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Abstract

Distributed certification, whether it be proof-labeling schemes, locally checkable proofs,
etc., deals with the issue of certifying the legality of a distributed system with respect to
a given boolean predicate. A certificate is assigned to each process in the system by a
non-trustable oracle, and the processes are in charge of verifying these certificates, so that
two properties are satisfied: completeness, i.e., for every legal instance, there is a certificate
assignment leading all processes to accept, and soundness, i.e., for every illegal instance, and
for every certificate assignment, at least one process rejects. The verification of the certificates
must be fast, and the certificates themselves must be small. A large quantity of results
have been produced in this framework, each aiming at designing a distributed certification
mechanism for specific boolean predicates. This paper presents a “meta-theorem”, applying to
many boolean predicates at once. Specifically, we prove that, for every boolean predicate on
graphs definable in the monadic second-order (MSO) logic of graphs, there exists a distributed
certification mechanism using certificates on O(log2 n) bits in n-node graphs of bounded
treewidth, with a verification protocol involving a single round of communication between
neighbors.

Keywords: Proof-labeling scheme; Locally checkable proof; Fault-tolerance; Distributed
decision.

1 Introduction

1.1 Context

Distributed certification is a concept that serves many purposes in distributed computing. One
is fault tolerance. Indeed, the ability to certify the legality of a system-state with respect to
some boolean predicate in a distributed manner guarantees that at least one process can launch
a recovery procedure in case the system enters into an illegal state. Another application of dis-
tributed certification is safety. Indeed, distributed certification is a mechanism that guarantees
that distributed algorithms dedicated to systems satisfying some specific property (e.g., algo-
rithms dedicated to planar networks) can safely be used because, in case the system does not
satisfy this property, at least one process can raise an alarm, and stop the computation.

Different certification mechanisms have been studied (cf. the related work section), all shar-
ing the same principle. Distributed certification protocols involve a centralized prover, and a
distributed verifier. The prover has complete knowledge of the system. It is computationally
unbounded but not trustable. Given a boolean predicate P on system states, the prover assigns
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certificate to the processes, whose aim is to convince the processes that the system satisfies P.
The verifier is a distributed algorithm that runs at every process in the system, and is bounded
to return a verdict (accept or reject) at each process after a limited communication among the
processes. For instance, in a network, every processing node is bounded to communicate only
once with its neighbors in the network before emitting its verdict.

To be correct, a distributed certification protocol for a boolean predicate P on system states
must satisfy two properties. (1) Completeness: If the system satisfies P, then there must exist
a certificate assignment by the prover to the processes such that the verifier accepts at all
processes. (2) Soundness: If the system does not satisfy P, then, for every certificate assignment
by the prover to the processes, it must be the case that the verifier rejects in at least one process.
Network bipartiteness yields a simple example of distributed certification, using 1-bit certificates.
For every bipartite network, every processing node in the network can be given a certificate 0
or 1, so that every processing node has a certificate different from the certificates assigned to its
neighbors. The processing nodes can check these certificates in a single round of communication,
where every processing node merely checks that the certificate of each of its neighbors is different
from its own certificate. Completeness is satisfied by construction. Soundness is also satisfied.
Indeed, if the network is not bipartite, then it is not 2-colorable. As a consequence, for every
certificate assignment with certificates in {0, 1}, there are at least two neighboring processing
nodes that receive the same certificate. These two processes will reject.

The main criterion measuring the quality of distributed certification is the size of the certifi-
cates. Indeed, the verification of P is typically performed frequently, for regularly checking that
the system does satisfy P, with the aim of reacting quickly if the system stops satisfying P. As
a consequence, there are frequent exchanges of certificates between the processes. Using small
certificates limits the communication overhead caused by these exchanges.

1.2 Objective

A large collection of results related to distributed certification have been derived over the last
twenty years (see Related Work), each result concerning a specific predicate. This paper is
inspired by what has been achieved in the context of sequential computing where, instead of
focusing on the design of an efficient algorithm for one specific problem, and then for another
one, and so on and so forth, efforts have been made for deriving “meta-theorems”, that is, results
applying directly to large classes of problems. One prominent example is Courcelle’s theorem [12]
stating that every graph property definable in the monadic second-order (MSO) logic of graphs
can be decided in linear time on graphs of bounded treewidth1. That is, even NP-hard problems
such as vertex-coloring, minimum dominating set, minimum vertex cover, etc., have linear-time
algorithms in the vast class of graphs with bounded treewidth. Each algorithm depends on the
problem, but Courcelle’s theorem essentially says that every problem expressible in the MSO
logic has a linear-time algorithm in the class of graphs with bounded treewidth.

The objective of this paper is to address the existence of similar meta-theorems in the context
of distributed certification applied to distributed computing in networks. Concretely, the question
we address here is the following: is there a (large) class of boolean predicates on graphs for which
one can guarantee the existence of a distributed certification mechanism with small certificates,
say poly-logarithmic in the number of vertices of the graphs, for graphs taken from a (large)
class of graphs?

1.3 Our Results

We present an analog of the aforementioned Courcelle’s theorem in the context of distributed
certification. Specifically, for every integer k ≥ 1 and every MSO property ϕ on graphs, we

1Treewidth can be viewed as a measure capturing “how close” a graph is from a tree; roughly, a graph of
treewidth k can be decomposed by a sequence of cuts, each involving a separator of size O(k).
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consider the following set:

Pk,ϕ = {graph G : (tw(G) ≤ k) ∧ (G |= ϕ)},

where tw(G) is the treewidth of G. We provide a distributed certification mechanism for Pk,ϕ
using certificates of poly-logarithmic size, as a function of the number n of vertices in the graphs.
Specifically, given any network modeled as a connected simple graph G = (V,E), with a process
running at each vertex v ∈ V , our certification mechanism satisfies that G ∈ Pk,ϕ if and only if
there is a certificate assignment to the vertices such that all vertices accept. The main result of
the paper is the following.

Theorem 1 (Informal). For every k ≥ 1 and every MSO property ϕ on graphs, there exists a
distributed certification protocol for Pk,ϕ using certificates on O(log2 n) bits.

In fact, our theorem can be extended to properties including certifying solutions to maxi-
mization or minimization problems whose admissible solutions are defined by MSO properties.
In the statement of Theorem 1, the big-O notation hides constants that depend only on k and ϕ.
The theorem has many corollaries, as the universe of MSO properties is large. This includes
predicates such as non 3-colorability, which is known to require certificates of quadratic size in
arbitrary graphs [19], and diameter at most D, for a fixed constant D, which is known to require
certificates of linear size in arbitrary graphs [11].

Corollary 1. For every c ≥ 1, there exists a distributed certification protocol for certifying non
c-colorability in the family of graphs with bounded treewidth, using certificates on O(log2 n) bits.

For every D ≥ 1, there exists a distributed certification protocol for certifying diameter at
most D in the family of graphs with bounded treewidth, using certificates on O(log2 n) bits.

Also, many natural graph families have bounded treewidth, as illustrated by the family of
graphs excluding a planar graph as a minor, and thus we get the following corollary of Theorem 1.

Corollary 2. For every planar graph H, and every MSO property ϕ on graphs, there exists a dis-
tributed certification protocol certifying ϕ in the family of H-minor-free graphs, using certificates
on O(log2 n) bits.

Again, the big-O notation in the above statement hides constants that depend only on H
and ϕ. Note that, as every 4-node graph is planar, Corollary 2 extends the recent results in [9],
which applies to the families of graphs excluding a given 4-node graph H as a minor.

Interestingly, tw(G) ≤ k, and H-minor-freeness are themselves MSO properties for fixed k
and H. It follows that Theorem 1 provides us with a distributed certification mechanism for
treewidth and fixed-minor-freeness.

Corollary 3. Let k ≥ 0, and let H be a planar graph. There exist distributed certification
protocols for certifying the class of graphs with treewidth at most k, and certifying the class of
H-minor-free graphs, both using certificates on O(log2 n) bits.

Our Techniques. For establishing Theorem 1 we proceed in two steps. First, we provide a
protocol for certifying 3-approximation of treewidth. Such a protocol satisfies the following: for
any given k ≥ 1, the protocol for k is such that, for every graph G,{

tw(G) ≤ k ⇒ there exists a certificate assignment s.t. all vertices accept;
tw(G) > 3k + 2 ⇒ for every certificate assignment, at least one vertex rejects.

