inputs, our CA will check disj
forever. Otherwise it will erase all the tape and a uniform periodic configuration
(i.e. 1-periodic).

We use three layers in this construction: One always shifting right, one other
always shifting left, and the third either empty or performing a test about the
two other layers. More precisely, we use the layout of Figure 9.

We consider a cyclic configuration containing an input for Alice on the first
layer, and an input for Bob on the second layer, (as in Figure 9), and a third

18

.

.x1 .xn .0 .0.0

.0 .0 .yn .y1.0
.0 .0

.(
∧n

i=1 xi ⊕ yi) = 0 ?

Figure 9: An automaton with a hard Cycle problem, and an easy Inv.

layer everywhere empty, except for a central “test” state, actually performing
the tests. As stated in Figure 9, the performed test is

∧n
i=1 xi ⊕ yi = 0, with

⊕ denoting the binary “xor” operation (the test cell at time t + 1 takes value
Tt ∧ (x⊕ y) where Tt is its value at time t and x and y are the values on the
two first layers). While the test value is 1, the tests go on. Since the tape is
cyclic, if

∧n
i=1 xi ⊕ yi = 1, then the test goes on forever producing a (temporal)

cycle of length Ω(n) (because in such a case, we have at least one xi or one
yi which is 1). Otherwise, the test becomes 0 at some step and a spreading
state is generated, which erases all the layers in both directions and produce a
(temporal) cycle of length 1 . In the sequel, we call this CA F .

Proposition 11. The CA F described above is such that:

• ∀k,CC
(
Cyclek

F

)
∈ Ω(n).

• ∀u,CC (Invu
F) ∈ O(1),

Proof. The first assertion follows from the discussion above.
It remains to show that Invu

F can be solved within constant communication.
Let u be any word over the alphabet for F . First if the orbit of pu contains
a spreading state, since pu is periodic, then after a constant number of steps,
nothing can happen, thus the input word is ignored and no invasion can occur.
In all other cases, we note the input word w as (x, y) where x = π1(w) is the
word appearing on the first component and y = π2(w) the word appearing on
the second. The protocol consists in discussing whether some components are
equal between pu and pu(w). Each of the following case can be tested with
constant communications:

• If x ̸= π1(pu[1..|x|]), and y ̸= π2(pu[1..|y|]), then there is always invasion:
if a spreading state is ever generated, it invades the configuration (by
hypothesis, there is no spreading state in the orbit of pu), else, x and y
are continually shifted, so there is also invasion.

• If pu((x, y)) = pu then there is no invasion by Definition 4.

• Otherwise we have necessarily x ̸= π1(pu[1..|x|]), and y = π2(pu[1..|y|])
(or the same inverting = and ̸=, but the reasoning is similar). In this
case, the discussion is the following:

– if the position of tests in the third component is the same in pu and
pu(w) (which can be decided with constant communication) then Al-
ice and Bob each know whether their part of the first component will

19

ever provoke a test failure and generate a spreading state; therefore
they can decide invasion: there is invasion in case of a test failure,
and there is no invasion else because the differences between pu and
pu(w) will only be shifted and will never spread to an infinite width;

– if the position of the tests are different, then there is always inva-
sion: either because some test failure generates a spreading state, or
because the differences between pu and pu(w) in the first component
are shifted towards infinity, but a difference in the third component
(a test position) stay at the same place indefinitely.

4.4.4. A CA easy for Pred, and hard for Cycle

We can use quite the same construction as in Subsection 4.4.1. We modify it
to launch only one signal (in only one direction) when an error appears. Thus,
as proven in section 4.4.1, the Pred problem remains easy. Now we need to
prove that the Cycle problem is hard, but we can choose the instances on
purpose.

If no test fails, the configuration will be 1-periodic: When all the tests have
been done, the configuration is uniformly empty, except for the ⊤ states, and
then nothing more happens. Otherwise, a signal will be launched. We need to
show that the period of the configuration is then in Ω(n). But we can notice
that a contiguous portion of Ω(n) cells can not have any signal (see Figure 10).
Therefore, the period of the configuration is Ω(n) if and only if an error occurs.

..−→0 .−→1 .−→0 .←−0.←−1.←−0.⊤

.⊤
.⊤.s
.⊤

.⊤

.−→0 .←−1

..→

.n/4 : No signals here

.≤ n/2 signals

Figure 10: A CAeasy for Pred and hard for Cycle.

