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Abstract

We first prove that the set of domino tilings of a fixed finite figure is a distribu-
tive lattice, even in the case when the figure has holes. We then give a geometrical
interpretation of the order given by this lattice, using (not necessarily local) trans-
formations called flips.

This study allows us to formulate an exhaustive generation algorithm and a uni-
form random sampling algorithm.

We finally extend these results to other types of tilings (calisson tilings, tilings
with bicolored Wang tiles).
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1 Introduction

In the last ten years a lot of progress has been done in the study of tilings.
Most remarkably, W. P. Thurston [23], using work of J. H. Conway and J. F.
Lagarias [5], introduced the notion of height functions, which encode domino
tilings and calisson tilings of a polygon P .

The notion of height function appears to be a very powerful tool for the study
of tilings. It has notably been extended by different authors [12] [18] to study
tiling algorithms for other sets of prototiles.

For domino tilings, height functions induce a structure of distributive lattice
(in the sense of order theory, see for example [7]) on the set of tilings of a fixed
polygon (see [4] [15] or [19] for a detailed study). This strong structure is a main
point to explain a lot of results about domino tilings: tiling algorithm [23],
rapidly mixing Markov chains for random sampling [13] [24], computation of
the number of necessary flips (local transformations involving two dominoes)
to pass from a fixed tiling to another fixed tiling [19], efficient exhaustive
generation of tilings [8] [9].

Dominoes are of particular importance to theoretical physicists, for whom
dominoes are models of dimers, which are diatomic molecules (such as dihy-
drogen), and each tiling is seen as a possible state of a solid or a fluid.

The present paper tries to generalize previous results to figures which are not
polygons, i. e. figures with holes. To do it, generalizing previous ideas of [20]
and [22], we first introduce an equilibrium function on edges of cells of the
figure. We also need to introduce some structural notions, following works of
J. Propp [15] and J. C. Fournier [10]: The critical cycles, which induce forced
components and generalized flips. With these tools, we have a constructive
way to obtain the structure of distributive lattice previously introduced by J.
Propp [15]. Moreover, we have a geometrical interpretation of it.

Since our approach is constructive, it allows us to exhibit algorithms to com-
pute the objects introduced. As a consequence, we obtain an exhaustive gen-
eration algorithm and a uniform random sampling algorithm.

We finish by proving that these ideas can be directly adapted for other types
of tilings: Calisson tilings and tilings with bicolored Wang tiles.

? This works was partially supported by projects Fondeyct 1010442 (M. Matamala),
Fondeyct 1020611 (I. Rapaport) and Ecos

Email addresses: Sebastien.Desreux@liafa.jussieu.fr (Sébastien Desreux),
mmatamal@dim.uchile.cl (Martin Matamala), irapapor@dim.uchile.cl (Ivan
Rapaport), Eric.Remila@ens-lyon.fr (Eric Rémila).
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2 Figures in the plane grid

2.1 The plane grid

Let Λ be the plane grid of the Euclidean plane R
2. A vertex of Λ is a point

whose coordinates are both integers.

A vertex v = (x1, y1) is a neighbor of another vertex v = (x2, y2) if |x1 − x2|+
|y1 − y2| = 1. Hence, each vertex v has four neighbors v + (1, 0), v − (1, 0),
v + (0, 1) and v − (0, 1) which are canonically called the East, West, North
and South neighbor of v, respectively. An edge of Λ is the closed segment of
straight line between two adjacent vertices. A cell of Λ is a (closed) unit square
whose corners are vertices. Two cells are 4-neighbors (respectively 8-neighbors)
if they share an edge (respectively at least a vertex).

A directed graph G = (V, E) is symmetric if (v, v′) ∈ E if and only if (v′, v) ∈
E for all v, v′ ∈ V . In this work we deal with the symmetric directed graph
(denoted by Λ+) obtained from the planar grid Λ by replacing each edge vv ′

by two arcs (v, v′) and (v′, v). For an arc a = (v, v′) of Λ+ we denote by [a]
its associated edge in Λ.

A (directed) path P in a directed graph G = (V, E) is a sequence of vertices
(v0, . . . , vk) such that (vi, vi+1) is an arc of G for every i = 0, . . . , k − 1. We
denote by E(P ) the multiset of all the arcs used by the path P and by V (P )
the multiset of its vertices. We say that G is connected if any two vertices of
V are linked by a path.

A path P = (v0, . . . , vk) with vk = v0 is called a cycle. The cycle is elementary
if vi = vj and i 6= j imply {i, j} = {0, k}. In a plane graph one has two kinds
of elementary cycles: The clockwise cycles and the counterclockwise ones.

Let G = (V, E) be a symmetric directed graph. A function g : E → Z is skew-
symmetric if g(v, v′) = −g(v′, v) for every (v, v′) ∈ E. Given any function
h : V → Z we define its associated difference function D(h) : E → Z by
D(h)(v, v′) = h(v′) − h(v), for all (v, v′) ∈ E. Conversely, if G is connected,
given a function g : E → Z which satisfies g(C) = 0 for all cycle C of GF

and a vertex w0 of V , there exists a unique function h : V → Z such that
h(w0) = 0 and D(h)(a) = g(a) for all a ∈ E.

Let E ′ be a multiset of arcs of G. We denote by g(E ′) the sum of the values g(a)
over all the arcs a ∈ E ′ (each arc a is counted according to its corresponding
multiplicity in the multiset). Then g(E ′) =

∑
a∈E′ g(a). For a path P , instead

of g(E(P )) we use the shorthand g(P ).