Lemma 1 (Informal). For every k ≥ 1 there exists a distributed protocol certifying a 3-approxima-
tion of the treewidth using certificates on O(k2 log2 n) bits.
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The proof of this lemma relies on a particular choice of a tree-decomposition, that we prove
locally certifiable by “transferring” certificates between nodes that are far away from each other,
which is typically the case of vertices in a same bag of the decomposition, without creating
congestion.

Next, for any MSO property ϕ and integer k, we design a protocol which certifies Pk,ϕ on
input graph G. The protocol exploits the tree decomposition in the proof of Lemma 1, for
certifying a correct execution of a sequential dynamic programming algorithm for ϕ over this
decomposition. Concretely, we design a distributed certification for a correct execution of a
sequential dynamic programming algorithm a la Courcelle, using in fact the sequential MSO
certification due to Borie, Parker and Tovey [8].

Lemma 2 (Informal). For every k ≥ 1 and every MSO property ϕ on graphs, assuming given the
certification protocol for 3-approximation k of treewidth from Lemma 1, there exists a distributed
certification protocol for Pk,ϕ using additional certificates on O(log2 n) bits.

1.4 Related Work

The ability to detect illegal configurations of a distributed system was originally motivated by
the design of fault-tolerant algorithms, especially self-stabilizing algorithms [1, 2, 21]. The notion
of distributed certification as used in this paper originated from the seminal paper [23] defining
proof-labeling schemes (PLS). We actually use a slight variant of PLS called locally checkable
proofs (LCP) [19], which enables exchanging not only the certificates between the processing
nodes, but also local states, including their IDs. Another related notion is non-deterministic
local decision (NLD) [17] in which the certificates must not depend on the IDs given to the
processing nodes. Distributed certification has been extended to various directions, including
randomized PLS [18], approximate PLS [11, 14], local hierarchies [3, 15], interactive proofs [22,
25], and even, recently, zero-knowledge distributed certification [4]. All the aforementioned
papers contain a vast collection of certification results for various graph problems. In these
papers, each certification protocol is specific of the problem at hand. To our knowledge, the
only “meta-theorem” in the context of distributed certification is the recent paper [10], which
shows that every MSO formula can be locally certified on graphs with bounded treedepth using
certificates on O(log n) bits. We show that the same result holds for the larger class of graphs with
bounded treewidth, to the cost of slightly larger certificates, on O(log2 n) bits. We are therefore
partially answering the questions raised in [10], asking whether it is “possible to certify any MSO
formula on bounded treewidth graphs”, and “to certify that the graph itself has treewidth at
most k”, using small certificates.

In framework of sequential algorithms, there is a large literature on “meta-theorems” proving
that large families of combinatorial properties (typically expressed using some form of logic for-
mulae) can be efficiently decided on particular graph classes. In addition to Courcelle’s (meta)
theorem [12] on MSO properties on graphs with bounded treewidth, it is worth mentioning the
recent results establishing that properties expressible in first-order logic can be verified in poly-
nomial time on graphs of bounded twinwidth [7], as well as on nowhere-dense graphs [20]. Both
graph classes include planar graphs, and thus include graphs with arbitrarily large treewidth.
Our work is participating to the general objective of extending these results to the framework of
distributed computing.

2 Preliminaries

2.1 Distributed Certification

We consider networks modeled as connected simple graphs. Every vertex is a processing element,
and the vertices exchange messages along the edges of the graph. We systematically denote by
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n the number of vertices in the considered graph. The vertices of a network/graph G = (V,E)
are given distinct identifiers (IDs), and we denote by ID(v) the identifier of vertex v ∈ V . These
identifiers are not necessarily between 1 and n, but we adopt the standard assumption stating
that IDs can be stored on O(log n) bits.

We consider boolean predicates on labeled graphs, i.e., graphs for which every vertex v is
given a label `(v) ∈ {0, 1}∗. These labels may represent a way to mark vertices (e.g., those in a
dominating set), a color (e.g., in graph coloring), or any value depending on the graph property
at hand. Given a boolean predicate P on labeled graphs, a locally checkable proof [19] for P is
a prover-verifier pair. The prover is a non-trustable oracle with unbounded computing power.
Given any labeled graph (G, `), the prover assigns a certificate c(v) ∈ {0, 1}∗ to every vertex
v ∈ V . The verifier is a 1-round distributed algorithm running at all vertices of the graph. Given
a labeled graph (G, `) with a certificate assigned at every vertex, the vertices exchange their
identifiers, labels, and certificates, between neighbors, and compute an output, accept or reject.
To be correct, the pair prover-verifier must satisfy two conditions:

Completeness: If (G, `) |= P, then, for every ID-assignment to the vertices, there must exist
a certificate assignment by the prover to the vertices such that the verifier accepts at all
vertices.

Soundness: If (G, `) 6|= P, then, for every ID-assignment to the vertices, and for every certificate
assignment by the prover to the vertices, it must be the case that the verifier rejects in at
least one vertex.

2.2 Tree Decompositions and Terminal Recursive Graphs

Let us recall the classical definition of treewidth and tree decompositions, due to Robertson and
Seymour [26].

Definition 1. A tree decomposition of a graph G = (V,E) is a pair (T,B) where T = (I, F ) is
a tree, and B = {Bi, i ∈ I} is a collection of subsets of vertices of G, called bags, such that the
following conditions hold:

• For every v ∈ V , there exists i ∈ I such that v ∈ Bi;

• For every e = {u, v} ∈ E there is i ∈ I such that {u, v} ⊆ Bi;

• For every v ∈ V , the set {i ∈ I : v ∈ Bi} forms a connected subgraph of T .

The width of a tree decomposition is the maximum size of a bag, minus one. The tree-width of
a graph G, denoted by tw(G), is the smallest width of a tree decomposition of G.

To facilitate the distinction between the original graph G = (V,E) and the decomposition
tree T = (I, F ), we will speak of the nodes i ∈ I of T and of the vertices v ∈ V of G.

We consider tree decompositions as rooted, i.e., we fix some node r ∈ I as the root of
T = (I, F ). For a node i ∈ I \ {r}, we denote by p(i) its parent in T , and set p(r) = ⊥. For
i ∈ I, we denote by Ti the subtree of T rooted in i, and by Vi the subset of vertices of G in the
bags of Ti, i.e., Vi = ∪j∈V (Ti)Bj . Also, for i ∈ I \ {r}, we define Fi = Bi \Bp(i). For the root r,
we set Bp(r) = ∅ and Fr = Br. Given a rooted tree T = (I, F ), and two nodes of i, j ∈ I, we
denote by j � i the property that j is a descendant of i in T .

Graphs of bounded treewidth can also be defined recursively, based on a graph grammar. Let
w be a positive integer. A w-terminal graph is a graph (V,E) together with a totally ordered set
W ⊆ V of at most w distinguished vertices. Vertices of W are called the terminals of the graph,
and we denote by τ(G) the number of its terminals. Since W is totally ordered, we can speak of
the rth terminal, for 1 ≤ r ≤ w. Since in our case vertices are given distinct identifiers, one can
view W as ordered w.r.t. these identifiers.
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The class of w-terminal recursive graphs is defined starting from w-terminal base graphs
through a sequence of composition operations. A w-terminal base graph is a w-terminal graph
of the form (V,W,E) with W = V . A composition operation f acts on one or two w-terminal
graphs producing a new w-terminal graph as follows.

When f is of arity 2, graph G = f(G1, G2) is obtained by firstly making disjoint copies of
the two graphs G1 and G2, then “glueing” together some terminals of G1 and G2. The glueing
performed by f is represented by a matrix m(f) having τ(G) ≤ w rows and two columns, with
integer values between 0 and τ(G). At row r of the matrix, mrc(f) indicates which terminal
of each Gc, c ∈ {1, 2} is identified to terminal number r of graph G. If mrc(f) = 0, then no
terminal of Gc is identified to terminal r of G (in particular, if mr1(f) = mr2(f) = 0 it means
that terminal r of G is a new vertex, but this situation will not occur in our constructions).
Moreover, a terminal of Gc is identified to at most one terminal of G, i.e., each non-zero value in
1, . . . , τ(Gc) appears at most once in column c of m(f). For an illustration, see, e.g., Figure 2.

When f is of arity 1, the corresponding matrix m(f) has a unique column. Graph G = f(G1)
is obtained as before, by identifying terminal mi1 of G1 to terminal r of G. Note that in this
case G and G1 have exactly the same vertex and edge sets, and the terminals of G form a subset
of the terminals of G1.

We point out that the number of possible different matrices and hence of different operations
is bounded by a function on w.

a b

c

d e

g

a, b, d

a, c, d

c, g

b, d, e

Figure 1: Graph G and a tree decomposition.