4.4.5. An CA easy for Cycle and hard for Pred

We describe the natural example of Rule 33 in Section 6.3, which has a
protocol in constant time for Cycle, and for which any deterministic protocol
for Pred is in Ω(log n).

4.4.6. A CA easy for Cycle and hard for Inv

We can reuse the construction of Subsection 4.4.1, and use the cyclicity of
the configuration to find an easy protocol: For all ill-formed configurations, the

20

CA is periodic with state K spreading to all the configuration. For any other
configuration, even if there is a seed somewhere on the second layer, the signals
it sends cross after some time, resulting in a ∅ state on this layer after at most a
O(n) steps. Moreover, the ⊤ states do not move, so the configuration becomes
1-periodic after all the tests are performed: There may be a column of ⊤ states,
and ∅ states everywhere else.

Thus, since this CA is always 1-periodic, the Cycle problem can be decided
with no communication.

5. Intrinsic universality: Ruling out complex CAs

Here we show that for two of our canonical problems – namely, Pred and
Inv – we were able to find a CA of maximal algorithmic complexity (complete),
and yet very simple with respect to our measure.

More precisely, we are going to show that, for problems Pred and Inv, there
exists a CA F for which the communication complexity of the problem is low
while its classical computational complexity is the highest one can expect.

Therefore, we are ruling out such non-trivial CAs from being intrinsically
universal.

5.1. Prediction
T. Neary and D. Woods proved “the P-completeness of Rule 110” [12]. In

our language, they proved that the problem PredF110 is P-complete. A very
natural question arises: What do classical algorithmic properties of CAs, such
as P-completeness, imply on the its communication complexity counterpart?

Therefore, the communication complexity approach appears to be a promis-
ing tool for ruling out CAs from being intrinsically universal. More precisely,
despite the fact that the decision version of a canonical problem is hard (P-
complete, undecidable) its corresponding communication complexity might be
rather low.

Proposition 12. For any k ≥ 1, there exists a CA F such that

CC (PredF) ∈ O(n1/k)

and PredF is P-complete.

Proof. Let M a Turing machine. We construct a CA F simulating M slowly
but still in polynomial time: it takes nk steps of F to simulates n steps of M.
Hence, by a suitable choice ofM, the problem of predicting F is P-complete.

First it is easy to construct a CA simulating M in real time. We encode
each symbol of the tape alphabet of the Turing machine by a CA state, and
add a “layer” for the head, with ’→’ symbols on its left and ’←’ symbols on its
right. We guarantee this way that there can be only one head: if a ’→’ state is
adjacent to a ’←’ state without head between them, we propagate a spreading
“error” state destroying everything.

We then add a new layer to slow down the simulation: it consists in a single
particle (we use the same trick to ensure that there is only one particle) moving
left and right inside a marked region of the configuration. More precisely, it
goes right until it reaches the end of the marked region, then it adds a marked

21

cell at the end and starts to move left to reach the other end, doing the same
thing forever. Clearly, for any cell in a finite marked region, seeing n traversals
of the particle takes Ω(n2) steps. Then, the idea is to authorize heads moves
in the previous construction only at particle traversals. This way, n steps of
M require n2 time steps of the automaton. By adding another particle layer,
one can also slow down the above particle with the same principle and it is not
difficult to finally construct a CA F such that n steps of M require nk time
steps of F . We have represented in Figure 11 the behavior of the particle, with
the dashed arrow representing a Turing transition.

Now if the initial configuration does not respect the rules described above,
then a spreading error state is generated and Alice and Bob can notice it within
constant communication. In all other cases, it is enough for Alice or Bob to
know the value of all the 2 · n1/k states around the initial position of the head,
because the computation of the Turing machine simply does not depend on the
rest of the initial configuration. So for these cases, at most n1/k bits need to be
communicated for Alice or Bob to compute the answer. Note that if the bounds
for the particle are absent from the initial configuration, then no transition can
happen, thus Alice and Bob know the result in constant time.

..→ .→ .→ .→ .→ .q .← .← .← .← .←

.q

.q′

Figure 11: A CA for which Pred is P-complete.

Remark. A result by Hromkovic (see [7]) says that a Turing machine with a
single head working in time t(n) can only recognize a language of communication
complexity less than O(

√
t(n)). Said differently, a CA simulating a Turing ma-

chine cannot produce instances of communication complexity more than O(
√

n)
for the prediction problem on configurations with a single head (whatever the
machine does).