3



We assume that cells of Λ are colored as a checkerboard. We thus have black
cells and white cells, and two cells sharing an edge have different colors. Let
us define the spin function sp on the arcs of Λ+. For each arc a = (v, v′), the
spin of a is noted sp(a) and given by:

• sp(a) = 1 if an ant moving from v to v′ has a white cell on its left side (and
a black cell on its right side);

• sp(a) = −1 otherwise.

For each clockwise elementary cycle C, one has sp(C) = 4Dis(C) where
Dis(C), the disequilibrium of C, is the difference between the number of black
cells and the number of white cells enclosed by C. The result is true for each
cycle enclosing a single cell, and each elementary cycle can be decomposed
into such square cycles.

2.2 Figures

A figure F of Λ is a 4-connected (i. e. whose cells are connected according
to the 4-neighboring relation), finite union of cells of Λ. The unique infinite
8-connected component of R

2 \F is denoted by H∞. The other ones are called
the holes of F . The set of all edges in the boundary of F is denoted by Eb(F ).
The set of edges in H∞ ∩ F is called the outer-boundary of F and denoted
by Eob(F ). Analogously, we denote by Vb(F ) the set of all the vertices on the
boundary of F .

Because of the two types of connectivity for cells, we replace (until the end
of the paper) each vertex v of F such that each edge issued from v is on the
boundary of F , by two vertices v1 and v2, each of them connected to exactly
two neighbors of v (see Figure 1).

���������������
�����

��������������������� ���������������

���������������v

v1

v2

Fig. 1. Vertex duplication according to 4-connectivity of F and 8-connectivity of
R

2 \ F .

A figure defines a symmetric directed graph GF = (VF , EF ) such that VF is
the set of corners of cells of F (once duplication is done), and EF is the set
of arcs a such that [a] is a side of a cell of F . From this point of view, the
clockwise and counterclockwise contours of each hole are elementary cycles of
GF .

For each elementary clockwise cycle of F (i. e. whose arcs are in EF ) we
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define DisF (C) as the difference between the number of black cells of F and
the number of white cells of F enclosed by C.

2.3 Equilibrium function

Informally, we can say that we want to work as if F had no hole. To this end,
the informal idea is to introduce values on edges which make holes disappear.
Precisely, this is done by the use of equilibrium functions as defined below:

Definition 2.1 An equilibrium function (denoted by eq) is a skew-symmetric
function from EF to Z such that sp(C) + eq(C) = 4DisF (C), for every clock-
wise cycle C of F .

For figures without holes, it suffices to take eq = 0.

Notice that, through the decomposition of cycles, a function eq is an equilib-
rium function if and only if the following conditions holds.

• eq(C) = 0 for each elementary cycle C around a cell of F .
• eq(C) = −sp(C) for each cycle C which follows clockwise the boundary of

a hole of F .

More generally, for every cycle C of F , eq(C) is a number which does not
depend on the chosen equilibrium value. We prove in Section 4 that every
figure has an equilibrium function which can be efficiently computed.

We also need some auxiliary functions deduced from the function eq.

Definition 2.2 The functions eqr, t and b are functions from the set of arcs
of Λ+ to Z, defined by:

(1) eqr(a) = eq(a) − sp(a) for all a ∈ EF .
(2) t(a) = eq(a) − sp(a) + 2 for all a ∈ EF \ Eb(F ).
(3) b(a) = eq(a) − sp(a) − 2 for all a ∈ EF \ Eb(F ).
(4) t(a) = b(a) = eq(a) + sp(a) for all a ∈ Eb(F ).

Note that for any arc a in EF , t(a) − b(a) is either 0 or 4.

3 The lattice of tilings

In this section we associate three classes of objects to a figure: Tilings, height
functions and acyclic orientations. Our goal is the study of tilings, and height
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functions and acyclic orientations are some powerful tools to carry on this
study.

3.1 Tilings and height functions

A domino is a figure formed by two cells sharing an edge, which is called
the central axis of the domino. A tiling T of a figure F is a set of dominoes
included in F , with pairwise disjoint interiors (i. e. there is no overlap), such
that the union of the tiles of T equals F (i. e. there is no gap). Each tiling T
of a figure F is completely determined by the set of central axises of the tiles.
The characteristic function of a tiling T defined from the set of arcs of F into
Z is given by χT (a) = 1 if [a] is a central axis of a tile of T and χT (a) = 0
otherwise.

Let T be a tiling of F . The height difference in T , noted gT , is the skew-
symmetric function defined by

∀a ∈ EF gT (a) = eqr(a) + 2sp(a)(1 − 2χT (a))

Then gT (a) ∈ {b(a), t(a)} for every a ∈ EF .

Let us define gF (a) as eq(a) + sp(a) for every a ∈ EF . It can be seen that
for each pair (T, T ′) of tilings of F and every a ∈ EF , gT (a) − gT ′(a) =
−4sp(a)(χT (a)− χT ′(a)). Thus, if gT = gT ′, then T = T ′. Hence, the function
gT is a tool to encode the tilings. Moreover, for every arc a ∈ Eb(F ) and
every tiling T of F we necessarily have gT (a) = gF (a). Thus gT (a) does not
depend on T for a ∈ Eb(F ). Additionally, gT (a)−gT ′(a) ∈ {−4, 0, 4}, for every
a ∈ EF .

Proposition 3.1 Let T be a tiling of a figure F . For each cycle C of F , one
has gT (C) = 0.

This proposition is a generalization of a theorem by J. H. Conway [5] on tilings
of polygons.

