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Abstract. We study the multiparty communication model where play-
ers are the nodes of a network and each of these players knows his/her
own identifier together with the identifiers of his/her neighbors. The play-
ers simultaneously send a unique message to a referee who must decide
a graph property. The goal of this article is to separate, from the point
of view of message size complexity, three different settings: determinis-
tic protocols, randomized protocols with private coins and randomized
protocols with public coins. For this purpose we introduce the boolean
function Twins. This boolean function returns 1 if and only if there are
two nodes with the same neighborhood.

1 Introduction

In the number-in-hand multiparty communication model there are k players.
Each of these k players receives an n-bit input string xi and they all need to col-
laborate in order to compute some function f(x1, . . . , xk). Despite its simplicity,
the case k > 2 started to be studied very recently [1, 2, 4, 6–8, 13, 14].

There are different communication modes for the number-in-hand model. In
this paper we focus on the simultaneous message communication mode, in which
all players simultaneously send a unique message to a referee. The referee collects
the messages and computes the function f . The computational power of both the
players and the referee is unlimited. When designing a protocol for function f ,
the goal is to minimize the size of the longest message generated by the protocol.
This minimum, usually depending on n, is called the message size complexity of
f . Typical questions in communication complexity consist in designing protocols
with small messages, and proving lower bounds on the size of such messages.

Several authors considered the case where the data distributed among the
players is a graph [1, 4, 13, 14]. Informally, each player knows a set of edges of the
graph and together they must decide a graph property, e.g., connectivity. Again
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we can observe two different settings. In one of them, the edges are distributed
among the players in an adversarial way [1, 14]. In this work, following [1, 4], we
consider the setting where each player corresponds to a node of the graph, and
thus each player knows the identifier of this node together with the identifiers of
its neighbors, represented as an n-bits vector (in the vector xi of player i, the bit
number j is set to 1 if and only if the nodes i and j are adjacent). For the sake of
simplicity we assume that the graph has n nodes numbered from 1 to n, hence
there are k = n players, and we call this model number-in-hand for networks.

For many natural functions the messages are much shorter when randomiza-
tion is allowed [12]. In the randomized setting, there are significant differences
between the communication complexities of protocols using public coins (shared
by all players and the referee) and the more restrictive setting where each player
has his own, private coin. We emphasize that in the number-in-hand communi-
cation model for networks, each edge is “known” by two players, thus we have
some shared information. Not surprisingly, as pointed out in [14], this model is
stronger than the one where edges are distributed in an adversarial way among
players.

Related work.

The number-in-hand model with simultaneous messages and k = 2 players.
The case of two players is not new and it has been intensively studied. Clear
separations have been proved between deterministic, private coins and public
coins protocols in this case. For instance, the message size complexity of the
EQ function, which simply tests whether the two n-bit inputs are equal, is Θ(n)
for deterministic protocols [12], O(1) for randomized protocols with public coins
with constant one-sided error [3], and Θ(

√
n) for randomized protocols with

private coins and constant one-sided error [3] (see Section 2 for details). More
generally, Babai and Kimmel [3] proved that for any function f its randomized
message size complexity, for private coins protocols, is at least the square root of
its deterministic message size complexity. Chakrabarti et al. [5] proved that, for
some family of functions, the gap between deterministic and randomized message
size complexity with private coins is smaller that the square root.

The number-in-hand communication model for networks.
For deterministic protocols, Becker et al. [4] show that graphs of bounded de-
generacy can be completely reconstructed by the referee using messages of size
O(log n), and several natural problems like deciding whether the graph has a
triangle, or if its diameter is at most 3, have message size complexity of Θ(n).
For randomized protocols with public coins, Ahn, Guha and McGregor [1, 2] in-
troduced a beautiful and powerful technique for graph sketching. The technique
works both for streaming models and for the number-in-hand for networks, and
allows to solve Connectivity using messages of size O(log2 n). The protocols
have two-sided, O(1/nc) error, for any constant c > 0.

Our results. In this paper we separate the deterministic, the randomized with
private coins and the randomized with public coins settings of the number-in-
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hand for networks communication model. The separations are made using prob-
lem Twins and some variants. The boolean function Twins(G) returns 1 if and
only if graph G has two twins (that is, two nodes having the same neighborhood).
We also consider function Twinx(G), where x is the identifier of a node, and the
result is 1 if and only if there is some other node having the same neighborhood
as x.