5.2. Invasion
This problem is even more complex than Pred: It is in fact undecidable.

However, since there is no limitation on the “classical computation” power of
Alice and Bob, it can be decided within very little communication.

Proposition 13.

1. For any CA F and any word u, we have: Invu
F ∈ Π0

1.
2. Their exist F and u such that Invu

F is Π0
1-complete, and yet CC (Invu

F) ∈
O(log n)

22

Proof.

1. Let F and u be fixed and consider the problem Invu
F . Given an input

x1, . . . , xn, we use the notations δl(t) and δr(t) for the leftmost and righmost
differences at time t between the orbit of pu and the orbit of pu(x1 · · ·xn)
as in Definition 4.

Claim. There exists a recursive function β such that for any n, any input
x1, . . . , xn and any ∆ ≥ 0 we have:

∃t, δr(t)− δl(t) ≥ ∆ ⇐⇒ ∃t ≤ β(∆), δr(t)− δl(t) ≥ ∆.

The proof follows from the above claim because the invasion problem can
be expressed as the following Π0

1 predicate:

∀∆ ≥ 0, ∃t ≤ β(∆), δr(t)− δl(t) ≥ ∆︸ ︷︷ ︸
recursive predicate

Proof of the claim. First, the orbit of pu is ultimately periodic: There are t0
and p such that for any t ≥ t0 we have F t(pu) = F t+p(pu). Given an input
x1, . . . , xn of the problem, denote by w(t) the word of length δr(t)− δl(t)
starting at position δl(t) in configuration F t

(
pu(x1, . . . , xn)

)
. The key point

is that for any t ≥ t0, the triple

χ(t + 1) =
(
w(t + 1), δl(t + 1) mod |u|, t + 1 mod p

)
is uniquely determined by the triple

χ(t) =
(
w(t), δl(t) mod |u|, t mod p

)
(because the word w(t) “evolves” in a periodic context and knowing the
offset of the position of w(t) in that context is enough to know w(t + 1)).
Therefore, if the words w(t) are bounded by ∆ for a sufficiently long time
(exponential in ∆), then the triple χ(t) will take a value already taken before
and the sequence

(
χ(t)

)
t

will be ultimately periodic, showing that |w(t)|
is bounded and that there is no invasion. Adding t0 to this exponential
function is a convinient choice for β.

2. We build a CA F that simulates a 2-counter machine [11]. More precisely,
standard states have two layers: a data layer over states A,M, B, 0, used
to store the value of the 2 unary counters, and a control layer made of
a Turing head storing a state from Q, with the extra → and ← symbols
ensuring the uniqueness of the head. Finally, F possesses a blank state ∅
and a spreading state K to deal with encoding problems. The state set is
therefore

{K} ∪ {∅} ∪
(
Q ∪ {→,←}

)
∪ {A,B, 0,M}.

A valid configuration is a configuration everywhere equal to ∅ except on
finite coding segments which have the folloing form (see figure 12):

• the data layer must be of the form: 0∗A+MB+0∗;

• the control layer must be of the form: →+ q ←+ with q ∈ Q.

The number of As and Bs represent the current value of the 2 counters.
The behaviour of F is the following:

23

..Data layer
.Control layer

.∅

.∅
.∅
.∅

.A

.→
.A

.→
.A

.→
.M

.q

.B

.←
.0

.←
.∅
.∅

.∅

.∅
.∅
.∅

Figure 12: A well-formed piece of configuration. The counter A contains value 3 and the
counter B contains value 1 in this example.

• If the configuration is not valid (which can be detected locally), then
the state K is generated and spreads;

• If the configuration is valid, then on each coding segment, the (neces-
sarily unique) head goes repeatidely from one extremity of the segment
to the other and extend the segment at each passage by adding a→ on
the left (resp. ← on the right) and a 0 on the data layer. If the exten-
sion step is blocked by another segment, then the state K is generated
and spreads;

• Moreover, at each passage on the segment, the head executes one of
the basic 2-counter machine’s instructions:

– testing if a counter is empty can be done by checking if there is a
0 to the right (resp. the left) of the unique M ;

– decrementing can be done be replacing the leftmost A (resp. right-
most B) by a 0;

– incrementing can be done by replacing a 0 by A on the left of the
leftmost A (resp. by B on the right of the rightmost B); such a
0 must exist because the segment is extended at each passage by
both sides;

– finally, the head can simply stop.

