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Abstract. We study the strict majority bootstrap percolation process
on graphs. Vertices may be active or passive. Initially, active vertices are
chosen independently with probability p. Each passive vertex v becomes
active if at least d deg(v)+1

2
e of its neighbors are active (and thereafter

never changes its state). If at the end of the process all vertices become
active then we say that the initial set of active vertices percolates on the
graph. We address the problem of finding graphs for which percolation is
likely to occur for small values of p. For that purpose we study percolation
on two topologies. The first is an n× n toroidal grid augmented with a
universal vertex. Also, each vertex v in the torus is connected to all nodes
whose distance to v is less than or equal to a parameter r. The second
family contains all random regular graphs of even degree, also augmented
with a universal node. We compare our computational results to those
obtained in previous publications for r-rings and random regular graphs.

1 Introduction

Consider the following deterministic process on a graph G = (V,E). Initially,
every vertex in V can be either active or passive. A passive vertex can become
active depending on the state of its neighbors. Once active, a vertex cannot
change its state. Such a process is called bootstrap percolation. In Section 2, we
will describe some families of graphs and transition rules that have been already
studied and what is known about the resulting processes.

The set of active vertices grows monotonically. Therefore, for a finite graph,
a fixed point has to be reached after a finite number of steps. If the fixed point
is such that all vertices have become active, then we say that the initial set of
active vertices percolates on G.

The basic question is to determine the ratio of initial active vertices one needs
to choose randomly in order to percolate the whole graph with high probability.
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More precisely, suppose that the elements of the initial set of active vertices
A ⊆ V are chosen independently with probability p. The problem consists in
finding values of p for which percolation of A is likely to occur. The least p for
which percolation will happen with probability greater than or equal to 1/2 will
be called the critical probability.

In the (simple) majority bootstrap percolation [1], each passive vertex v be-

comes active if at least ddeg(v)2 e of its neighbors are active, where deg(v) denotes
the degree of node v in G. In the present paper we study the strict majority
bootstrap percolation process. In this case, each passive node v becomes active if
it has strictly more active than passive neighbors. More precisely, it will change

if at least ddeg(v)+1
2 e of its neighbors are active. Note that if deg(v) is odd, the

rules for the strict and simple majority bootstrap percolation process coincide.
Our decision to use strict majority, as opposed to the simple version, is related
to our augmentation of a graph with a universal vertex, i.e one that is connected
to every other vertex in the graph. Intuitively, the simple majority percolation
process in the augmented graph is somehow equivalent to the strong majority
process in the original one.

A natural question to ask about the strict majority bootstrap percolation
process is what graphs result in the critical probability being small. This prob-
lem, which motivates the present work, has not been addressed yet. Nevertheless,
it is possible to conclude, from a paper of Balogh and Pittel [2], that the criti-
cal probability of the strict majority bootstrap percolation for random 7-regular
graphs is 0.269.

Here we test empirically two different families of graphs. The first class is
the set of augmented 2D-tori. The other family is the set of augmented random
k-regular graphs. The results of the numerical experiments, in Section 3, show
that for the augmented 2D-torus, the estimated critical probability (call it pc) is
about 0.185. For the augmented random d-regular graph, we obtain unexpectedly
high values for pc. For “small” values of d, that is d ≤ 16, we obtain pc > 0.33.
This is surprising (especially when d = 4) because the relatively high girth of
the graphs and a simple characterization of the vertices that will remain passive
suggests that the value for pc should be small.

2 Related and previous work

A common activation rule in literature is as follows: A passive vertex changes
to the active state if at least k of its neighbors are already active. The result-
ing process is known as k-neighbor bootstrap percolation, and was proposed by
Chalupa et al [3]. Since its introduction this percolation process has mainly been
studied in the d-dimensional grid [n]d = {1, . . . , n}d [4–7]. The precise definition
of critical probability that has been used is the following:

pc([n]d, k) = inf{p ∈ [0, 1] : P
(
A percolates on [n]d

)
≥ 1/2}. (1)



The result of [9] is the culmination of many efforts aiming to obtain a sharp
threshold for pc([n]d, k). The result states that for every d ≥ k ≥ 2:

pc([n]d, k) =

(
λ(d, k) + o(1)

log(k−1) n

)d−k+1

,

where λ(d, k) < ∞ for every d ≥ k ≥ 2. Bootstrap percolation has also been
studied on other graphs such as high dimensional tori [1, 10–13], infinite trees [14–
16] and random regular graphs [2, 17].

In [18] the authors gave explicit constructions of two (families of) graphs for
which the critical probability is also small (but higher than 0.269). The idea
behind these constructions is the following. Consider a regular graph of even de-
gree G. Let G ∗ u denote the graph G augmented with a single universal vertex
u. The strict majority bootstrap percolation dynamics on G ∗ u has two phases.
In the first phase, assuming that vertex u is not initially active, the dynamics
restricted to G corresponds to the strict majority bootstrap percolation. If more
than half of the vertices of G become active, then the universal vertex u also
becomes active, and the second phase begins. In this new phase, the dynamics
restricted to G follows the simple majority bootstrap percolation (and full ac-
tivation becomes much more likely to occur). This justifies our interest in the
strict majority activation rule.