We prove that the deterministic message size complexity of Twins and
Twinx is Θ(n). Also, both functions can be computed by randomized proto-
cols with public coins and message size O(log n). These protocols, based on the
classical fingerprint technique, have one-sided error O(1/nc) for any constant
c > 0. Observe that the situation for private coins is very different from the case
of the number-in-hand model with two players, where the gap between private
coins and determinism is at most the square root.

In order to separate the private and public coins settings we use a boolean
function called Translated-Twins (see Section 2 for details). We prove that
the message size complexity of this function in the private coins setting is Ω(

√
n),

while it is O(log n) in the public coins setting. The main results of this paper
are summarized in Table 1.

Twins Twinx Translated-Twins

Deterministic Θ(n) Θ(n) Θ(n)
Randomized private-coins O(

√
n logn) O(logn) Ω(

√
n), O(

√
n logn)

Randomized public-coins O(logn) O(logn) O(logn)

There are several natural problems that cannot be solved with randomized
protocols using o(n) bits. In the last part of this paper (Theorem 5) we sketch
how the arguments of [4], for proving negative results on deterministic proto-
cols, can be extended to the randomized setting. More precisely, we prove that
the randomized public coin message size complexity of the boolean functions
Triangle(G) (that outputs 1 if and only if G has a triangle) and Diam3(G)
(that outputs 1 if and only if G has diameter at most 3) is Ω(n).

2 Preliminaries

Number-in-hand. The number-in-hand communication model is defined as
follows. Let f be a function having as input k boolean vectors of length n.
There are k players {p1, . . . , pk} who wish to compute the value of f on input
(x1, . . . , xk) ∈ ({0, 1}n)k. Player pi only sees the input xi, and also knows his
own number i. We only consider here the simultaneous messages communication
mode, in which all the k players simultaneously send a message to a referee. After
that, the referee (another player who sees none of the inputs) announces the value
f(x1, . . . , xk) using only the information contained in the k messages.

A deterministic protocol P for function f describes the algorithms of the
players (for constructing the messages) and of the referee (for retrieving the final

3



result) that correctly computes f on all inputs. An ε-error randomized protocol
P for f is a protocol in which every player and the referee are allowed to use a
sequence of random bits, and for all (x1, . . . , xk) ∈ ({0, 1}n)k the referee outputs
f(x1, . . . , xk) with probability at least 1 − ε. For boolean functions f we define
a one-sided ε-error randomized protocol in the same way, with exception that
for all (x1, . . . , xk) ∈ ({0, 1}n)k such that f(x1, . . . , xk) = 1, the referee always
outputs 1.

We distinguish between two sub-cases of randomized protocols: (i) the private-
coin setting, in which each player, including the referee, flips private coins and
(ii) the public-coin setting, where the coins are shared between players, but the
referee can still have his own private coins.

The cost of a protocol P, denoted C(P), is the length of the longest message
sent to the referee. The deterministic message size complexity, denoted Cdet(f),
is the minimum cost of any deterministic protocol computing f . Analogously,
we denote Cpriv

ε (f), Cpub
ε (f), as the message size complexity for ε-error public

and private protocols, respectively.

Number-in-hand for networks. Number-in-hand for networks is a particular
case of number-in-hand where each party is a node of an n-vertex graph with
vertices numbered from 1 to n. Therefore, in this model, k = n, player pi cor-
responds to the node i and the inputs x1, . . . , xn correspond to the rows of the
adjacency matrix of some simple undirected graph G of size n. Hence, the input
of player (node) i is the characteristic function of the neighborhood NG(i) (i.e.
j ∈ NG(i) if and only if ij ∈ E(G)).

All our graphs are undirected, so for any pair i, j of nodes, the bit number
i of player j equals the bit number j of player i. In full words, each edge of
the graph is known by the two players corresponding to its end-nodes. All our
protocols use Ω(log n) bits. We assume, w.l.o.g., that each node sends its own
number in the message transmitted to the referee.