Proof. (sketch) It suffices to prove the result for elementary cycles since the
height difference of each cycle is the sum of the height differences of the ele-
mentary cycles which compose it. This is done by induction on the number of
cells of Λ enclosed by the cycle.

The case of a cycle following the boundary of a hole is easily treated from the
definition of equilibrium functions. We also verify that the proposition holds
for elementary cycles of length 4 around a cell.
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We now use induction. If we are not in one of the cases treated above, then the
area enclosed by the cycle can be cut by a path in F , which induces two new
cycles, each of them enclosing less cells of Λ than the original cycle. Thus, by
the induction hypothesis, the height difference of both induced cycles is null,
from which it is easily deduced that the height difference of the original cycle
is null. 2

Proposition 3.1 guarantees the correctness of the definition below.

Definition 3.2 We fix a vertex w0 of H∞ . For each tiling T , the height
function induced by T (denoted by hT ) is the function from the set VF of
vertices of cells of F (once necessary vertex duplications have been done) to
the set Z of integers, defined by hT (w0) = 0 and D(hT ) = gT .

We now give a characterization of height functions of tilings.

Proposition 3.3 We denote by HF the class of all the functions h : VF → Z

satisfying the following properties:

• h(w0) = 0;
• for each arc a of EF , D(h)(a) ∈ {b(a), t(a)}.

For each tiling T , the function hT belongs to HF . Conversely, for each h ∈ HF

there exists a tiling T such that h = hT .

Proof. The first statement follows directly from the definition of gT . Let h
belong to HF and let C be a cycle around a cell. Then D(h)(C) − eqr(C) =
sp(C) since D(h)(C) = eq(C) = 0. Clearly, |sp(C)| = 4. Since D(h)(a) ∈
{b(a), t(a)}, there are three arcs of C such that D(h)(a) − eqr(a) = 2sp(a)
and exactly one arc satisfying D(h)(a)− eqr(a) = −2sp(a). Thus, the set T of
all dominoes whose central axis [a] is such that D(h)(a)− eqr(a) = −2sp(a) is
a tiling T of F . The equality h(v) = hT (v), for each vertex v of F , is obvious
by induction on the distance from w0 to v. 2

The proposition above allows one to consider each tiling as a height function.

Lemma 3.4 For every pair of height functions h and h′ and for each vertex
v of F , one has h(v) − h′(v) = 0[4]. Moreover, h(v) − h′(v) does not depend
on the chosen equilibrium function.

Proof. Obvious by induction on the length of a shortest path from w0 to v. 2

Let ≤ be the canonical order on functions: h ≤ h′ if and only if h(v) ≤ h′(v)
for all v ∈ VF .

Proposition 3.5 Let h and h′ belong to HF . The functions inf(h, h′) and
sup(h, h′) belong to HF .

7



In the vocabulary of order theory (see for example [3], [7]) the above proposi-
tion can be restated as follows: (HF ,≤) is a distributive lattice.

Proof. Let h1 = inf(h, h′). We shall prove that for every arc (v, v′) ∈ EF ,
h1(v

′)−h1(v) ∈ {h(v′)−h(v), h′(v′)−h′(v)} (the proof for sup(h, h′) is similar).

For the sake of contradiction, let us assume that there exists an arc a =
(v, v′) of F such that h1(v) = h(v) < h′(v) and h1(v

′) = h′(v′) < h(v′).
From Lemma 3.4, one has h′(v′) ≤ h(v′) − 4 and h(v) ≤ h′(v) − 4. Then
α := h′(v′) − h(v′) + h(v) − h′(v) satisfies α ≤ −8. On the other hand, α =
h′(v′) − h′(v) − (h(v′) − h(v)). Since h and h′ belong to HF , one obtains
α ≥ b(v, v′) − t(v, v′) = −4 which contradicts the hypothesis. 2

We define the following order on the ΓF of tilings of F : T ≤ T ′ if hT ≤ hT ′ .
From Proposition 3.3, (ΓF ,≤) is isomorphic to (HF ,≤). Thus (ΓF ,≤) is a
distributive lattice.

3.2 Forced components

Definition 3.6 An elementary cycle C of GF is critical if t(C) = 0.

Such a cycle is strongly critical if, moreover, sp(a) = 1, for each arc a ∈
E(C) \ Eb(F ).

We say that v and v′ are critically equivalent if there exists a critical cycle C
such that v, v′ ∈ V (C). The equivalence classes of this equivalence relation are
called the forced components of the figure F .

Let ĜF = (V̂F , ÊF ) be the symmetric graph whose vertices are the forced com-
ponents and where (U, U ′) is an arc of ĜF if there exists v ∈ U and v′ ∈ U ′

such that (v, v′) is an arc of GF . This graph is called the graph of forced
components of F .

Notice that each boundary cycle of a hole of F is strongly critical. The bound-
ary cycle of the outer boundary is critical if and only if F contains as many
black cells as white cells. A strongly critical cycle can be deduced from each
critical cycle by replacing each interior arc a with sp(a) = −1 by a sequence
a′, a′′, a′′′ of three arcs of positive spins.

It is easy to see that for any cycle C of GF , t(C) and eq(C) do not depend
on the chosen equilibrium function. Thus, the notion of critical cycle only
depends on the shape of the figure.

Definition 3.7 Let T be a tiling of F . The graph of T is the spanning subgraph

8
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Fig. 2. The forced components of a figure and the graph of forced components (U1

denotes the component containing the contours of the two holes).

of GF , denoted by GT = (VF , ET ), where a ∈ ET if and only if gT (a) = t(a).