Proposition 1 (Theorem 40 in [6]). Graph H = (V,W,E) is (w + 1)-terminal recursive if and
only if there exists a tree decomposition of G = (V,E), of width at most w, having W as root
bag. Hence the grammar of (w + 1)-terminal recursive graphs constructs exactly the graphs of
treewidth at most w.

Let us sketch briefly here how a tree decomposition of G = (V,E) of width w can be trans-
formed into a (w + 1)-expression of the same graph. To each node i of the tree decompositions,
we associate three (w + 1)-terminal graphs:

• Gb
i = (Bi, Bi, E(G[Bi])), the (w + 1)-terminal base graph corresponding to graph G[Bi]

induced by bag Bi;

• Gi = (Vi, Bi, E(G[Vi])), corresponding to G[Vi], with bag Bi as set of terminals;

• If i differs from the root, G+
i = (Vi ∪ Bp(i), Bp(i), E(G[Vi ∪ Bp(i)])) corresponding to the

graph induced by Vi ∪Bp(i), with Bp(i) as set of terminals.

Let us describe how to compute the (w+1)-expression of these graphs, by parsing bottom-up
the tree decomposition (see also Figure 2 applied to the tree decomposition of Figure 1).

When i is a leaf, Gi = Gb
i is a (w+1)-terminal base graph. Assume now that i is not a leaf and

let Children(i) be the children of node i in the decomposition tree. For each j ∈ Children(i),
we already possess an expression of the (w+1)-terminal graph Gj = (Vj , Bj , E(G[Vj ])). Observe
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Figure 2: From a tree decomposition of width w to a (w + 1)-expression.

that G+
j is obtained from a glueing of Gj and the base graph Gb

i , where the terminals of Gj

contained in Bj ∩ Bi are glued on the corresponding terminals of G+
j , and the others become

non-terminals. Eventually, if i has more than one child, then Gi is obtained by the consecutive
glueing of all G+

j , j ∈ Children(i), where the glueing is performed on Bi by the same matrix
m(f) having mr1(f) = mr2(f) = r, for 1 ≤ r ≤ |Bi|.

2.3 Regular Properties and MSO

We consider graph properties P(G) assigning to each graph G a boolean value. We have in mind
properties expressible in Monadic Second Order Logic, like “G is not 3-colourable”, “G does not
contain a given minor”, etc. Nevertheless, technically, we do not need the definition of MSO
formulae, and the interested reader may refer to [13]; we only need the fact that MSO properties
are regular, in the sense defined below. By Courcelle’s theorem, such properties can be decided
in linear (sequential) time on graphs of bounded treewidth, if the tree decomposition (or the
corresponding expression as a terminal recursive graph) is part of the input.

Definition 2 (regular property). A graph property P is called regular if, for any value w, we
can associate a finite set C of homomorphism classes and a homomorphism function h, assigning
to each w-terminal recursive graph G a class h(G) ∈ C such that:

1. If h(G1) = h(G2) then P(G1) = P(G2).

2. For each composition operation f of arity 2 there exists a function �f : C × C → C such
that, for any two w-terminal recursive graphs G1 and G2,

h(f(G1, G2)) = �f (h(G1), h(G2))
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and for each composition operation f of arity 1 there is a function �f : C → C such that,
for any w-terminal recursive graph G,

h(f(G)) = �f (h(G)).

We illustrate this definition on the property “G is not 3-colourable”. We can choose, as
homomorphism h(G = (V,W,E)), the set of all three-partitions (W1,W2,W3) of the set W of
terminals, such that graph G has, as three colouring, the one where each colour i ∈ {1, 2, 3}
intersects W exactly in the set Wi. Observe that graph G satisfies the property of not being
3-colourable if and only if its homomorphism class is the empty set. It is a matter of exercise to
figure out how to compute the homomorphism class of a base w-terminal graph (by enumerating
all its three-partitions into independent sets), and how to compute functions �f updating the
class of the graph after a composition operation f .

The first condition of Definition 2 separates the classes into accepting ones (i.e., classes c ∈ C
such that h(G) = c implies that P(G) is true) and rejecting ones (i.e., classes c ∈ C such that
h(G) = c implies that P(G) is false). In full words, the second condition states that, if we perform
a composition operation on two graphs (resp. one graph), the homomorphism class of the result
can be obtained from the homomorphism classes of the graphs on which these operations are
applied. Therefore, if a w-terminal recursive graph is given together with its expression in this
grammar, and if moreover we know how to compute the homomorphism classes of the base
graphs and the composition functions �f over all possible composition operations f , then the
homomorphism class of the whole graph for a regular property P can be obtained by dynamic
programming. We simply need to parse the expression from bottom to top and, at each node,
we compute the class of the corresponding sub-expression thanks to the second condition of
regularity. At the root, the property is true if and only if we are in an accepting class.

Proposition 2 ([8, 12]). Any property P expressible by a MSO formula is regular. Moreover,
given the MSO formula ϕ and parameter w, one can explicitely compute the set of classes, the
homomorphism function for all w-terminal base graphs as well as the composition functions �f

of all possible composition operations f .

Altogether, this provides an effective algorithm for checking property P(G) in O(n) time, by
a sequential algorithm, given the w-expression (or, equivalently, the tree decomposition of width
w − 1) of the input graph, by computing bottom-up the homomorphism classes.

The notions of MSO and regular properties extend to properties on graphs and vertex subsets,
i.e., we can consider properties P(G,X) assigning to each graph G and vertex subset X of G a
boolean value. This allows to capture properties as “X is an independent set of G”, or “X is an
dominating set of G”. Moreover, the whole framework can capture the problem of computing a
(or, in our case, certifying that) set X is of maximum weight among those satisfying P(G,X),
for graphs with polynomial weights on their vertices. This issue is postponed to Appendix B.

2.4 Coherent Tree Decompositions

By a classic result of Bodlaender [5], an optimal tree decomposition of graphG can be transformed
into a decomposition whose tree is of logarithmic depth, while the size of the bags is at most
multiplied by 3. We strongly rely on such decomposition, plus a connectivity property that we
call coherence. We say that a rooted tree decomposition of a graph G = (V,E) is coherent if for
every i ∈ I, the set Fi is non empty and the graph G[Vi \Bp(i)] is connected.

We show that such a decomposition exists and provide some of its properties used in our
certification protocol. Due to space restrictions, the proofs of the results of this sub-section can
be found in Appendix A.1.

Lemma 3. Let k ≥ 1, and let G be a connected n-vertex graph of treewidth at most k. Then, G
admits a coherent tree decomposition of width at most 3k + 2 and depth O(log n).
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In our protocol we must be able to communicate, for any node i of the decomposition, some
information about Vi to a vertex in the bag corresponding to the parent node p(i), more precisely,
to some vertex of Fp(i). The following lemma shows the existence a vertex `i ∈ Vi \Bp(i) adjacent
in G to some vertex w ∈ Fp(i).

Lemma 4. Let T = (I, F ) be a coherent tree decomposition of G = (V,E). Then, for every
i ∈ I different from the root there exists a pair of vertices `i ∈ Vi \Bp(i) and w ∈ Fp(i) such that
{w, `i} ∈ E.

Vertex `i is called the exit vertex of i, and w is called the vertex of Fp(i) in charge of node i.

In our certification protocols, for each node i of the decomposition tree, the vertices of Fi

as well as the exit vertex `i will receive from the prover some information concerning graph
Gi = G[Vi]. We will need to ensure that `i and all vertices of Fi received the same information.
For this purpose we use trees contained in G[Vi \Bp(i)], spanning `i and Fi.

Lemma 5. Consider a coherent tree decomposition T = (I, F ) of graph G = (V,E), of depth
O(log n). For each node i of the decomposition tree, there is a subtree S(i) of G[Vi \ Bp(i)]
spanning Fi and the exit vertex `i.

Moreover each vertex of G appears O(log n) times in the family of trees T (G) = {S(i) | i ∈ I}.

3 A Protocol Certifying a 3-Approximation of the Treewidth

In this section we describe a protocol certifying a 3-approximation of treewidth. More precisely,
we prove the following Lemma.

Lemma 6. For each k ≥ 1 there is a distributed certification protocol that uses messages of size
O(k2 log2 n) and ensures, for any input graph G, that:{

tw(G) ≤ k ⇒ there exists a certificate assignment s.t. all nodes accept;
tw(G) > 3k + 2 ⇒ for every certificate assignment, at least one node rejects.