The two augmented graphs studied in [18] were the wheel Wn = u ∗Rn and
the toroidal grid plus a universal vertex TWn = u ∗ R2

n (where Rn is the ring
on n vertices and R2

n is the toroidal grid on n2 vertices). For a family of graphs
G = (Gn)n, the following parameter was defined (A again denotes the initial
set of active nodes, however now the dynamics is driven by the strict majority
bootstrap percolation process):

p+c (G) = inf
{
p ∈ [0, 1] : lim inf

n→∞
P (A percolates on Gn) = 1

}
. (2)

Note that in the last definition the limit of the probability has to be equal to 1.
This seems to be in conflict with the definition in Equation 1, in which we demand
the probability of percolation to be greater than 1/2. There is no contradiction,
though. Considering lim infn→∞ P (A percolates on Gn) as function of p, it is
easy to prove that its value will transition from 0 to 1 at p+c (G), i.e. it is a step
function. Thus, the definition in equation 2 could be rewritten demanding the
limit to be greater than 1/2.

Now consider the families W = (Wn)n and T W = (TWn)n. It was proved
in [18] that p+c (W) = 0.4030..., where 0.4030... is the unique root in the interval
[0, 1] of the equation x + x2 − x3 = 1

2 . For the toroidal case it was shown that
0.35 ≤ p+c (T W) ≤ 0.372.

Computing the critical probability of the (one-dimensional) wheel is a trivial
task. Nevertheless, if we increase the radius of the vertices from 1 to any other
constant, then the situation becomes much more complicated. More precisely,
let Rn(r) be the ring where every vertex is connected to its r closest vertices to
the left and to its r closest vertices to the right. Obviously, Rn = Rn(1).



Kiwi et al [19] studied the strict majority bootstrap percolation process in a
generalization of the wheel that is called r-wheel Wn(r) = u∗Rn(r). A peculiarity
of the model in this paper is that the initial state of the universal vertex is always
set to 0. This is somewhat arbitrary, but simplifies the analysis and allows to
find an upper bound for p+c (W(r)) when the universal vertex can be initialized
randomly. The main result in [19] is that for the class of r-wheels W(r),

lim
r→∞

p+c (W(r)) = 1/4.

This is the smallest critical probability that has been proved for any class of
graphs. We would like to point out that the deterministic counterpart of both
the simple majority and the strict majority bootstrap percolation processes have
been intensively studied. In fact, bounds have been derived for the minimum
number of vertices one needs to activate in order to end up activating the whole
graph. These sets of vertices are called irreversible dynamic monopolies or irre-
versible dynamos [20–29].

3 Experiments and results

The purpose of our experiments is to estimate p+c (G) for a given G. Informally,
we choose an n which is “large enough”, create G ∈ G of size n. We then activate
vertices with probability p (forcing the universal vertex to 0, following [19] ) and
simulate the strict majority bootstrap percolation process on it until it reaches
a fixed point. We then analyze the fixed point and determine whether the initial
set percolates on G. We can repeat the experiment several times and compute
the fraction of replicas that resulted in percolation on G (call it f). Since f is
an estimation of the probability of the initial set percolating on G, we can try
different values of p until f ≈ 1/2. We will refer to this particular value of p as
pc. This will be our estimation of p+c (G). The goal of our simulation is finding a
a family of grpahs for which p+c (G) < 1/4.

For our simulations we used an in-house program written in C. The total
amount of CPU time needed to generate the results we are presenting was ap-
proximately 10 days.

3.1 Augmented Toroidal Grid

By analogy with the generalization of the wheel in [19], we define an augmented
torus. LetR2

n be as before and letR2
n(r) be the graph so every node v is connected

to all vertices whose Moore distance from v is less than or equal to r. Now
TWn(r) = u ∗R2

n(r). We finally define the class of r-tori T W(r) = (TWn(r))n.
Intuitively, they are tori of n×n size, with vertices connected to all other vertices
at distances no greater than r. Besides, there is the universal vertex connected
to all other nodes in the grid.

For the experiments, we run our simulator for r = 1, 2, 3. For each value of
r we tried different values of p and measured f . As it is well known, some per-
colation problems are hard to study using simulations, because the asymptotic



behavior of the system as (say) n grows is not apparent until n is so large that
simulation is not feasible. As a simple (heuristical) test, we run our simulations
for n = 2000 and n = 4000. By comparing the estimations of pc we obtained
from both variants we can have a rough idea of the reliability of our results.

Due to running time constraints we had to adjust the number of replicas
we used to compute f . For r = 1, n = 2000 we run 100 replicas per value of
p (that is, a single data point in Figure 1). For r = 1, n = 4000 we used 20
replicas per point. For r = 2, n = 2000 we computed 50 replicas per point and
for r = 2, n = 4000 we did 20 replicas per point. Similarly, for r = 3 and
n = 2000, 400 we had 100 and 25 replicas per point respectively.