By definition, every arc in Eb(F ) is an arc of GT . Moreover, a ∈ ET \ Eb(F )
if and only if χT (a) = 0 and sp(a) = 1, or χT (a) = 1 and sp(a) = −1.

The following proposition is the reason why we are interested in critical cycles
and forced components.

Proposition 3.8 Let C be a cycle of GF .

• If C is critical, then for every tiling T the cycle C is a cycle of GT . Con-
versely, if C is a cycle of GT for some tiling T , then C is critical.

• If C is strongly critical, then for every tiling T the cycle C is a cycle of GT

which does not cut any tile of T . Conversely, if for some tiling T C is a
cycle of GT that C cuts no tile of T , then C is strongly critical.

Proof. If C satisfies t(C) = 0, then for every tiling T of F one has t(C) =
gT (C). Therefore t(a) = gT (a) for every a ∈ E(C), whence C is a cycle of GT .
Conversely, if C is a cycle of GT , then gT (a) = t(a) for every a ∈ E(C). Thus,
from Proposition 3.1, t(C) = gT (C) = 0 and C is a critical cycle.

For the second part, assume that C is strongly critical. For every a ∈ E(C)
we have t(a) = gT (a), which implies sp(a) = 1, from which one knows that
χT (a) = 0; this means that C does not cut any tile of T . Conversely, let [a] be
an interior edge which does not cut any tile of T . By definition, gT (a) = sp(a)+
eq(a). Moreover, since a belongs to ET , one has gT (a) = t(a) = eq(a)−sp(a)+2
and finally sp(a) = 1. 2

Corollary 3.9 If F has a strongly critical cycle (v0, v1, . . . , vp) such that for
each integer 0 ≤ i < p, [vi, vi+1] is an interior edge, then there exists no tiling
of F .

Proof. Let vj = (xj, yj) be the vertex of this cycle with xj + yj maximal, and,
moreover, xj minimal with respect to the previous condition. One necessarily
has vj−1 = vj + (−1, 0), vj−2 = vj−1 + (0,−1) and (moreover) vj+1 = vj +
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(0,−1). Now, follow the cycle until the first vertex vj+2k such that vj+2k =
vj + (k,−k) and vj+2k+2 6= vj + (k + 1,−k − 1) (which forces that vj+2k+1 =
vj+2k + (0,−1) and vj+2k+2 = vj+2k+1 + (−1, 0)) (see Figure 3).

vj

vj+2k

Fig. 3. Proof of Corollary 3.9.

Let T be a tiling of F ; at least one tile of T must be cut by an edge of the path
formed from the part of the cycle from vj−2 to vj+2k+2. But this is impossible,
from Proposition 3.8. Thus there exists no tiling. 2

From Corollary 3.9, if F can be tiled then there are three kinds of forced
components: The component U∞, the single components which are reduced to
a single vertex, and the hole components which contain the contour of at least
one hole.

The following lemma establishes a useful relation between the height functions
and the forced components.

Lemma 3.10 Let v and v′ be critically equivalent vertices. For all h and h′

in HF , one has h(v) − h′(v) = h(v′) − h′(v′).

Proof. Let C = (v0, v1, . . . , vp) be a critical cycle passing through v and v′.
One can assume without loss of generality that v = v0 and v′ = vk. One has
h(v′) − h(v) =

∑k−1
i=0 D(h)(vi, vi+1) =

∑k−1
i=0 t(vi, vi+1) = h′(v′) − h′(v), which

yields the result. 2

Let us choose one vertex vU in each forced component U of GF . From Lemma
3.10, h ≤ h′ if and only if h(vU) ≤ h′(vU) for all U ∈ V̂F .

We define a distance on HF by

∆(h, h′) :=
∑

U∈V̂F

|h(vU) − h′(vU)|

Notice that the distance satisfies the following equalities:

∆(h, h′) = ∆(h, inf(h, h′)) + ∆(inf(h, h′), h′)

∆(h, h′) = ∆(h, sup(h, h′)) + ∆(sup(h, h′), h′)
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3.3 Acyclic orientations and flips

In this part we prove that the lattice of height functions of a tileable figure F
is isomorphic to a lattice of a subclass of orientations of the graph of forced
components. These lattices have been precisely studied by J. Propp [15].

Definition 3.11 A directed graph G is an orientation of F if G is an orien-
tation of ĜF such that |E(C) ∩ E(G)| = − 1

4
b(C) for all cycle C of ĜF . We

denote by GF the class of all the acyclic orientations of F .

Let h be a height function and let T be the corresponding tiling. Let Gh =
(V̂F , E) be the graph of strongly connected components of GT , i. e. the directed
graph defined by (U, U ′) ∈ E if and only if there exists an arc of GT from a
vertex of U to a vertex of U ′.

It is well known (see [2] for example) that the graph of strongly components
of any directed graph is acyclic. Hence, Gh is an acyclic orientation of ĜF .

Proposition 3.12 Let h be an element of H. Then Gh belongs to GF . Con-
versely, for each G = (V, E) ∈ GF there exists h ∈ H such that G = Gh.

Proof. Let C be a cycle of ĜF . Then 0 = D(h)(C) = D(h)(E(C) ∩ E) +
D(h)(E(C) \ E). Since D(h)(E(C) ∩ E) = t(E(C) ∩ E) and, for any arc a of
EF , t(a) = b(a)+4, one obtains: D(h)(E(C)∩E) = b(E(C)∩E)+4|E(C)∩E|.
Moreover, from the definition of Gh one obtains D(h)(E(C) \E) = b(E(C) \
E). Finally, 0 = 4|E(C) ∩ E| + b(C).