Let us describe the messages that the prover sends to each vertex of G, if tw(G) ≤ k. These
messages describe a coherent tree decomposition of width at mots 3k + 2 and of logarithmic
depth, which exists by Lemma 3.

We identify node i of the decomposition tree with the number corresponding to a binary
representation of the set of vertices Bi contained in its bag, so 1 ≤ i ≤ nO(k). In full words, a node
is simply identified by the content of its bag, which is possible since coherent tree decompositions
have pairwise disjoint bags.

Our protocol distinguishes two types of certificates, namely main messages and auxiliary
messages. Each vertex receives one main messages and O(log n) auxiliary messages. Let us
describe each one of them.

Main messages. These messages are used to encode a tree decomposition, following Defini-
tion 1. Each vertex v receives as a certificate the following messages, that we denote m(v):

1. A number d = d(v), representing the depth of the node i such that v ∈ Fi

2. A list of sets B(v) = Bd(v), Bd−1(v), . . . , B1(v), representing the path of bags from node
i = Bd(v) to the root node.

3. The list of sets F(v) = Fd(v), Fd−1(v), . . . , F1(v), representing the sets Fj(v) = Bj(v) \
Bj−1(v), for each j ∈ {1, . . . , d}.

4. A list of sets E(v) = Ed(v), . . . , E1(v), where, for each j ∈ {1, . . . , d}, Ej(v) ⊆
(Bj(v)

2

)
represents the edge set of G[Bj(v)].

Observe that the size of a main message is O(k2 log2 n).
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Auxiliary messages. These messages allow to check the consistency of the main messages
between vertices of a same set Fi, for each node i of the decomposition.

From Lemma 5, we have that for each node i there is a subtree S(i) connecting all pair of
vertices of Fi and the exit vertex `i. The vertices w of S(i) are called auxiliary vertices for i. For
a vertex w, let us call Aux(w) the set of nodes i such that w is an auxiliary vertex for i. From
Lemma 5, we know that for each w ∈ V , |Aux(w)| = O(log n).

Each node w receives the set Aux(w) and for each i ∈ Aux(w) the message maux(w, i)
containing the following information where

• daux(w, i) is the depth of node i.

• `i(w) is a vertex identifier of the exit vertex of Fi (cf. Lemma 4).

• αi(w) is a vertex identifier of the vertex in Fp(i) in charge of Bi (cf. Lemma 4).

• Fi(w) is a set of vertices, representing Fi.

• TreeCert(w) is the certificate that receives w in the protocol used to verify that S(i) is a
tree rooted at `i and spanning Fi(w). More precisely cert(Fi, w) = (parent(w), dist(w), sub(w)),
where:

– parent(w) represent the parent of w in S(i) (parent(w) =⊥ if w = `i(w)),
– dist(w) represents the distance from w to `i in S(i), and
– sub(w) represents is the subset of Fi(v) that are descendants of w in S(i).

Observe that for any given vertex w and node i, the messages maux(w, i) is of size O(k log n).
Thanks to Lemma 5, a vertex w appears O(log n) times as auxiliary vertex of some node i.
Therefore, a vertex w receives in total O(k log2 n) bits for auxiliary messages.

Verification round. Given two vertices u and v such that d(u) ≤ d(v), we say that the main
message of u is a d-suffix of the main message of v if Bj(u) = Bj(v) and Ej(u) = Ej(v) for each
j ∈ {1, . . . , d}.

Let d = d(v). In the verification round, vertex v verifies the following conditions.

Consistency of the tree decomposition.

1. The size of each B ∈ B(v) is at most 3k + 3.

2. The set Fd(v) contains v.

3. For each j ∈ {2, . . . , d}, the set Fj(v) equals Bj(v) \Bj−1(v).

4. For each w ∈ V (G) and j1, j2 ∈ {1, . . . , d} with j1 < j2, if w ∈ Bj1 ∩Bj2 , then w ∈ Bij for
every j ∈ {j1 + 1, . . . , j2 − 1}.

5. For each j1, j2 ∈ {1, . . . , d}, each pair of vertices u1, u2 ∈ Bj1(v) ∩ Bj2(v) satisfies that
{u1, u2} ∈ Ej1(v) ⇐⇒ {u1, u2} ∈ Ej2(v).

6. For each u ∈ Bd(v), v checks that {u, v} ∈ E ⇐⇒ {u, v} ∈ Ed(v).

7. For each u ∈ N(v) such that d(u) ≥ d(v), v checks that m(v) is a d(v)-suffix of m(u).

8. For each u ∈ N(v) such that d(u) ≤ d(v), v checks that u ∈ Bd(v).

9. v checks that it is an auxiliary vertex for Bd(v) and that it has a neighbor that is also an
auxiliary vertex for Bd(v).

10. For each vertex w ∈ N(v)∪ {v} such that w is an auxiliary tree vertex for Bd(v), v checks
that daux(w,Bd(w)) = d and Fi(w) = Fd(v).
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Consistency of the auxiliary trees and the exit vertex. The following conditions are
used to verify that the nodes marked as auxiliary vertices for node i form an auxiliary subtree
S(i) rooted at `i and spanning Fi. At the same time, we check that all de nodes in S(i) have
the same auxiliary information, corresponding to the depth di of bag i, the contents of Fi, the
identity of exit vertex `i, and the identity of the node of Fp(i) responsable of i, and the same
di-suffix of the main messages.

For each i ∈ Aux(v), vertex v checks te following conditions

11. For each vertex w ∈ N(v) such that w is an auxiliary tree vertex for i, v checks that

(daux(w, i), `i(w), αi(w), Fi(w)) = (daux(v, i), `i(v), αi(v), Fi(v))

12. daux(v, i) ≤ d(v).

13. Uses TreeCert(Fi(v), v) to verify that there is an auxiliary tree S(i) rooted in `i(v) and
spanning Fi(v). More precisely, v checks the following conditions:

(a) If v 6= `i(v) then v has a neighbor with the label parent(w) which is also an auxiliary
vertex for i;

(b) If v 6= `i(v), then dist(parent(v)) = dist(v)− 1;

(c) If v = `i then dist(v) = 0, sub(v) = Fi(v), v is adjacent to αi(v) and d(αi(v)) =
daux(v, i)− 1.

(d) Set sub(v) is the union of all sets sub(w) over the children w of v in S(i) (i.e., for all
w such that parent(w) = v), plus vertex v itself if v ∈ Fi.

Soundness and completeness. We now analyze the correctness of the protocol. The com-
pleteness follows directly by Lemmas 3, 4 and 5. In the following, we prove the soundness.

Soundness: Let us assume that all vertices accept a given certificate in the verification round.
We now show that necessarily tw(G) ≤ 3k + 2. For each node v ∈ V , let us call B(v) and F (v)
the set Fd(v)(v) and Bd(v)(v), respectively. We say that a vertex v is in depth d if d(v) = d. The
proof of the soundness is a consequence of the following claims.

Claim 1: For each i ∈ Aux(v), there is a tree S(i) rooted in `i(v) spanning Fi(v). Moreover,
all the vertices in S(i) are in a depth greater or equal than daux(v, i), and their main messages
have the same daux(v, i)-suffix.

Proof of Claim 1. First, observe that by the verification of condition 13 (a)-(c), we have that
S(i) is defined by the set of all auxiliary vertices for i and the edges {w, parent(w)}. Since S(i) is
connected, by conditions 10 and 11, all auxiliary vertices for node i agree in the same Fi = Fi(v)
and in the depth of i given by daux = daux(v, i). By condition 13 (c)-(d), all vertices in Fi exist
and are auxiliary vertices for node i. Finally, by condition 12 all nodes are in a depth greater
or equal than daux and by condition 7, the main messages of all vertices in S(i) have the same
daux-suffix.

Claim 2: For every vertex v, all nodes in F (v) receive the same main messages as v.

Proof of Claim 2. Let u be a vertex in F (v). If u and v are adjacent the claim is true by condition
7. Suppose then that u /∈ N(v). Since v verifies condition 9, there is a set of auxiliary vertices
for node i = B(v). By Claim 1, m(v) is a d(v)-suffix of m(w), for every auxiliary vertex w for
node i. Since all vertices in F (v) are auxiliary vertices for i, we deduce that u has the same main
messages than v.

Claim 3: For every pair of vertices u, v ∈ V either F (v) = F (u) or F (v) ∩ F (u) = ∅.
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Proof of Claim 3. This is a direct corollary of Claim 2. Indeed, let us suppose that there exist
a pair u, v ∈ V such that F (v) 6= F (u) but F (v) ∩ F (u) 6= ∅. Then, without loss of generality,
there is a node w ∈ F (v) ∩ F (u) such that F (w) 6= F (v), which contradicts Claim 2.