Known results. Let us recall some classical results of the number-in-hand
model with two players. Babai and Kimmel [3] have shown that the order of
magnitude of the private-coins randomized message size complexity of any func-
tion f is at least the square root of the deterministic message size complexity of f .
They also characterize completely the function: EQ : {0, 1}n×{0, 1}n → {0, 1},
where EQ(x, y) = 1 iff x = y.

Proposition 1 ([3]). Consider the number-in-hand model with two players and
a constant ε > 0. The function EQ on two n-bit boolean vectors has the fol-
lowing message size complexities: Cdet(EQ) = n, Cpriv

ε (EQ) = Θ(
√
n) and

Cpub
ε (EQ) = O(1). For any boolean function f , Cpriv

ε (f) = Ω(
√
Cdet(f)).

We also use the following result of Chakrabarti et al. [5] for private coins
protocol; the deterministic part is a matter of exercise.

Proposition 2 ([5]). Consider the boolean function OREQ that takes as input
two boolean n × n matrices, and the output is 1 if and only if there is some
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1 ≤ i ≤ n such that the i-th lines of the two matrices are equal. Then, for any
ε < 1/2, Cpriv

ε (OREQ) = Ω(n
√
n). Also, Cdet(OREQ) = Θ(n2).

The problems. We now come back to the number-in-hand for networks model.
In this framework we shall study three boolean functions on graphs.

– Twins(G) outputs 1 if and only if G has two vertices u and v with the same
neighborhood, i.e., such that N(u) = N(v).

– Twinsx(G) is a “pointed” version of previous function. Its output is 1 if and
only if there is a vertex y such that N(y) = N(x).

– Translated-Twins is defined on input graphs G of size 2n, labeled from 1
to 2n. Its output is 1 if and only if G has a vertex i such that, for any vertex
j, j ∈ N(i) ⇐⇒ j + n ∈ N(i + n). In other words, the output is 1 if and
only if there exists i such that N(i) + n = N(i+ n).

For reductions we also use the function Reconstruction(G), whose output
is G itself, i.e., the adjacency matrix of G. Note that if a deterministic protocol
computes Reconstruction on the family of n-vertex graphs Gn, then such
protocol must generate messages of size at least log(|G|)/n (see also [4]).

3 Deterministic protocols

Theorem 1. The deterministic message size complexity of functions Twins,
Twinx and Translated-Twins is Θ(n).

The upper bounds of O(n) are trivial so we only need to prove the lower
bounds. For the first two problems, we use the following reduction.

Lemma 1. Assume that there is a deterministic protocol solving Twins (resp.
Twins2n+1) on 2n + 1-node graphs using messages of size g(n). Then one can
solve Reconstruction on n-node graphs using messages of size 2g(n).

Proof. Let G be an arbitrary n-nodes graph, i be an integer between 1 and n
and S be a subset of {1, . . . , n} not containing i. Denote by H(i, S) the graph
on 2n+ 1 nodes obtained as follows (see Figure 1):

1. H[{1, . . . , n}] = G.
2. For each n + 1 ≤ j ≤ 2n, its unique neighbor with identifier at most n is
j − n.

3. Node 2n+ 1 is adjacent exactly to the nodes of S and to i+ n.

Claim. We claim that Twins(H(i, S)) (resp. Twins2n+1(H(i, S)) is true if and
only if NG(i) = S.

Clearly, if NG(i) = S then node i is a twin of 2n+ 1 in graph H. Conversely,
we prove that if H(i, S) has two twins u and v then one of them is 2n + 1.
This comes from the fact that the edges between {1, . . . , n} and {n+ 1, . . . , 2n}
in H(i, S) form a matching, so no two nodes of {1, . . . , 2n} may be twins. Now
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assume that 2n+1 has a twin u. Since NH(i,S)(2n+1)∩{n+1, . . . , 2n} = {i+n},
the only possibility is that u = i. Eventually, i and 2n+ 1 are twins if and only
if NG(i) = S, which proves our claim.

Now assume that we have a distributed protocol for Twins (or Twins2n+1)
on graphs with 2n + 1 nodes (actually it suffices to consider graphs from the
family H described above). We construct an algorithm for Reconstruction
on an arbitrary n-nodes graph G.