If any order given to the head leads to an incoherence (decrement an empty
counter, write a B when on the ’A’ part of the segment, etc), the state K
is genereated and spreads.
With this definition, and if u = ∅, the halting problem for the 2-counter ma-
chine encoded in F (input: value of counters; output: does it halt started
from these values?) clearly reduces to Invu

F (halt⇐⇒ no invasion). There-
fore, by a suitable choice of the 2-counter machine used to construct F , we
have that Invu

F is Π0
1-complete.

To conclude the proof, we show that CC (Invu
F) ∈ O(log(n)). Given an

input w split between Alice and Bob, the following protocol determines
whether Invu

F (w) = 1:

• first Alice and Bob check whether the input configuration is valid;
if not, the answer is ’invasion’; this can be done with O(1) bits of
communication since validity is a local property;

• the configuration being valid, Alice and Bob communicate so that for
any pair of consecutive valid segments s1 and s2, either Alice or Bob
knows the state of both s1 and s2 and the distance between them; to
achieve this, even if a segment is split between Alice’s part and Bob’s
part, it is sufficient that they communicate O(log(n)) bits; indeed, a
segment is completely defined by:

– the value and position of the head,

24

– number of 0 states on the right and the same on the left,
– number of As and number of Bs.

• since for each pair of valid segment, Alice or Bob as enough information
to detect a possible future collision, they can determine together with
O(1) bits of communication whether there is invasion or not; indeed,
invasion is equivalent to: either their is a collision somewhere, or their
is a single segment holding a non-halting computation.

5.3. Cycle-length
For this problem, we could find a CA of maximal algorithmic complexity,

as shown by the following proposition. However, we have to leave as an open
problem the existence of a CA F for which both Cyclek

F is pspace-complete
for some k ∈ N, and CC

(
Cyclek

F

)
∈ o(n).

Proposition 14. 1. For any CA F and any k ≥ 1, Cyclek
F ∈ pspace.

2. Their exist F and k such that Cyclek
F is pspace-complete.

Proof.

1. Let F and k ≥ 1 be fixed. The length of the cycle reached by iterating F
on a periodic initial configuration c can be determined in polynomial space
with the algorithm described below. Let n be the period of c. Starting
from c, the cycle is reached in less than αn steps where α is the cardinal of
the state set.
(a) compute c0 = Fαn

(c) (memory usage: O(n));
(b) memorize c0 and compute the first t such that F t(c0) = c0 (memory

usage: O(n) because such a t is less than αn).
2. To show this, we embed a Turing machineM, deciding a pspace-complete

language, in a cyclic configuration for a cellular automaton. M works in
polynomial space, meaning that there is a polynomial P ∈ N[X] such that
for any x ∈ Γ∗, it will never use more than P (|x|) tape cells.
We can encode a Turing machine easily into a simple cellular automaton
F: the states code for the Turing tape cells, and there is a special “head”
state carrying the state of the machine. It can be easily shown that we can
encode the transitions of a Turing machine into a local cellular automaton
rule, ensuring that if there is only one head at the beginning, then it will
be so during all the computation.
Moreover, the accepting state is spreading, meaning that if it appears some-
where, it spreads over all the configuration in both directions. The rejecting
state launches a particle erasing the configuration (i.e., writing blank states
everywhere), but shifting clockwise. In this way, an accepting computation
will result in period 1, whereas rejecting computations will yield periods of
the size of the configuration.
A polynomial-time transducer can easily encode an input x for M into a
(cyclic) configuration of F, like shown in figure 13. It first directly translates
x into states of F, then computes P (|x|) and outputs P (x) blank states.

25

6. Intrinsic universality: Ruling out concrete elementary CAs

6.1. CA Rule 218
The local function f218 : {0, 1}3 → {0, 1} of CA Rule 218 is defined in

Figure 14(a).
From the result of [5] we already knew that CC (PredF218) ∈ O(log(n)). It

follows from Corollary 2 that Rule 218 is not intrinsically universal. Neverthe-
less, the proof of [5] was very long and complicated. As we are going to see now,
the invasion approach gives a short and elegant proof of the same result.

Definition 7. A word is additive if 1s are isolated and separated by an odd
number of 0s. By extension, an infinite configuration is additive if it contains
only additive words.