Claim 4: For every vertex v such that d(v) > 1, there exist a node u such that m(u) is a
(d(v)− 1)-suffix of m(v).

Proof of Claim 4. Let d = d(v). Claim 1 implies that the exit vertex `i for i = Bd(v) exists and
is the root of S(i), which is in a depth greater or equal than daux = d. Condition 13 (c) implies
that `i is adjacent to a node αi of depth d− 1. Then, by condition 7, m(αi) is a d− 1-suffix of
m(`i). Since m(v) is a d-suffix of m(`i), we deduce that m(αi) is a d− 1-suffix of m(v).

Claim 5: For every u, v ∈ V , the sets F (u) 6= F (v) if and only if B(u) 6= B(v).

Proof of Claim 5. First, observe that if F (u) = F (v), then by condition 2 and Claim 2, B(v) =
B(u). For the reciprocal, let us suppose by contradiction that there exist u, v ∈ V such that
F (u) 6= F (v) and B(u) = B(v). Let us call d1 = d(u) and d2 = d(v). Since F (u) 6= F (v),
necessarily Bd1−1(u) 6= Bd2−1(v). Let us assume, without loss of generality, that there exists a
vertex w ∈ F (v) \ F (u). Since w belongs to F (v), we have that F (w) = F (v) by Claim 2, and
w does not belong to Bd1−1(v). Since w /∈ F (u) we have that w belongs to Bd2−1(u). Let us call
d3 the maximum in {1, . . . , d1 − 1} such that Bd3(u) belongs to B(v). Observe that d3 exists,
because applying condition 7 on all the vertices in G we deduce that B1(u) = B1(v). If Bd3(u)
contains w, then v fails to verify condition 4. If Bd3(u) does not contain vertex w, there exists
a d4 ∈ {d1, . . . , d3 − 1} such that w ∈ Fd4(u) = Bd4(u) \ Bd4−1(u). Then, Claim 4 applied to
the vertices in the sequence Fd1(u), Fd1−1(u), ..., Fd4(u) implies that there is a node w′ such that
F (w′) = Fd4(u). Then, by Claim 2, F (w) = Fd4(u). We deduce that B(v) = Bd4(u), which is
a contradiction with the choice of d3.

Let us define I as the set of indexes i ∈ [nO(k)] for which there is a v ∈ V (G) such that i is
the binary representation of B(v). By Claim 2, 3 and 5, we have a partition {Fi}i∈I of V (G),
such that, for each i ∈ I, all nodes in Fi receive the same main messages. In particular, for every
vertex v in Fi, we have that i is the binary representation of B(v). For each v ∈ Fi, we define
p(i) as the binary representation of Bd(v)−1(v) (p(i) = ⊥ if v ∈ B1(v)). From Claim 4 we know
that the binary representation of Bd(v)−1(v) is also in I. In other words, the nodes in Fd(v)−1(v)
have certificates that are consistent with the certificate of v. In particular, all vertices of G agree
on the contents of the root node, that we call B1. We then define the pair (T, {Bi}i∈I), where T
is defined by the tree with vertex set I and edge set {i, p(i)}, for each i ∈ I different than the root.

Claim 6: The pair (T, {Bi}i∈I) forms a tree decomposition of G of width 3k + 2.

Proof of Claim 6. According to Definition 1 we have to check that the following three properties
are satisfied:

• For every v ∈ V , there exists i ∈ I such that v ∈ Bi;

• For every e = {u, v} ∈ E there is i ∈ I such that {u, v} ⊆ Bi;

• For every v ∈ V , the set {i ∈ I : v ∈ Bi} forms a connected subgraph of T .

The first two properties are directly verified as every vertex is given one bag that contains it
in the main message. The second property is verified by condition 8. Finally, for the third
condition, let us suppose that there exists a vertex v ∈ V such that Iv = {i ∈ I : v ∈ Bi} is not
connected. Let C1 and C2 be two different components of Iv, and let i1 and i2 be, respectively,
the nodes in C1 and C2 of minimum depth. Observe that Fi1 6= Fi2 and by condition 3, v must
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be contained in Fi1 ∩ Fi2 , which contradicts Claim 2. We deduce that for every v ∈ V , the set
{i ∈ I : v ∈ Bi} forms a connected subgraph of T . We conclude that (T, {Bi}i∈I) forms a tree
decomposition of G. Finally, the width of the decomposition is verified by condition 1.

We finish this section showing one more property of our verification algorithm, that is not
required for the certification of the 3-approximation of the treewidth, but will be useful in the
next section.

Claim 7: For every v ∈ V and every j ∈ {1, . . . , d(v)}, the set Ej(v) corresponds to the edges
of graph induced by Bj(v).

Proof of Claim 7. We prove this claim by induction on d(v). Suppose first that d(v) = 1. Since
F1 = B1, we have that F (u) = F (v) for every other vertex u in B1. By Claim 2 we obtain that
v and u agree on the same set E1. Then, by condition 5 on all the vertices in B1, we deduce
that E1 = E[G1]. Now suppose that the claim is true for every vertex of depth smaller than
d > 1 and suppose that d(v) = d. By the induction hypothesis, for every j ∈ {1, . . . , d − 1}
the set Ej(v) corresponds to the set of edges of G[Bj(v)]. Then, it remains to prove that Ed(v)
corresponds to the set of edges of G[Bd(v)]. Let w1, w2 be an arbitrary pair of vertices in B(v),
and call d1 and d2 the depth of w1 and w2, respectively. Without loss of generality assume that
d1 ≤ d2. By Claim 4 applied to all vertices in the path of nodes between Bd(v) and Bd2(w2),
we have that Ed2(w2) = Ed2(v). By condition 6, we have that w1, w2 are adjacent if and only if
{w1, w2} belongs to Ed2(w2). Suppose that d2 = d. By Claim 2, we know that all nodes in F (v)
have the same main messages, in particular, they agree in the set Ed(v). Then Ed2(v) = Ed(v).
If d2 < d, we have by condition 5, that w1, w2 ∈ Ed2(v) if and only if {w1, w2} belongs to Ed(v).
In both cases we deduce that {w1, w2} ∈ E if and only if {w1, w2} ∈ Ed(v).

4 Certifying regular properties

In this section, we prove our main result, Theorem 1.

Theorem 2. For every k ≥ 1 and any regular graph property P(G), there exists a distributed
certification protocol certifying that tw(G) ≤ k and P(G) is true, using certificates on O(log2 n)
bits in n-node networks.

For simplicity, we integrate the condition tw(G) ≤ k to property P, by setting P(G) =
(tw(G) ≤ k) ∧ P(G). The new property is regular because property tw(G) ≤ k is regular (see,
e.g., [24] for a discussion), and a conjunction of regular properties is regular by [8]. Basically, we
enrich the protocol of Section 3 as follows. Either the protocol rejects because tw(G) > k, or it
constructs and certifies a tree decomposition at most 3k + 2. In the latter case, we also certify
property P using the tree decomposition of width 3k+2 and the homomorphism classes C of the
property on (3k + 3)-terminal graphs.

Fix the tree decomposition of width 3k + 2. As in the sketch of proof of Proposition 1, for
each node i of the decomposition tree, Gi denotes the (3k + 3)-terminal graph corresponding
to G[Vi], with set of terminals Bi. Also, for each w ∈ Fi, let Children(w) denote the set of
children j of i such that w is in charge of node j (see Lemma 4 applied to j). In particular, the
sets Children(w) for w ∈ Fi form a partition of the children nodes of i in the decomposition
tree. Denote by Gi[w] the (3k + 3)-terminal graph obtained from G[Bi ∪

⋃
j∈Children(w) Vj ] by

choosing Bi as set of terminals. Note that if Children(w) is empty, then Gi[w] is simply the
3k + 3-terminal base graph Gb

i corresponding to G[Bi], as illustrated in Figure 3.
The prover appends two new informations to the previous main messages of each vertex

v ∈ Fi: the homomorphism class of Gi as well as the homomorphism class of Gi[v]. Moreover the
homomorphism class of Gi is also added to the auxiliary message maux(w, i) for every vertex w
of the auxiliary tree S(i). Note that this only ads a constant size to the previous main messages,
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Gi Gi[w1] Gi[w2] Gi[w3]

Figure 3: Graphs Gi and Gi[w].

since property P has a constant number of homomorphism classes. Auxiliary messages are
increased by O(log n) bits, since each vertex w is in O(log n) auxiliary trees S(i) by Lemma 5.
Nevertheless, the constants here depend on k and on property P.