Conversely, let G = (V, E) belong to GF . Let g be the function defined by
g(a) = t(a) if a ∈ E and g(a) = b(a) if a ∈ ÊF \ E. We prove that g(C) = 0
for all cycle C. Clearly g(C) = g(E(C)∩E)+ g(E(C) \E). By definition of g,
one has g(E(C) ∩ E) = t(E(C) ∩ E) and g(E(C) \ E) = b(E(C) \ E). Since
for any arc a of EF t(a) = b(a)+4, one obtains that g(E(C)∩E) = b(E(C)∩
E)+ 4|E(C)∩E|. Then g(C) = b(E(C)∩E)+ 4|E(C)∩E|+b(E(C) \E) =
b(C) + 4|E(C) ∩ E| = 0. Thus there exists h ∈ H such that h(w0) = 0 and
D(h) = g. 2

Definition 3.13 Let G = (V, E) belong to GF and let U 6= U∞ be in V
without incoming (resp. outgoing) arcs. The graph obtained from G by an
upward (resp. downward) flip in U is the acyclic directed graph GU = (V, E+)
(resp. GU = (V, E−) ) where

E+ = E \ {(U, U ′) : (U, U ′) ∈ E} ∪ {(U ′, U) : (U, U ′) ∈ E}

and

E− = E \ {(U ′, U) : (U ′, U) ∈ E} ∪ {(U, U ′) : (U ′, U) ∈ E}
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An upward or downward flip in U corresponds to reversing all the arcs incident
to U . If U is reduced to a single vertex v, the flip is said to be local. If U contains
the contour of a hole, we say that it is a hole flip.

Proposition 3.14 For any G = (V, E) ∈ GF , GU = (V, E ′) belongs to GF .

Proof. Let C be a cycle of ĜF . Since the number of arcs (U, U ′) used by C
is equal to the number of arcs (U ′, U) used by C, one has |E(C) ∩ E| =
|E(C) ∩ E ′|. 2

Let us denote by hU the unique function in HF such that GhU = GU . We have
hU = h in V \ U and |hU − h| = 4 in U . The two corresponding tilings differ
only around U .

In particular, in ΓF a local flip in U = {v} (see Figure 4) is the replacement
in T of the pair of dominoes which cover the 2× 2 square centered in v by the
other pair which can cover the same square.

VV

Fig. 4. A local flip.

The upward flips defined above canonically induce an order on the set GF .
Given G and G′ in GF , we say that G ≤flip+ G′ if and only if there exists a

sequence (U0, . . . , Up−1) of vertices of ĜF and a sequence (G0, G1, . . . , Gp) of
graphs of GF such that G0 = G, Gp = G′ and, for each integer 0 ≤ i < p − 1,
Gi+1 is obtained from Gi by an upward flip.

Proposition 3.15 Let h and h′ belong to HF . Then h ≤ h′ if and only if
Gh ≤flip+ Gh′. Moreover, in this case, one can pass from Gh to Gh′ by a
sequence of ∆(h, h′)/4 flips.

Proof. The direct part of the proposition is proved by induction on the quantity
∆(h, h′). The result is obvious if ∆(h, h′) = 0 (i. e. h = h′).

Now, let us assume that ∆(h, h′) 6= 0 and h ≤ h′. We will prove that there
exists a forced component U such that, for each vertex vU of U , h(vU) < h′(vU)
(which implies h(vU) ≤ h′(vU) − 4) and an upward flip can be done from Gh

on U .

Let U0 be a component such that h(vU0
) < h′(vU0

). If an upward flip can
be done from Gh on U0, then we are done. Otherwise, there exists and arc
(v1, v0) in Gh, with v0 in U0 and v1 in another forced component U1. We have:
D(h)(v1, v0) = t(v1, v0), which gives D(h)(v0, v1) = b(v0, v1) .

From Lemma 3.10, we have: h′(vU1
) − h(vU1

) = h′(v1) − h(v1) and h′(vU0
) −
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h(vU0
) = h′(v0) − h(v0). Moreover, h′(v1) − h(v1) = D(h′)(v0, v1) + h′(v0) −

h(v0)−D(h)(v0, v1). Thus h′(vU1
)−h(vU1

) = h′(vU0
)−h(vU0

)+D(h′)(v0, v1)−
b(v0, v1), which yields h′(vU1

) − h(vU1
) ≥ h′(vU0

) − h(vU0
) > 0.

Either an upward flip can be performed on U1, or the same argument can be
repeated from U1 to obtain an arc (v1, v2) from U1 to another forced com-
ponent U2, D(h)(v1, v2) = b(v1, v2). By repeating the process, there are two
possibilities: Either one obtains a forced component Ui on which an upward
flip can be done, or an infinite sequence (Ui)i∈N is obtained. But since F is fi-
nite, the second possibility would imply that there exists a finite subsequence
(Uj, Uj+1, . . . , Uk) for which Uj = Uk, which is a contradiction since Gh is
acyclic.

We have now proved the existence of a forced component U such that an
upward flip can be done from Gh around U to obtain a function hU . Notice
that ∆(hU , h′) = ∆(h, h′)−4. This proves that by induction one can pass from
h to h′ with ∆(h, h′)/4 flips.

The undirect part of the first part of the proposition is obvious. 2

Corollary 3.16 The function ϕ : HF → GF defined by ϕ(h) = Gh is an order
isomorphism between (HF ,≤) and (GF ,≤flip+).

Corollary 3.17 Let h and h′ belong to HF . The number of successive flips
needed to pass from Gh to Gh′ is ∆(h, h′)/4. Moreover, the components U on
which flips are done in such a sequence are those such that h(vU ) 6= h′(vU).