Figures 1, 2 and 3 describe the r = 1, 2 and 3 cases respectively.
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Fig. 1. f vs. p for TWn(1). n = 2000, 4000

3.2 Random regular graphs

Since they have been also heavily studied, we run experiments using random
regular graphs. There is another powerful motivation though. Consider a 4-
regular graph. It is easy to prove that if there is a cycle where all vertices
belonging to it are passive, they will all remain passive under the dynamics
imposed by the by the strict majority activation rule. Moreover, this condition
characterizes precisely the set of vertices that never become active. Since random
regular graphs have a “large” girth, in a probabilistic sense, the intuition is that
with high probability, those cycles will have at least one active node unless, of
course, p is very small. This intuition led us to hope for a very small pc.

Given n and k, generating k-regular graphs with n vertices (with uniform
probability) is a very challenging computational task. The intuitive and simple
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Fig. 2. f vs. p for TWn(2). n = 2000, 4000
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Fig. 3. f vs. p for TWn(3). n = 2000, 4000

algorithms are slow while faster methods are very cumbersome to implement. For
an introduction to the problem algorithms see [30]. To reduce development time
we used some existing code written by Golan Pundak, uploaded to MATLAB
central. This function generates a k regular random graph with n vertices using
the pairing model, also described in [30]. The graphs generated by this code were
fed into our simulator.



The running times for generating each graph were long. The extreme case
was k = 50, n = 100000: it takes 2 days of CPU time to create a single graph.
Therefore we adopted the following strategy: for n = 100000, for k = 4, 8, 16, 50,
we generated a single graph. That is, we generated four graphs in total. For each
one of these graphs we estimated the value of pc and the results are displayed
in Figure 4. As a matter of fact we obtained the analogous results for n = 2000
and n = 10000. The values we computed for pc changed very little with n. The
differences where in the third or fourth significative digits. Therefore the resulting
plots would have been almost the same as Figure 4 and hence we omitted them.
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Fig. 4. pc vs d for d-regular random graphs with n = 100000.

3.3 Analysis of the simulations

Our experiments for T W(r) show a pc ≈ 0.2963 for r = 1, and pc ≈ 0.187
for r = 2. Since the estimations were very similar regardless of the values of
n, our heuristic suggests n was large enough for the simulations to capture the
asymptotic behavior. Therefore pc should be a reasonable approximation to p+c .
When r = 3 there is a bigger discrepancy between the n = 2000 and n = 4000
runs than before. For the former, pc ≈ 0.19. For the latter, pc ≈ 0.20. We suspect
pc < 0.185 if n is large enough. This is based on some preliminary simulation
results, but considering it would require weeks of CPU time (with the current
software) to explore the r = 3, n = 8000 case we do not expect the approach
based on direct simulations to scale up much more.



Nonetheless, obtaining estimations below 0.19 is encouraging as they suggest
G = (TWn(2))n is a good candidate for having the new lowest known p+c (G).
Further, the successive values for pc we obtained when increasing r were 0.2963,
0.187 and 0.185. Although the last one is still dubious, this points to a decreasing
monotonicity of p+c (T W(r)) w.r.t. r. Based on these simulations and previous
results in [19], we expect it to be the case.

For the random d-regular graphs (see Figure 4), we note three features in
the results. The first one is that the estimations for pc are larger than what we
obtained for the augmented tori or has been proved for wheels. This is surpris-
ing since our heuristic argument suggested the opposite had to happen. Another
feature is the similarity of pc values for different d’s. Besides, there is the lack of
monotonicity in pc w.r.t. d. We are unable at this time to explain these phenom-
ena. Finally, we see how our addition of the universal vertex can dramatically
affect the value of the critical probability. For our model, when d = 4, we ob-
tain pc ≈ 0.37. This contrasts with the case without the universal vertex, were
p+c (G) = 0.667, as proved by Ballogh and Pittel in [2].

4 Conclusion and open problems

We performed numerical experiments simulating the strict majority bootstrap
percolation process on two families of graphs. The objective is to advance toward
the resolution of this problem: Is there a class G = (Gn)n of graphs such that
the critical probability p+c (G) is 0, and if not, what is the smallest achievable
critical probability?

Our experiments strongly suggest that determining p+c (TWn(2))n will yield
a lower value than the lowest known today p+c (T W(r)) = 1/4. Further, the
question of whether or not p+c (TWn(r))n is monotonically decreasing w.r.t. r
is open, although we conjecture it is the case. From the above, it would be
interesting to calculate the limit (as r → ∞) of p+c (TWn(r))n, or at least to
determine if it is zero or not. The same questions can be generalized to higher
dimensional augmented tori.

Finally, in spite of the k-random regular graphs failing dramatically at yield-
ing a small value for pc, it would be interesting to know why the intuition was
invalid, why the value of pc almost did not change for different values of k and
determine whether p+c (G) is not monotonic.
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