We now update the verification round to exploit these new messages and check the prop-
erty. As before, we use the auxiliary tree S(i) to ensure that `i, and all vertices v ∈ Fi, have
received from the prover the same isomorphism class for Gi.

It remains to check the consistency of the homomorphism classes for property P in the
respective subgraphs.

Consistency of the homomorphism class of Gi[v]. Firstly, each vertex v ∈ Fi in charge of
some nodes must certify the homomorphism class of Gi[v], in the sense that it compares the
message received from the prover with the homomorphism class that he constructs from the
nodes j ∈ Children(v). Vertex v receives, for each j ∈ Children[v], a message from `j with the
homomorphism class of P restricted to the (3k + 3)-terminal graph Gj . Using Definition 2, it
constructs the homomorphism class on G+

j . Recall that G
+
j = f(Gj , G

b
i), i.e., G

+
j is obtained by

glueing Gj and the base graphs Gb
i induced by Bi, the glueing being performed by identifying the

terminals of Bj \Bi in Gj to the corresponding vertices of Bi. Vertex v knows both sets Bi (which
is in its initial message) and Bj (received from `j), so it has full knowledge of matrix m(f) of the
composition operation f . (There is a hidden technicality here. Node `j sends its main message
to v in the unique communication round, and this message contains all bags B(`j), in particular
bag Bj . Node v can retrieve this bag, since its order in the list B(`j), starting from the end of
the list, is exactly the depth i(v) of node i, plus one.) Then the homomorphism class of h(G+

j )

is obtained as �f (h(Gj), h(G
b
i))(see Figure 3, Proposition 1 and its sketch of proof). Again v

knows graph G[Bi] hence it can compute its homomorphism class h(Gb
i). It also knows h(G+

j )

from `j , altogether v is able to compute the homomorphism class h(G+
j ). Eventually, since G[v]

is obtained by glueing on Bi all graphs G+
j , j ∈ Children(v), v computes the homomorphism

class of Gi[v]. If this class is not the same as the one received from the prover, vertex v rejects.
Consistency of the homomorphism class of Gi. Every vertex v ∈ Fi checks the consistency

between the message received from the prover as class of P on Gi, and the one it constructs from
the glueing of all classes of Gi[w] (that vertex w has received from the prover), for all w ∈ Fi,
on Bi. Indeed, Gi is equal to the glueing, on Bi, of all graphs Gi[w] with w ∈ Fi. Again, in case
of inconsistency, vertex v it rejects.

Yes-instance. Every vertex belonging to Fr (the root node of the decomposition tree) accepts
if the class of property P on Gr is an accepting one, otherwise it rejects.

Due to space restrictions, the soundness and completeness of the protocol are detailed in
Appendix A.2. In a nutshell, the completeness is quite straightforward by construction of the
messages. For the soundness, assume that all vertices accept. We proceed by induction on nodes
i on the decomposition tree, from the leaves to the root, and show that the messages received by
each v ∈ Fi from the prover as homomorphism classes for Gi[v] and Gi are correct. Eventually,
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since vertices of the root node accept, we conclude the homomorphism class of P on the whole
graph is an accepting one, so P(G) is true.

5 Conclusion

To sum up, we proved that for every k ≥ 1 and every MSO property on graphs, there exists
a distributed protocol certifying that the input graph is of treewidth at most k and satisfies
the required property, using certificates on O(log2 n) bits. The result extends to optimisation
problems, where we certify that a given vertex subset is of optimal weight (e.g., of maximum or
of minimum size) for some MSO property, and the treewidth of the input graph is at most k.

The first natural question is whether we can reduce the size of certificate to O(log n) instead
of O(log2 n). We believe that such an improvement requires considerably different techniques,
even for certifying that the treewidth of the input graph is at most k.

Another further research direction concerns certification versions for other algorithmic “meta-
theorems”. For example, given a graph property expressible by a first-order boolean formula, is
there a distributed protocol certifying that the input graph is planar and satisfies the property,
using certificates of logarithmic size?

Acknowledgment. The authors are thankful to Eric Remila for fruitful discussions on certi-
fication schemes related to the one considered in this paper.
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A Detailed proofs

This section contains detailed proofs moved to the Appendix due to space restrictions.

A.1 Coherent tree decompositions

Proof of Lemma 3

Proof. Firstly, choose a tree decomposition (T = (I, F ), {Bi, i ∈ I}) of G where T is of logarith-
mic depth and each bag is of size at most 3k + 3. Such a decomposition exists by [5].

Let us show how to transform this tree decomposition into a coherent one. Firstly we focus
on the connectivity condition. Assume the decomposition is not coherent, and let i a node that
violates the connectivity condition, closest to the root. Observe that i is different from the root:
we can assume w.l.o.g that all bags are non empty, in particular Fr is non empty and G[Vr] = G
is connected. Then suppose that G[Vi \ Bp(i)] is not connected and let W 1,W 2, . . . ,W p be the
vertex sets of the connected components of G[Vi \ Bp(i)]. Denote by N j the neighbourhood of
W j ∈ G, for 1 ≤ j ≤ p, and observe that every N j is a subset of Bi∩Bp(i). For each j, 1 ≤ j ≤ p,
construct a tree decomposition T j

i of G[W j ∪N j ] by taking a copy of Ti and the corresponding
bags, then restricting the bags to their intersection with W j ∪ N j . Eventually replace, in the
tree decomposition T of G, the subtree Ti by the p copies T 1

i , . . . , T
p
i , by making their roots

adjacent to p(i). Observe that we obtain indeed a tree decomposition of G, and the connectivity
condition on node i has been mended, in the sense that the p new nodes corresponding to copies
of node i satisfy it: for each copy ij of i, we have that Vij \Bp(ij) =W j .

Now that the connectivity condition is satisfied for every node, we fix the condition stating
that sets Fi must not be empty. If Fi is empty for some node i, then Bi is a subset of Bp(i).
Therefore we can remove node i from the decomposition tree and attach its children directly to
the parent p(i) of the deleted node, obtaining a new tree decomposition, without increasing the
depth. This process can be iterated as long as necessary, hence we my assume that for any node
i, Fi is non empty. Also observe that the removal of node i does not modify the set Vj \ Bp(j)

for any child j of i in the initial tree T , therefore the connectivity condition is preserved for all
nodes.

Proof of Lemma 4

Proof. Denote Wi = Vi \Bp(i). By definition of a tree decomposition the neighbourhood NG(Wi)
of Wi in graph G is a subset of Bp(i). We must show that NG(Wi) contains at least one vertex w
in Fp(i), which allows to take a `i ∈Wi adjacent to w in G. Assume by contradiction that NG(Wi)
does not intersect Fp(i). In this case p(i) is not the root vertex, and NG(Wi) ⊆ Bp(i) \ Fi, which
is also equal to Bp(i) ∩ Bp(p(i)). Therefore Bp(i) ∩ Bp(p(i)) separates Wi from the Fp(i) in graph
G. This contradicts the coherence of the tree decomposition, more precisely the connectivity
property at node p(i), since Wi and Fp(i) are disconnected in G[Vp(i) \Bp(p(i))].

Proof of Lemma 5

Proof. Since our tree decomposition is coherent, for each node i graph G[Vi \Bp(i)] is connected
so it contains the required subtree S(i).

Observe is that, if i and j are different nodes of the tree decomposition such that none
is ancestor of the other, then sets Vi \ Bp(i) and Vj \ Bp(j) are disjoint, by definition of tree
decompositions. Therefore, if we fix a vertex v of G, the nodes i such that v appears in S(i) are
pairwise comparable w.r.t the ancestor relation in the decomposition tree. The decomposition
tree is of depth O(log n) and the conclusion follows.
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A.2 Theorem 2: soundness and completeness

We detail the soundness and completeness of the protocol of Theorem 2, certifying a regular
property P on graph G of treewidth at most k.