Proof. A flip changes ∆(h, h′)/4 by one unit. Thus ∆(h, h′)/4 is a lower bound
and the bound is reached if each flip lets the quantity decrease. Thus the
bound can be reached only if the components U on which flips are done are
precisely those such that h(vU) 6= h′(vU).

Conversely, we have seen that for h ≤ h′, one can pass from Gh to Gh′

by a sequence of ∆(h, h′)/4 flips. For the general case we use inf(h, h′).
Passing through Ginf(h,h′), one can pass from Gh to Gh′ by a sequence of
∆(h, inf(h, h′))/4 + ∆(inf(h, h′), h′)/4 = ∆(h, h′)/4 successive flips. 2

Corollary 3.18 For each pair of tilings (T, T ′), it is possible to pass from T
to T ′ by a sequence of local flips if and only if hT = hT ′ for all the vertices on
the boundary of F . Moreover, in this case the number of local flips needed is∑

v∈EF
|hT (v) − hT ′(v)|.

Proof. This is a special case of the previous corollary. 2
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3.3.1 Freeness and rigidity of tilings

Informally, our tools allow one to see what is forced and what one has to
choose in order to tile a figure.

Lemma 3.19 Let h belong to HF . The function h is maximal if and only if
for each forced component U there exists a path P from U∞ to U in Gh.

The function h is minimal if and only if for each forced component U there
exists a path P from U to U∞ in Gh.

Proof. If there exists U ′ such that there is no path from U∞ to U ′ in Gh, then,
by taking a longest P ′ which finishes in U ′, one clearly deduces the existence
of a component U 6= U∞ of Gh with no incoming arcs. Thus an upward flip
can be done in U and h is not maximal.

Conversely, if h 6= hmax then it is possible to pass from h to hmax by a sequence
of upward flips. The first component U on which a flip is done in such a
sequence has no outgoing arc.

The proof for hmin is similar. 2

Proposition 3.20 For each component U such that U 6= U∞, one has hmin(vU) 6=
hmax(vU).

Proof. Assume that hmin(vU) = hmax(vU). Take an sequence of upward flips
from hmin to hmax. Since no flip is done on U , no upward flip can be done on
each component on a path of Ghmin

from U to U∞. Thus this path is also a
path of Ghmax

. By concatenating it with a path of Ghmax
from U∞ to U , a cycle

appears in Ghmax
, which is a contradiction. 2

Corollary 3.21 A vertex v of VF belongs to U∞ if and only if h(v) = h′(v)
for all h, h′ ∈ HF .

An arc a links two vertices of the same component if and only if D(h)(a) =
D(h′)(a), for all h, h′ ∈ HF .

Proof. If v belongs to U∞, then h(v)−h′(v) = h(w0)−h′(w0) = 0 from Lemma
3.10. Otherwise, hmin(v) 6= hmax(v) according to the previous Proposition.

If an arc a links two vertices of the same component, then D(h)(a) = D(h′)(a)
from Lemma 3.10. Conversely, if an arc a does not link two vertices of the same
component, then one of its vertices is in a component U such that U 6= U∞.
Take an sequence of upward flips from hmin to hmax. A flip of the sequence is
done on U , which implies that there exists a pair (h, h′) of functions such that
D(h)(a) 6= D(h′)(a). 2
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4 Effective construction and algorithms

4.1 Forced components

When F can be tiled (which is the interesting case), the graph of forced com-
ponents can be constructed in polynomial time: Given a tiling T , we have to
construct the graph of strongly connected components of GT , which can be
done in linear time (see [21] or [6]).

We know from matching theory that there exists an O(n3/2) algorithm [11] to
obtain such a tiling T , where n denotes the area of F . N. Thiant [22] gives an
algorithm which is linear in the area enclosed by F (i. e. the sum of the area
of F and the areas of the holes).

4.2 Construction of an equilibrium function

An equilibrium function can be exhibited using cut lines (see also [20]) as
follows (see Figure 5):

For each hole Hi of F , we (arbitrarily) fix a vertical segment Li = [pi, p
′
i] (which

is called a cut line issued from Hi) of R
2 such that pi is the central point of a

highest cell of Hi; there exists a positive integer ni such that p′i = pi + (0, ni),
the vertex p′i is not in F , and, for each integer such that 0 < n′

i < ni, the
point pi + (0, n′

i) is the central point of a cell of F . Hence, the point p′
i is the

central point of a cell of another 8-connected component, Hj of R
2 \ F , with

j 6= i (and, possibly, j = ∞).

Fig. 5. Computation of an equilibrium function by step values.
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We say that Hj is the (immediate) predecessor of Hi. This construction induces
a directed tree whose vertices are 8-connected components of R

2 \F . This tree
is rooted in H∞. We inductively define the step value of a hole Hi (denoted by
step(i)) as follows: Let Ci = (vi,0, vi,1, . . . , vi,pi

) be a cycle which (clockwise)
follows the boundary of Hi. We state:

step(i) =
∑

j|Hj has Hi for predecessor

step(j) − sp(Ci)

We can now define the equilibrium value of an arc (v, v′) by:

• eq(v, v′) = step(i) if v′ is the East neighbor of v and the line segment [v, v′]
crosses the cut line Li;

• eq(v, v′) = −step(i) if v′ is the West neighbor of v and the line segment
[v, v′] crosses the cut line Li;

• eq(v, v′) = 0 if the line segment [v, v′] crosses no cut line.