Lemma 2. Additivity is preserved by iterations. Moreover, if abc is additive
then:

f218(a, b, c) ̸= f218(1− a, b, c) and f218(a, b, c) ̸= f218(a, b, 1− c).

Proof. First additivity is preserved by iterations because 010n10 becomes 010n−210
for n ≥ 3 and 01010 becomes 000.

To conclude the lemma, it is sufficient to check that, for any a,b,c such that
11 is not a factor of abc then:

f218(a, b, c) ̸= f218(1− a, b, c) and f218(a, b, c) ̸= f218(a, b, 1− c).

Lemma 3. Let c be any non-additive configuration. Then, after a finite time,
the word 11 appears in the evolution and this word is a wall.

Proof. First 11 is a wall because:

f218(∗, 1, 1) = f218(1, 1, ∗) = 1.

To conclude it is sufficient to check that the image of 10n1 with n ≥ 2 is 10n−21.

Proposition 15. For all u, we have CC
(
Invu

F218

)
≤ 1.

Proof. First, if the configuration pu is non-additive then, by Lemma 3, at some
time t a wall appears periodically in F t

218(pu). Hence, for any x1, . . . , xn, the
differences between pu(x1, . . . , xn) and pu are bounded to a fixed finite region.
Said differently, there is never propagation for such an u.

Now consider the case where pu is additive. By Lemma 2, we have for any
x1, . . . , xn:

• either pu = pu(x1, . . . , xn),

• or for any t ≥ 0:

δl(t) = δl(0)− t

δr(t) = δr(0) + t

Therefore, the problem consists in deciding whether pu and pu(x1, . . . , xn)
are equal, which can be done with 1 bit of communication.

Corollary 4. CA Rule 218 is not intrinsically universal.

26

6.2. CA Rule 94
The local function f94 : {0, 1}3 → {0, 1} of CA Rule 94 is defined in Fig-

ure 15(a).
Here appears clearly how powerful the invasion approach is (as a tool for

proving non-universality). Finding an upper bound (a protocol) for CC (PredF94)
seems to be hard. Nevertheless, here we prove in a rather simple way that its
invasion complexity is logarithmic.

Definition 8. A configuration is additive if its language is included in
(
(00)+(11)+

)∗
(blocks of 0s or 1s are always of even length).

Lemma 4. f94 is bi-permutative when restricted to additive configurations (it
behaves like f90) and additive configurations are stable under iterations.

Proof. For stability of additive configurations, it is sufficient to check that
00(11)n00 becomes 11(00)n−111 and 11(00)n11 becomes 11(00)n−111 for n ≥ 1.

f94 differs from f90 only for transition 010, hence bi-permutativity.

Lemma 5. If c is a non-additive configuration which does not contain 010, then
101 appears after a finite time and it is a wall. More precisely, a wall appears
after t + 1 steps of CA Rule 94 at the middle of any occurrence of 102t+11 or
012t+30 (with t ≥ 0).

Proof. First 101 is stable under iterations of f94. Second, 10n1 with n ≥ 2 is
sent to 10n−21 and 01n0 is sent to 10n−21 for n ≥ 2.

Lemma 6. The orbit of a configuration c contains a wall if and only if F94(c)
is not additive.

Proof. From Lemma 5, it is enough to show that if c is a configuration not
containing 101 then F94(c) does not contain 010. For that, it is sufficient to
check that any word u such that f94(u) = 010 must contain 101.

From the 2 lemmas above, we get that

Proposition 16. For any u we have CC
(
Invu

F94

)
∈ O(log(n)).

Proof. If u is such that the orbit of pu contains a wall, then invasion never
occurs.

If u is such that the orbit of pu does not contain any wall, then it means
that F94(pu) is additive (by Lemma 6). In this situation, two cases are to be
considered depending on the input x1, . . . , xn. Knowing in which case we are
can be done exchanging a constant number of bits:

• either F94(pu(x1, . . . , xn)) is also additive and then, by Lemma 4, there is
invasion if and only if F94(pu) = F94(pu(x1, . . . , xn)). This can be decided
with a finite number of bits of communication.