For the completeness part, assume that our graph G has treewidth at most k and satisfies
property P. By Lemma 1, the prover can construct the messages for the 3-approximation of
treewidth, such that the verifier passes all the tests certifying the tree decomposition. Moreover
the tree decomposition is correct, and so are, for each node i of the decomposition, the exit vertex
`i of i and the vertex of Fp(i) in charge of node i. It remains to prove that vertices v ∈ Fi accept.
The proof is done bottom-up, by considering i from the leaves to the root. If i is a leaf of the
decomposition tree, then v is not in charge of any other node (i.e., Children(v) is empty). In
this case Gi = Gi[v], and the homomorphism classes are all equal and correspond to the (3k+3)-
terminal base graph G[Bi], and all vertices v ∈ Fi accept. Now if i is not the root, every v ∈ Fi is
assigned a (possibly empty) set Children(v) of children of i in the decomposition tree. For each
j ∈ Children(v), vertex v receives from `j the homomorphism class of Gj , so v computes the
class of G+

j . By Proposition 1 and Definition 2, the homomorphism class of Gi[v] is consistent
withe the one obtained with the glueing of all G+

j on the set Bi of terminals. Eventually, by
glueing on Bi all graphs Gi[v], for all v ∈ Fi, we obtain Gi, and the homomorphism classes of
Gi and Gi[v] are consistant, so v accepts. At the root node i = r, each v ∈ Fr also checks that
the homomorphism class of P is an accepting one (and it is), so v accepts.

For the soundness, assume that all nodes accept. We must show by induction, for each node
i of the decomposition from leaves to the root, that the messages that each v ∈ Fi received
as homomorphism class of P on graphs Gi[v] and Gi are correct. We rely again on the fact
that the tree decomposition is correct, as well as the exit nodes and their neighbours in the
parent node. When i is a leaf node, each v knows that its set Children(v) is empty, since it has
received no message from some exit node. Also v knows the graph G[Bi] (recall that all edges of
G[Bi] have been sent in the main messages). Therefore it checks that the homomorphism classes
received from the prover for Gi[v] and Gi received are correct: they must be equal, and must
correspond to the base graph G[Bi]. If i is not a leaf node, we rely on the fact that, collecting
the messages from the exit nodes `j , vertex v ∈ Fi correctly constructs Children(v). For each
j ∈ Children(v), v has received from `j the homomorphism class c of Gj (which is correct by
induction hypothesis). Therefore v correctly constructs the class of G+

j from c and the class of
the (3k+ 3)-terminal base graph G[Bi]. Then, by glueing all G+

j , j ∈ Children(v), v it gets the
class of Gi[v]. Since at this stage v has not rejected, the class of Gi[v] received from the prover
is correct. Eventually, v constructs the homomorphism class of Gi by glueing the classes of all
Gi[w], w ∈ Fi. Since v knows Fi and Bi, it correctly performs the glueing. By the fact that v
has not rejected up to now, we deduce that the homomorphism class of Gi obtained from the
prover is correct.

Since vertices v of the root bag accept, il means that the homomorphism class of P on the
whole graph is an accepting one, so the property holds, which completes the proof of Theorem 2.

B More preliminaries: MSO and regular properties for optimiza-
tion

Let us enrich our framework to properties on graphs and vertex subsets, i.e., properties P(G,X)
assigning to each graph G and each vertex subset X of G a boolean value. Properties like "X is
an independent set of G" or "X is a dominating set of G" are expressible in (Counting) Monadic
Second Order Logic, and they are still regular as we shall see below. More importantly, in the
sequential setting this allows to solve efficiently optimisation problems on graphs of bounded
treewidth, namely to compute a vertex subset X of maximum (or minimum) size such that
P(G,X) holds.
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Composition operations on w-terminal recursive graphs naturally extend to pairs (G,X),
where G is a w-terminal recursive graph and X is a vertex subset. Let f be a composition
operation of arity 1, and G = f(G1). Then for every vertex subset X1 of G1, we take f(G1, X1) =
(G,X1). Consider composition operation of arity 2 such that G = f(G1, G2). When we perform
this composition on pairs (G1, X1), (G2, X2), the result is the pair (G,X), where X is obtained
by the the glueing ofX1 andX2. Therefore the intersections of setsX1 andX2 with the terminals
of G1 and respectively G2 must be coherent with the gluing, in the sense that if two terminals
x1 of G1 and x2 of G2 are identified in G, then we either have x1 ∈ X1 and x2 ∈ X2, or
we have x1 /∈ X1 and x2 /∈ X2 (see [8, 16] for more details). To be complete, we restate the
notion of regularity to properties P(G,X) – the only difference being that the property and the
homomorphism classes now depend on both parameters, the graph and the vertex subset.

Definition 3 (regular property on graphs and vertex sets). Graph property P(G,X) is called
regular if, for any value w, we can associate a finite set C of homomorphism classes and a
homomorphism function h, assigning to each w-terminal recursive graph G and to each vertex
subset X a class h(G,X) ∈ C such that:

1. If h(G1, X1) = h(G2, X2) then P(G1, X1) = P(G2, X2).

2. For each composition operation f of arity 2 there exists a function �f : C × C → C such
that, for any two pairs (G1, X1) and (G2, X2),

h(f((G1, X1), (G2, X2)) = �f (h(G1, X1), h(G2, X2))

and for each composition operation f of arity 1 there is a function �f : C → C such that,
for any pair (G,X),

h(f(G,X)) = �f (h(G,X)).

The first condition separates the classes into accepting ones (i.e., classes c ∈ C such that
h(G,X) = c implies that P(G,X) is true) and rejecting ones (s.t. h(G,X) = c implies that
P(G,X) is false).

We also have:

Proposition 3 ([8, 12]). Any property P(G,X) expressible by a MSO formula is regular.
Moreover, given the MSO formula ϕ and parameter w, one can explicitely compute the set of

classes, the homomorphism function for all w-terminal base graphs as well as the homomorphism
functions �f over all possible composition operations f .

E.g., for the property "X is an independent set of G", we can choose as homomorphism class
h(G(V,W,E), X) formed by a boolean indicating whether P(G,X) is true, and the intersection
of X with the set of terminals.

We may assume w.l.o.g. that the homomorphism class c = h(G,X), for G = (V,W,E)
always encodes the intersection of X with the set of terminals. This is not explicitly required by
the definition of regular properties, but it can be done since it only costs w bits to encode the
subset of the terminals contained in X. Therefore we assume there is a function term(c,W ) that,
given a homomorphism class c and an ordered set of terminals W returns the unique possible set
X ∩W , over all pairs (G = (V,W,E), X) mapped to c. Thanks to this function, when we glue
two terminal recursive graphs with their corresponding vertex subsets, we will be able to check
that the glueing is coherent. Moreover, we can perform optimisation tasks as follows.

Assume that we deal with weighted graphs, i.e., we have a function weigth associating to every
vertex an integer weight in the interval [−MAXW,+MAXW ]. Given a w-terrminal recursive
graph G and a regular property P(G,X), we aim to compute the maximum weight vertex subset
X satisfying P(G,X). For this purpose, for any homomorphism class c ∈ C of property P, let

MaxWeight(G, c) = max{weight(X) | X ⊆ V (G) s.t. h(G,X) = c}.
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For convenience, we set MaxWeight(G, c) to −∞ if no such set exists, and more generally we
consider that the maximum value of an empty set is −∞. Then we have:

Lemma 7. For any w-terminal recursive graph G = (V,W,E) and any homomorphism class c
of property P,

1. If G is a w-terminal base graph,

MaxWeight(G, c) = weight(term(c,W )).

2. If G = f(G1) for some composition operation f of arity 1, then

MaxWeight(G, c) = max
c1 s.t. c=�f (c1)

MaxWeight(G1, c1).

3. If G = f(G1, G2) for some composition operation f of arity 2, then

MaxWeight(G, c) = max
c1,c2 s.t. c=�f (c1,c2)

MaxWeight(G1, c1) +MaxWeight(G1, c1)−

weight(term(c1,W1) ∩ (term(c2,W2)),

where Wj denotes the set of terminals of graph Gj, for j ∈ {1, 2}.

Proof. The first two items are simple consequences of the definitions, let us focus on the third
item.

Firstly, let us prove that MaxWeight(G, c) is at least equal to the right-hand side of the
expression. Let c1, c2 be the homomorphism classes realising the maximum, and for each j ∈
{1, 2} let Xj be the vertex subset of Gj such that h(Gj , Xj) = cj and MaxWeight(Gj , cj) =
weight(Xj). Observe that, by taking the vertex subset X of G obtained from X1 and X2 by
glueing the corresponding terminal vertices according to composition operation f , weight(X) =
weight(X1)+weight(X2)−weight(term(c1,W1)∩(term(c2,W2)), since the negative term avoids
overcounting the vertices of X appearing as terminals in both X1 and X2. By construction
(G,X) = f((G1, X1), (G2, X2) so MaxWeight(G, c) is at least weight(X).