The players construct their messages as follows. Each node i sends the mes-
sage mi that it would send in the Twins protocol if it had neighborhood
NG(i) ∪ {i + n} and the message m+

i that it would send in the same proto-
col with neighborhood NG(i) ∪ {i + n, 2n + 1}. That makes messages of size
2g(n).

The referee needs to retrieve the neighborhood NG(i) for each i, from the
set of messages. For each i and each subset S of {1, . . . , n} not containing i,
we simulate the behavior of the referee for Twins on graph H(i, S). For this
purpose, for each j ≤ n we use message mj if j /∈ S and message m+

j if j ∈ S. The
messages for nodes k > n can be constructed directly by the referee. Note that
Twins(H(i, S)) is true iff NG(i) = S, thus we can reconstruct NG(i). Eventually,
this allows to solve Reconstruction on graph G. The same arguments work
of we replace the Twins protocol by Twins2n+1. ut

1

2

3

4

G 5

6

7

8

9

Fig. 1. H(4, S), when S = {2, 3}

Remark 1. Since problem Reconstruction on n-node graphs requires mes-
sages of size Ω(n), we conclude that any deterministic protocol for either Twins
or Twins2n+1 also requires messages of size Ω(n).

For problem Translated-Twins, we provide a reduction from OREQ (see
Proposition 2 in Section 2). It will be used both for deterministic and randomized
protocols with private coins.
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Fig. 2. Examples of graphs G1
x (top) and G2

y (bottom), for a given input (x, y). This
is a yes instance since x3 = y3.

Lemma 2. Assume that there is a protocol solving Translated-Twins for
6n-node graphs using messages of size g(n), in any of our three settings. Then
there is a protocol for function OREQ, in the same setting, using messages of
size 3ng(n).

Proof. Let x and y be two n × n boolean matrices. We construct a graph Gx,y
with 6n nodes such that Translated-Twins(Gx,y) = OREQ(x, y).

The graph G is formed by two connected components G1
x and G2

y of 3n nodes
each, encoding the two matrices as follows (see Figure 2 for an example).

G1
x has 3n nodes numbered from 1 to 2n and from 5n + 1 to 6n. For any

i, j ∈ {1, . . . , n} we put an edge between node i and node j + n if and only if
xi,j = 1. Then for any i ∈ {1, . . . , n} we put an edge between node i+n and node
i+ 4n. In other words, the node subsets {1, . . . , n} and {n+ 1, . . . , 2n} induce a
bipartite graph representing matrix x, and the node subsets {n+ 1, . . . , 2n} and
{5n+ 1, . . . , 6n} induce a perfect matching.

The construction of G2
y, with nodes numbered from 2n+1 to 5n is similar. For

any i, j ∈ {1, . . . , n} we put an edge between node i+ 3n and node j+ 4n if and
only if yi,j = 1. Also, for any i ∈ {1, . . . , n}, we put an edge between node 4n+ i
and node 2n + i. Thus the node subsets {3n + 1, . . . , 4n} and {4n + 1, . . . , 5n}
form a bipartite graph corresponding to matrix y. The subsets {4n+ 1, . . . , 5n}
and {2n+ 1, . . . , 3n} induce a matching.

We claim that Translated-Twins(Gx,y) = OREQ(x, y). Assume that
OREQ(x, y) = 1. There is an index i such that line number i in x equals line
number i in y. Then, by construction, the neighborhood of node i+ 3n in Gx,y
is the neighborhood of node i, translated by an additive term 3n.

Conversely, assume that there is some node u ∈ {1, . . . , 3n} such that the
neighborhood of u is the translated neighborhood of u + 3n. By construction,
the only possibility is that u ≤ n (because of the numberings of the matchings
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the other nodes cannot have translated twins), thus line number u is the same
in the two matrices.