• or F94(pu(x1, . . . , xn)) is not additive. Then it contains some 102t+11 or
some 012t+30 (with t ≥ 0) because, as shown in the proof of lemma, if the
image of a configuration contains 010 it must also contain 101. Consider
the leftmost and the rightmost occurrences of such kind of words. Since
walls appear above the middle of that 2 occurrences after a time equal to
their half-lengths (Lemma 5), the fact there is invasion or not does not

27

depend on what is beetween that two occurrences. It take O(log(n)) bits of
communications for Alice to know the positions of that 2 occurrences and
the exact words present at those positions (of type 102t+11 or 012t+30).
Moreover, as soon as Alice knows this she also knows that on the left of
the leftmost occurrence and on the right of the rightmost occurrence, the
configuration is additive. If there is 1 difference with pu in those additive
part, then there is invasion. If not, then Alice has all information to
decide invasion. Deciding in which of the two cases we are can be done
exchanging a constant number of bits.

Corollary 5. CA Rule 94 is not intrinsically universal.

6.3. CA Rule 33
We are going to show that this rule, although non-trivial for the Pred

problem, needs zero communication for the Cycle problem. To show this,
we prove that the cycle length of Rule 33 is always 2. The local function
f33 : {0, 1}3 → {0, 1} of CA Rule 33 is defined in Figure 16(a).

Lemma 7. All configurations that do not contain neither 101 (isolated 0s) nor
1001 (isolated 00s) are stable under (F33)2.

Proof. We call A0 the set of configurations without isolated 0s, and A00 the
set configuration without isolated 00s. First notice that the only antecedent of
101 is 10101, which contains an isolated 0, thus A0 is stable under F33. With
an exhaustive exploration of all configurations of the form u = abxyzcd where
xyz ∈ {000 . . . 111}, and u ∈ A0 ∩A00, we observe that:

∀u ∈ A0 ∩A00, |u| = 7, (F33)2(u1 . . . u7) = u3u4u5

Lemma 8. All (cyclic) configurations of length n, different from (01)⌊n/2⌋, do
not contain isolated 0s after

⌊
n
2

⌋
steps of CA Rule 33.

Proof. We already noticed in Lemma 7 that the only possible antecedent of 101
is 10101. Thus, there can be an isolated 0 after

⌊
n
2

⌋
steps only if there are at

least
⌊

n
2

⌋
isolated 0s in the initial configuration, i.e. if the initial configuration

is (01)⌊n/2⌋.

Corollary 6. After
⌊

n
2

⌋
+ 1 steps of CA Rule 33, there are no isolated couples

of 0s.

Proof. The only antecedents of 1001 contain an isolated 0.

Corollary 7. After
⌊

n
2

⌋
+1 steps, CA Rule 33 becomes periodic, with period 2.

Proposition 17. A deterministic protocol for predicting CA Rule 33 can not
be in o(log n).

28

Proof. As usually, we just find a fooling set (see Definition 1). Consider the
following set Sn:

Sn = {(1n−2k(01)k0, (10)k1n−2k), 0 ≤ k ≤ ⌊n/2⌋}

It can be easily verified that:{
Fn

33(1
2n−k(01)k0(10)k12n−k) = n mod 2

Fn
33(1

2n−i(01)i0(10)j12n−j) = 1 + (n mod 2) whenever i ̸= j

Since |Sn| =
⌊

n
2

⌋
, we conclude that a deterministic protocol for CA Rule 33

needs at least Ω(log2 n) bits of communication.

7. Conclusion

We have proposed a method to prove negative results concerning intrinsic
universality in CAs. We have shown that this approach can be used both to
show that some global dynamical properties imply non-universality, and to rule
out some concrete CA from being universal. We believe that this work should
be pursued in the following directions:

• It seems that more can be said about the communication complexity prob-
lems for the class of surjective CAs and some of its sub-classes (k-to-1,
d-separated, left/right-closing, etc. [6]);

• The case of elementary rules 218 and 94 shows that low-cost communi-
cation protocols can be found in CAs that are not linear, but containing
a linear component ‘in competition’ with another component. Finding a
general formalisation for such kind of behaviours could be useful to treat
many other concrete examples.

• Concerning concrete CAs, ruling out as many elementary rules as possible
from being intrinsically universal seems to be an interesting (but ambi-
tious) goal. We could also consider other natural classes of small CAs
(one-way automata, totalistic rules, etc.).

• The splitting of inputs that induce maximal communication complexity is
a key parameter, especially for the prediction problem. There is no reason
for such maximal splittings to be unique, and if it is unique, there is no
reason to be located in the middle of the input. We suspect that there are
some links between directional entropy and the evolution of such maximal
splitting (when increasing the input size).