This function satisfies the conditions of the definition: It is obvious for cycles
surrounding single cells, and if Ci is a cycle which clockwise surrounds the hole
Hi, one has eq(Ci) = step(i)−

∑
j|Hj has Hi for predecessor step(j) = −sp(Ci).

The equilibrium function defined above has a specific property which can be
used for algorithmic arguments: For each pair (v, v ′) of vertices of VF , there
exists a path P from v to v′ such that for each arc a of P , eq(a) = 0. This
implies that there exists a spanning tree TF of GF such that for each arc a of
TF (seen as a symmetric graph), eq(a) = 0.

For each arc a of EF , |eq(a)| ≤ 4n (this upper bound can be reached by
taking a cycle which uses a and cuts no line, except a). A precise study shows
that such an equilibrium function can be constructed in O(n logn) time units,
where n denotes the number of cells of F .

4.3 Minimal tiling

For figures without holes, W. P. Thurston [23] has exhibited an algorithm
that builds the minimal tiling. For the general case, this algorithm can be
generalized as follows.

Initialization: For each vertex v, the algorithm uses a variable value h(v)
and two fixed values low(v) and sup(v).

From previous results, we know that for all a ∈ Eob(F ) and all tiling T ,
gT (a) = gF (a). Then the value h(v) can be computed for all the vertices on
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the boundary of H∞. If a contradiction appears, then stop. Otherwise, set
low(v) = sup(v) := h(v) for all v on the boundary of H∞.

We first construct a spanning tree TF on GF rooted in w0. Then, for all vertices
v not on the boundary of H∞, we set sup(v) = t(TF v) and low(v) = b(TF v),
where TF v denotes the unique path from w0 to v in TF .

We set h(v) = low(v) for all vertices v not on the boundary of H∞.

The algorithm also uses a set V consisting of vertices v such that there exists a
neighbor v′ of v satisfying h(v) + t(v, v′) < h(v′). This set is computed during
the initialization.

Main loop: While V is not empty:

• Pick a vertex v in V and update h(v) by adding 4 units. If h(v) > sup(v)
after updating, then stop (there is no tiling).

• Update V by adding the neighbors v′′ of v such that h(v′′)+ t(v′′, v) < h(v)
and remove v if necessary.

Proposition 4.1 Given a figure F formed of n cells, the above algorithm
stops after at most 16n2 time passages through the loop.

Moreover, the algorithm stops with V empty if and only if there exists a tiling.
In this case, when the algorithm stops, one has h = hTmin

.

Proof. First remark that, for each arc (v, v′) of EF , h(v′) − h(v) = t(v, v′) in
Z/4Z. This is true during the initialization: We introduce the cycle C formed
by the concatenation of (the opposite path of) TF v′, TF v and (v, v′). We have
t(C) = 0[4] and this, together with the relations between t and b, gives the
result. Moreover, this property is preserved by the loop. Thus, for each passage
through the loop, the sum

∑
v∈VF

(sup(v)−h(v)) decreases by at least 4 units.
Moreover, on each vertex v, sup(v) − low(v) ≤ 4|E(TFv)|, where |E(TFv)|
denotes the number of arcs of TF v. Notice that |E(TFv)| ≤ EF ≤ 4n and
VF ≤ 4n, which yields that

∑
v∈VF

(sup(v) − h(v)) ≤ 64n2 so the algorithm
stops after at most 16n2 passages through the loop.

When V becomes empty, each arc (v, v′) of EF satisfies the hypothesis of
Proposition 3.3. Thus there exists a tiling T such that hT = h. Moreover
h ≤ hTmin

(this is true during the initialization, and this property is preserved
by the loop), so hTmin

= h.

If the algorithm finds a vertex v such that h(v) > sup(v), then there is no tiling
since, otherwise, for each tiling T , hT (v) > sup(v), which is a contradiction
(clearly, from the definition of sup, hT (v) ≤ sup(v)). This finishes the proof.
2
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If we take into account the implementation, the cost of the algorithm is at
most 0(n2) time units, as follows:

All the values are encoded in unary numeration, which permits to add constant
numbers in constant time. We use the equilibrium function described in part
4.2 and the spanning tree TF is chosen in such a way that for each arc a of
TF , eq(a) = 0. Thus, the initialization costs 0(n2) time units, to compute h(v)
for each vertex and h(v′) − h(v) for each arcs.

Each passage through the loop uses O(1) time units since it consists in a fixed
number of additions of 4 units and sign tests. This gives the time complexity.

Of course, a similar algorithm can be designed to construct the maximal tiling
of F . Notice that, in the general case, this algorithm is not the best known to
construct a tiling, but we will see below that it is useful to have the extremal
ones.

4.4 Exhaustive generation

An exhaustive generation can be done, extending ideas of [9] to figures with
holes. Let (U1, U2, . . . , Uq) be a fixed total order of forced components of F
(except U∞). We define a total order <lex on tilings of F as follows: Given
two tilings T and T ′, we have T <lex T ′ if there exists an integer 1 ≤ i ≤ q
such that hT (v) < hT ′(v) for each vertex v of Ui and hT (v) = hT ′(v) for each
vertex v of Uj with 1 ≤ j < i.

The order <lex is a linear extension of <height, i. e. given two tilings T and T ′

such that T <height T ′, we have T <lex T ′.

Proposition 4.2 Let T be a (non-maximal) tiling of F and let Tsucc denote
the successor of T in the lexicographic order; let i denote the largest integer
such that an upward flip is possible in Ui.

The tiling Tsucc is the lowest tiling (for <height) such that hTsucc
(v) = hT (v)+4

for each vertex v of Ui, and hT (v) = hTsucc
(v) for each vertex v of Uj with

1 ≤ j < i.