To achieve the proof of our lemma, assume that we have a protocol for
Translated-Twins for graphs with 3n nodes, with g(n) bits per message. We
design a protocol for OREQ. Recall that for OREQ, each player has a matrix,
say x for the first one and y for the second one. The first player constructs graph
Gx,0 = (G1

x, G
2
0), the second constructs G0,y = (G1

0, G
2
y) (here 0 denotes the n×n

boolean matrix whose elements are all 0). The first player sends the 3n messages
corresponding to the nodes of G1

x in the Translated-Twins protocol for graph
Gx,0. The second player sends the 3n messages corresponding to the nodes of G2

y

in protocol Translated-Twins for G0,y. The referee collects these 6n messages;
observe that they are exactly those sent by protocol Translated-Twins for the
graph Gx,y. He applies the same algorithm as the referee of Translated-Twins
on these messages. By the claim above, its output is Translated-Twins(Gx,y),
thus OREQ(x, y). Note that the messages used here are of size O(3ng(n)) and
that our arguments hold for any type of protocol. ut

This achieves the proof of Theorem 1.

4 Randomized protocols

Theorem 2. For any constant c > 0, Twins, Twinsx and Translated-
Twins can be solved by randomized protocols with public coins using messages
of size O(log n) and 1/nc one-sided error. Problem Twinsx can also be solved
by a randomized protocol with private coins using messages of size O(log n) and
1/nc one-sided error.

Proof. Let nc+3 < p ≤ 2nc+3 be a prime number. A random t ∈ Zp is chosen
uniformly at random using O(log(n)) public random bits. Given an n-bits vector
a = (a1, . . . , an), consider the polynomial Pa = a1 +a2X+a3X

2 + . . . anX
n−1 in

Zp[X] and let FP (a, t) = Pa(t). FP (a, t) is sometimes called the “fingerprint” of
vector a. Clearly two equal vectors have equal fingerprints, and, more important,
for any two different vectors a and b, the probability that FP (a, t) = FP (b, t) is
at most 1/nc+2 (because the polynomial Pa − Pb has at most n roots and t was
chosen uniformly at random, thus the probability that t is a root of Pa − Pb is
at most 1/nc+2, see e.g., [11]).

Let xi be the input vector of player (node) number i, i.e., the characteristic
function of its neighborhood N(i). A protocol for Twins consists in each node
sending the messagemi = FP (xi, t). The referee outputs 1 if and only ifmi = mj

for some pair i 6= j. A protocol for Twinsx send the same messages, but this
time the referee checks whether mx = mi for some i 6= x. The protocol for
Translated-Twins on n-node graphs is slightly different. If a node i ≤ n/2
has a neighbor j > n/2, it sends a special “no” message specifying that it cannot
be a candidate for having a translated twin. Otherwise, let y1i be the n/2-bits
vector formed by the n/2 first bits of xi. Thus y1i is the characteristic vector of
N(i)∩ {1, . . . , n/2}. Player i sends the message mi = FP (y1i , t). Symmetrically,
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for nodes labelled i > n/2, if i has some neighbor j ≤ n/2 it sends the “no”
message. Otherwise, let y2i be the n/2-bits vector formed by the last n/2 bits of
xi. Hence y2i corresponds to N(i) ∩ {n/2, . . . , n}, “translated” by −n/2. Player
i sends the message mi = FP (y2i , t). Then the referee returns 1 if mi = mi+n/2

for some i ≤ n/2.
Clearly, for protocol Twins (resp. Twinsx, Translated-Twins), if the

input graph is a yes-instance then the protocol outputs 1. The probability that
Twins answers 1 on a no-instance is the probability that FP (mi, t) = FP (mj , t)
for two nodes i and j with different neighborhoods. For each fixed pair of nodes
this probability is at most 1/nc+2, so altogether the probability of a wrong answer
is at most 1/nc. With similar arguments for Twinsx and Translated-Twins
the probability of a wrong answer is at most 1/nc+1, since the referee makes n
tests and each may be a false positive with probability at most 1/nc+2.

For Twinsx with private coins, each node i sends a bit stating if it sees x,
a number ti chosen uniformly at random in the interval nc+2 < p ≤ 2nc+2 and
also FP (xi, ti). The referee retrieves the neighborhood of node x (which was sent
bit by bit by all the others) and then, for each i 6= x, it constructs FP (xx, ti)
and compares it to FP (xi, ti). If the values are equal for some i, the referee
outputs 1, otherwise it outputs 0. Again any yes-instance will answer 1, and the
probability that a no-instance (wrongly) answers 1 is at most 1/nc. ut

The fact that Translated-Twins requires Ω(
√
n) bits per node for any pri-

vate coins, ε-error randomized protocol follows directly by Lemma 2 and Propo-
sition 2.