• Although completely formalized in dimension 1, there is no doubt that this
approach can be adapted to higher dimensions; it could be the occasion to
adopt other communication complexity models (like the multiparty model)
and discuss other ways of splitting the input.

29

References

[1] Laurent Boyer and Guillaume Theyssier. On local symmetries and uni-
versality in cellular automata. In Proceedings of the 26th International
Symposium on Theoretical Aspects of Computer Science (STACS), pages
195–206, 2009.

[2] Matthew Cook. Universality in elementary cellular automata. Complex
Systems, 15:1–40, 2004.

[3] B. Durand and Z. Róka. Cellular Automata: a Parallel Model, volume 460
of Mathematics and its Applications., chapter The game of life:universality
revisited., pages 51–74. Kluwer Academic Publishers, 1999.

[4] Christoph Dürr, Ivan Rapaport, and Guillaume Theyssier. Cellular au-
tomata and communication complexity. Theoretical Computer Science,
322(2):355–368, 2004.

[5] Eric Goles, Cedric Little, and Ivan Rapaport. Understanding a non-trivial
cellular automaton by finding its simplest underlying communication pro-
tocol. In Seok-Hee Hong and Hiroshi Nagamochi, editors, Proceedings of
the 19th International Symposium on Algorithms and Complexity (ISAAC
2008), Lecture Notes in Computer Science 5369, volume 2380 of Lecture
Notes in Computer Science, pages 71–94. Springer, 2008.

[6] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical
systems. Mathematical Systems Theory, 3(4):320–375, 1969.

[7] Juraj Hromkovic and Georg Schnitger. Communication complexity and
sequential compuation. In MFCS ’97: Proceedings of the 22nd International
Symposium on Mathematical Foundations of Computer Science, pages 71–
84, London, UK, 1997. Springer-Verlag.

[8] P. Kurka. Languages, equicontinuity and attractors in cellular automata.
Ergodic theory and dynamical systems, 17:417–433, 1997.

[9] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge
university press, 1997.

[10] Jacques Mazoyer and Ivan Rapaport. Inducing an order on cellular au-
tomata by a grouping operation. Discrete Applied Mathematics, 91:177–
196, 1999.

[11] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-
Hall, Englewood Cliffs, New Jersey, 1967.

[12] Turlough Neary and Damien Woods. P-completeness of cellular automaton
Rule 110. In In International Colloquium on Automata Languages and
Programming (ICALP), volume 4051 of LNCS, pages 132–143. Springer,
2006.

[13] Nicolas Ollinger. Universalities in cellular automata: a (short) survey. In
B. Durand, editor, Symposium on Cellular Automata Journées Automates
Cellulaires (JAC’08), pages 102–118. MCCME Publishing House, Moscow,
2008.

30

[14] Mathieu Sablik. Directional dynamics for cellular automata: A sensitivity
to initial condition approach. Theoretical Computer Science, 400(1-3):1–18,
2008.

[15] Guillaume Theyssier. Cellular automata : a model of complexities. PhD
thesis, ENS Lyon, 2005.

[16] John von Neumann. The theory of self-reproducing cellular automata. Uni-
versity of Illinois Press, Urbana, Illinois, 1967.

[17] Andrew Chi-Chih Yao. Some complexity questions related to distributive
computing (preliminary report). In STOC, pages 209–213. ACM, 1979.

31

.

.Turing head (state: Q)

.P (n)

Figure 13: The output of the transducer used in Proposition 14.

0
0 0 0

1
0 0 1

0
0 1 0

1
0 1 1

1
1 0 0

0
1 0 1

1
1 1 0

1
1 1 1

(a) f218.

.
(b) Example of a space-time diagram for CA Rule 218.

Figure 14: CA Rule 218.

32

0
0 0 0

1
0 0 1

1
0 1 0

1
0 1 1

1
1 0 0

0
1 0 1

1
1 1 0

0
1 1 1

(a) f94.

.
(b) Example of a space-time diagram for CA Rule 94.

Figure 15: CA Rule 94.

1
0 0 0

0
0 0 1

0
0 1 0

0
0 1 1

0
1 0 0

1
1 0 1

0
1 1 0

0
1 1 1

(a) f33.

.
(b) Example of a space-time diagram for CA Rule 33.

Figure 16: CA Rule 33.

33