Proof. Let T ′ be a tiling such that hT ′(v) = hT (v) + 4 for each vertex v of Ui

and hT ′(v) = h′(v) for each vertex v of Uj with 1 ≤ j < i. By definition, one
has Tsucc ≤lex T ′, since T ≤lex T ′.

Moreover, assume that hT = hTsucc
in Ui. Thus, by Corollary 3.16, one can

pass from T to sup(T, Tsucc) by a sequence of upward flips, which contradicts
the definition of the integer i. 2
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This proposition enables one to generate all the tilings of F as follows:

Initialization: Construct the graph Gforc of forced components, the tiling
Tmin, and the orientation o(Tmin). Output the tiling Tmin.

The algorithm uses a variable tiling T stored in memory, which for initializa-
tion is equal to Tmin.

Main loop: Compute the successor of T as follows:

• Find the last component Ui on which an upward flip can be done (if no
upward flip is possible, then stop).

• Construct the minimal tiling T ’ such that for each vertex v of ∪i−1
j=1Uj,

hT (v) = hT ′(v) and for each vertex v of Ui, hT ′(v) = hT (v) + 4.
• Replace T by T ′, o(T ) by o(T ′), output the tiling and go back to the begin-

ning of the loop.

The second item of the main loop can be done in O(n2) time units using an
algorithm derived from the algorithm of construction of the minimal tiling (it
suffices to change the initialization, fixing an appropriate value of h(v) for v
in ∪i

j=1Uj).

Thus, once the initialization is done, the maximal waiting time between two
consecutive tilings is O(n2) time units. The memory space is O(n2) since for
each vertex v, one has to store hT (v) (using unary numeration).

4.5 Uniform random sampling

Consider the following process: Given a tiling T , randomly choose a forced
component C and a direction (upwards or downwards). If a flip can be done
in C according to the chosen direction, then make this flip; otherwise, do not
change T . Trivially, this Markovian random process is ergodic and converges
to the uniform distribution.

Moreover, the method of “coupling from the past” [17] can be applied since
the process is monotonic and one has a method to construct the maximal
and minimal tilings. We thus have a randomized algorithm to sample domino
tilings uniformly at random. The space required is polynomial.

It has been previously proved [13] [24] that this process is rapidly mixing
for figures without holes. Does it remain true in the general case ? To our
knowledge, the question is still open.

About algorithms, the reader can also easily verify that, given a pair (T, T ′)
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of tilings, one can

• compute in linear time if one can pass from T to T ′ by a sequence of local
flips (it suffices to compare hT and hT ′ on the boundary of F );

• compute in polynomial time (with low degree) a shortest path of flips to go
from T to T ′ (using the cyclic orientations and the distance) and the length
of such a path.

5 Extension to other types of tilings

5.1 Calissons

The same study can easily be done for calisson (i. e. tiles formed by two
neighboring cells of the triangular lattice) tilings to get similar results. In
this case, local flips are induced by the two tilings of hexagons formed by six
triangular cells. There are only two small differences, detailed below:

• One has two types of connectivity for triangular cells (3-connectivity for cells
which share an edge, and 12-connectivity for cells which share a vertex).
Thus, some vertices have to be duplicated or triplicated (see Figure 6).

V 1V

V

V2

3

Fig. 6. Example of “triplication”.

• For the proof of corollary 3.9, one has to consider a part of the critical cycle
with vertices v = (x, y) such that y is maximal.

Fig. 7. A part of a critical cycle which implies that there is no tiling.

5.2 Bicolored Wang tiles

The case of dominoes is a particular case of tilings with Wang tiles (i. e. 1× 1
squares with colored edges, see [14] for details). They give rise to a tiling if
the colors on the edges of neighbor squares are compatible.
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An instance of the problem of tiling by bicolored Wang tiles is given by a
finite figure and a coloration of the edges which are on its boundary. Hence, a
domino tiling is a tiling by Wang tiles with one red edge and three blue edges,
all the edges on the boundary of the figure being blue.

5.2.1 Eulerian orientations

The same study can be done for tilings with “balanced Wang tiles” such
that each square has two blue edges and two red edges. In this case, one
has D(hT )(v, v′) = sp(v, v′) + eq(v, v′) if the corresponding edge is blue and
D(hT )(v, v′) = −sp(v, v′) + eq(v, v′) otherwise. This is recognizable as the
height function for Eulerian orientations of the dual lattice, called the six-
vertex ice model by physicists [1]. This is also equivalent to the height function
for three-colorings of vertices of the square lattice, and to alternating-sign
matrices [16]. The results are similar to those obtained for dominoes.

5.2.2 Examples with finite height functions

For the case of “odd tiles” (i. e. tiles with an odd number of blue edges and
an odd number of red edges as in [14]): One has to take a height function in
Z/8Z such that D(hT )(v, v′) = sp(v, v′)+eq(v, v′) if the corresponding edge is
blue and D(hT )(v, v′) = −3sp(v, v′) + eq(v, v′) otherwise. With our technique
of equilibrium value, it is easily proved that the set of the tilings of a fixed
figure has a structure of boolean lattice (or hypercube), even if the figure has
holes.

The case of “even tiles” (i. e. tiles with an even number of blue edges and an
even number of red edges) is very similar, with valT (v, v′) = (sp(v, v′), 0) if
the corresponding edge is blue and valT (v, v′) = (sp(v, v′), sp(v, v′)) otherwise.
These values are taken in Z/4Z × Z/2Z.
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