Theorem 3. For any ε < 1/2, Cpriv
ε (Translated-Twins) = Ω(

√
n).

Theorems 2 and 3 show that problem Translated-Twins separates the
private coins and the public coins protocols.

In order to complete the table of the Introduction, we also observe that
problems Twinsx and Translated-Twins can be solved by randomized private
coins protocols using O(

√
n log n) bits.

Theorem 4. For any c > 0, there is a randomized private coins protocol for
Twins and Translated-Twins using messages of size O(

√
n log n) and having

1/nc one-sided error.

Proof. Babai and Kimmel in [3] propose a private coins protocol with 1/3 one
sided error and O(

√
n) communication cost for EQn, in the number-in-hand

model with two players (see Proposition 1). Let us call this protocol P0. As the
authors point out, this protocol is symmetrical, in the sense that both players
compute the same function on their own input. We define the protocol P as one
obtained by simulating (c + 2) log3 n calls to protocol P0. More formally, in P
each player creates (c + 2) log3 n times the message that it would create in P0,
using at each time independent tosses of private coins. The referee answers 1 if
and only if the referee of P0 would have answered 1 on each of the (c+ 2) log3 n
pairs of messages. Therefore P is a private coin randomized protocol for EQn

with one sided error smaller than 1/nc+2, and cost O(
√
n log n).
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A one sided private coin randomized protocol P ′ for Twins is one where each
node plays the role of Alice in P taking as an input the characteristic function of
its neighborhood, and then the referee simulates the role of the referee in P for
each pair of messages. Similarily, a protocol P ′′ for Translated-Twins works
as follows: each node i sends “no” in the same cases described in the proof of
Theorem 2, and otherwise it simulates the role of Alice on input y1i formed by
the first n/2 bits of xi, if i ≤ n/2 or on input y2i formed by the n/2 last bits of
xi if i > n/2, where xi is the characteristic function of N(i). The referee then
simulates the referee of P on the messages of i and i+n every time none of them
say “no”.

Since P has just one sided error, if Twins (resp. Translated-Twins) is
true, P ′ (resp. P ′′) will always accept. On the other hand, if Twins (resp.
Translated-Twins) is false, then the probability that P ′ (resp. P ′′) accepts
is the probability that P accepts for at least one pair of vertices, and then the
error of P ′ (resp. P ′′) is at most n2 times (resp. n times) the error of P. We
obtain that P ′ and P ′′ have at most 1/nc one sided error, and communication
cost O(

√
n log n). ut

Consider the boolean function Triangle(G) that outputs 1 if and only if G
has a triangle, and the function Diam3(G), that outputs 1 if and only if G has
diameter at most 3. In [4] is shown that the deterministic message sizes of these
problems are lower-bounded by Ω(n), using a reduction from Reconstruction.
However, as seen in Theorem 1, a reduction from Reconstruction does not
imply lower-bounds on the message sizes of randomized protocols.

In the following theorem, we extend the techniques in [4] to reduce the prob-
lems Triangle(G) and Diam3(G) from Index, showing that the message sizes
of randomized protocols for these problems are also of size Ω(n).

Theorem 5. For any ε < 1/2, any public coins randomized protocol computing
Triangle(G) (resp. Diam3(G)) with ε two-sided error uses messages of size
Ω(n).

Proof. Consider the Index function in the model number-in-hand with two play-
ers: the first player, say Alice, has as input an m-bits boolean vector x and the
second player, Bob, has an integer q, 1 ≤ i ≤ m. Then Index(x, q) = xq, the
qth coordinate of Alice’s vector. We will use the fact that for any ε < 1/2, any
public coins randomized protocol for Index requires Ω(m) bits (see, e.g., [9, 10]
for a proof). We may assume w.l.o.g. that m = n2.

In [4], Becker et al. show that for the deterministic communication cost for
Triangle and Diam3 is Θ(n), by showing that if there is a protocol P of cost
c for Triangle or Diam3, then there is a protocol for Reconstruction in
bipartite graphs of cost 2c. We slightly modify their proof to obtain a reduction
from Index.

Let ε < 1/2, and P be a ε-error randomized public coins protocol for Tri-
angles on n-nodes graphs, using c(n) bits. We give a protocol for Index using
2n · c(2n+ 1) bits.
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Let x be an m = n2-bits vector. Let Hx be the bipartite graph with vertex
set {1, . . . , 2n}, such that for any 1 ≤ k, l ≤ n, if x(k−1)n+l = 1 then Hx has an
edge between nodes k and l+n. Consider the family of graphs Hx(i, j) obtained
from Hx by adding a node 2n+1 whose neighbors are nodes i and j+n (for any
1 ≤ i, j ≤ n). Observe that Hx(i, j) has a triangle if and only if x(i−1)n+j = 1,
in which case the triangle is formed by the nodes {i, j + n, 2n+ 1}. To simplify
the notation we also define the graph Hx(0, 0) obtained from Hx by adding an
isolated node 2n+ 1.

1

2

3

4

5

6

7

x = (1 1 0 1 0 1 0 0 1)
q = 9

Fig. 3. An illustration of Hx(3, 6) when x = (1, 1, 0, 1, 0, 1, 0, 0, 1) and q = 9.

The protocol for Index is as follows. Bob sends its input q, which only
costs O(log n) bits. Alice constructs the family of graphs Hx(i, j), for all pairs
1 ≤ i, j ≤ n and for (i, j) = (0, 0). Any node k ≤ 2n has exactly two possible
of neighborhoods, depending whether it is adjacent to 2n + 1 or not. For each
k ≤ 2n, Alice creates the message m+(k) that the protocol for Triangle would
send for node k in the graph Hx(k, 1) (if k ≤ n) or in the graph H(1, k − n) (if
k > n). It also creates the message m−(k) that Triangle would construct for
node k in the graph Hx(0, 0). In full words, m−(k) corresponds to the case when
the neighborhood of k is the same as in Hx, and m+(k) to the case when this
neighborhood is the neighborhood in Hx, plus node 2n+1. Then Alice sends, for
each k, 1 ≤ k ≤ 2n, the pair of messages (m−(k),m+(k)). Therefore Alice uses
2n · c(2n+ 1) bits. It remains to explain how the referee retrieves the bit xq. Let
i, j such that q = (i− 1)n+ j. Observe that xq = 1 if and only if graph Hx(i, j)
has a triangle, therefore the referee must simulate the behavior of the referee for
Triangle on Hx(i, j). For this purpose, the referee computes the message that
node 2n + 1 would have sent on this graph (it only depends on i and j) and
observes that protocol P on Hx(i, j) would have sent message m+(i), m+(j+n)
and m−(k) for any k ≤ 2n different from i and j. Therefore the referee can give
the same output as P on Hx(i, j), that is it outputs bit xq. The protocol for
Index will have ε error and will use 2n · c(2n + 1) bits. Thus P requires Ω(n)
bits.

The proof for Diam3 is based on a similar reduction. Let Dx(i, j) be the
graph obtained from Hx by adding three nodes : node 2n + 1 seeing all nodes
k ≤ 2n, node 2n + 2 seeing i and node 2n + 3 seeing j + n. Graph Dx(0, 0) is

11



similar with the difference that nodes 2n+ 2 and 2n+ 3. Observe (see also [4])
that Dx(i, j) has diameter 3 if and only if x(i−1)n+j = 1. The rest of the proof
follows as before. ut

5 Open problems

The first natural challenge is to determine the message size complexity of func-
tion Twins for randomized protocols with private coins. Using the techniques
of Babai and Kimmel [3] for EQ, one can prove that Twins can be solved
by a one-sided, bounded error protocol with private coins and messages of size
O(
√
n log n). We believe that the message size complexity of Twins for private

coins protocols is Ω(
√
n).

More surprisingly, to the best of our knowledge, the message size complexity
of Connectivity is wide open. Recall that, in the randomized, public coins
setting, there exists a protocol using O(log2 n) bits, due to Ahn, Guha and
McGregor [1]. Can this upper bound be improved to O(log n)? For randomized
protocols with private coins and/or for deterministic protocols, can one prove a
lower bound of Ω(nc) for some constant c < 1?
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