Conversely, let X be a maximum weight vertex subset of G such that h(G,X) = c. For
j ∈ {1, 2}, let Xj be the intersection of X with the vertex set of Gj , and cj = h(Gj , Xj). By
construction, c = �f (c1, c2) and weight(X) = weight(X1)+weight(X2)−weight(term(c1,W1)∩
(term(c2,W2)). We claim that weight(Xj) = MaxWeight(Gj , cj), for both values j. Assume
by contradiction there is a set, say X ′1, of larger weight than X1 and such that h(G1, X1) = c1.
Note that X ′1 and X1 may only differ on non-terminal vertices of G1, otherwise they would
not correspond to the same homomorphism class. Then set X ′ obtained by glueing X ′1 and X2

is of larger weight than X, moreover h(G,X ′) = c, contradicting the maximality of X. We
conclude that the right-hand side of the expression is at least equal to MaxWeight(G, c) and
the conclusion follows.

C Certifying optimal sets for regular properties

We can now extend out certification protocol to optimisation problems on weighted graphs, with
polynomial weights.

Theorem 3. For every k ≥ 1 and any regular graph property P(G,X), there exists a distributed
certification protocol certifying that tw(G) ≤ k and X is the maximum weight vertex set such
that P(G,X) is true, on graphs with polynomial weights, using certificates on O(log2 n) bits in
n-node networks.
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If instead of polynomial weights we use weights in the interval [−MAXW,+MAXW ], the
protocol requires O(log n(log n+ logMAXW )) bits.

We only describe the differences of the new protocol with respect to the protocol of Section 4.
As for the protocol of Theorem 2, we assume that the condition tw(G) ≤ k is integrated to
property P. Here the input is also formed of vertex set X. On one hand we certify P(G,X)
(this part of the protocol being almost identical to the one of Theorem 2), and in the meantime
we certify, for each homomorphism class c and at each node i of the decomposition, the weight
of an optimal partial solution (Gi, Y ) for graph Gi, of homomorphism class c. Then we simply
compare at the root node the weight of X with the weight of an optimal solution.

Let us detail how we deal with set X.
The first issue is that, for each node i of the decomposition tree and each vertex v ∈ Fi,

vertex v must know the set Bi ∩X. For this purpose, The prover adds to the main messages of
vertex v, a sequence of sets X (v) = (Xd(v), . . . X1(v)) where Xj(v) represents the intersection of
the solution X with bag Bj(v).

The verification is very similar to the one of the edge sets of G[Bi]. In the verification round,
v verifies for each j1, j2 ∈ {1, . . . , d} and for each u ∈ Bj1(v)∩Bj2(v), that u ∈ Xj1(v) ⇐⇒ u ∈
Xj2(v). By Claim 2, all vertices in F (v) receive the same main messages, then all nodes in F (v)
agree in the part of the solution X that intersect the bags in the nodes from i = Bd(v) up to the
root. By Claim 4 the vertices globally agree on the set X. Also, each vertex v ∈ X verifies that
it belongs to Xd(v), ensuring that the set X claimed by the prover is consistent with the input.

A second issue to deal with is the overall weight of set X. Here we use a completely different
but standard technique to collect the weight of X in a vertex vr belonging to the root bag,
using O(log n) supplementary bits per vertex, see [23]. We encode a spanning tree of the whole
graph rooted in vr, by giving to each vertex its distance to the root and the identifier to the
parent vertex. Moreover, each vertex v receives the total weight weightX(v) of the vertices of
X contained in the subtree rooted at v. The situation is very similar to the tree certificates
TreeCert that we have used in Section 3 for the auxiliary messages, where we encoded a subtree
S(i) rooted in a given vertex `i and spanning the vertex subset Fi. The verification follows
exactly the same principles for certifying the tree structure, moreover each vertex v checks that
weightX(v) corresponds to the sum of weights weightX(w) for its children w, plus the weight
of v if the latter belongs to X.

A third issue is that, for each node i of the decomposition tree, the prover sends to each
v ∈ Fi and the exit vertex `i the homomorphism class h(Gi, X ∩ Vi) (instead of the class of Gi).
Also, v receives the homomorphism class h(Gi[v], X ∩ V (Gi[v]) and the weight of X ∩ V (Gi[v]).
This part is a simple update of the the protocol of Theorem 2, adapted to properties on graphs
and edge subsets.

The main novelty is that each v ∈ Fi and `i receive from the prover, for each homomor-
phism class of property P, value MaxWeight(i, c) corresponding to the maximum weight of
a partial solution (Gi, Y ) of homomorphism class c on graph Gi, and v also receives value
MaxWeight(i, c; v), the maximum weight of Y ⊆ V (Gi[v]) such that h(Gi[v], Y ) = c.

Let describe the verification performed by each vertex. We already ensured that vertices
of a same set Fi, for each node i of the decomposition tree, posses the correct set X ∩ Bi.
Checking property P(G,X) is has no significant difference compared to Theorem 2, we simply
use the homomorphism functions of Definition 3 instead of Definition 2. The construction is
similar, we simply use the fact that each vertex v ∈ Fi knows X ∩Bi, allowing it to compute the
homomorphism class for base graphs Gb

i .
A supplementary effort is required to compute the weight of an optimal solution, then to

compare it to the weight of X. For this purpose, at each node i of the decomposition tree, the
verifier performs the following operations on each v ∈ Fi.

• Firstly, vertex v checks that values MaxWeight(i, c; v) received from the prover for each
homomorphism class c ∈ C, claimed to be equal to MaxWeight(Gi[v], c) are indeed con-
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sistent with the information it receives from nodes j ∈ Children[v], the graph G[Bi] and
X ∩Bi.

For this purpose, v computes MaxWeight(Gb, c), for each homomorphism class c, us-
ing Lemma 7 applied to the 3k + 3-terminal base graph Gb and set X ∩ Bi. Recall
that v has Gb = (Bi, Bi, E(G[Bi])) and X ∩ Bi in its own message. Then, for each
j ∈ Children(v), it retrieves all values MaxWeight(Gj , c) from the exit vertex `i. Us-
ing again Lemma 7 for graph G+

j = f(Gj , G
b
i), it computes all values MaxWeight(G+

j , c),
from MaxWeight(Gj , c1), MaxWeight(Gj , c2) and weight(term(c1, Bj)) ∩ term(c2, Bi)),
over all classes c1, c2 with c = �f (c1, c2).

Then v must deduce MaxWeight(Gi[v], c) based on the fact that Gi[v] is obtained by
consecutively glueing G+

j1
, G+

j2
, . . . , G+

jp
, where Children(v) = {j1, . . . , jp} (e.g., we can

order the nodes j of Children(v) by increasing size of the identifier of `j). The glueing
(composition operation) f is the same at each step, performed on the same set of termi-
nals Bi. Let Hr denote the result of the glueing of G+

j1
. . . , G+

jr
, for each r, 1 ≤ r ≤ p.

In particular H1 = G+j1, Hr = Gi[v] and Hr = f(Hr−1, Gjr) for each r, 2 ≤ r ≤ p.
Therefore, for each r from 2 to p, vertex v computes all values MaxWeight(Hr, c) from
values MaxWeight(Hr−1, c1) and MaxWeight(Gjr , c2) using the equation of Lemma 7
on operation f . Eventually v has all values MaxWeight(Gi[v], c) for all homomorphism
classes c. If one of these values differs from the message MaxWeight(i, c; v) received from
the prover, then v rejects.

• Secondly, vertex v checks that valuesMaxWeight(i, c) correspond, for each homomorphism
class c, to the valueMaxWeight(Gi, c) obtained by expressingGi as the consecutive glueing
of all Gi[w], for all w ∈ Fi, on the set of terminals Bi. ValueMaxWeight(Gi, c) is obtained
by iteratively performing the |Fi| − 1 glueings of Gi[w] and using Lemma 7 and values
Max(i, c;w). As above, at iteration r, 2 ≤ r ≤ |Fi|, we glue the first r graphs of the form
G[w], where vertices w are ordered by increasing identifiers. Again, in case of inconsistency
between MaxWeight(i, c) and MaxWeight(Gi, c) for some homomorphism class c, vertex
v rejects.

• At the root node r, recall that we must have a vertex vr ∈ Fr that knows the weight ofX – it
corresponds simply to weightX(vr). The node vr firstly checks that it belongs indeed to the
root of the decomposition tree by testing its depth, i.e., checking that d(vr) = 1. Then vr
computes the maximum weight MaxWeight(Gr, c) as the maximum of MaxWeight(r, c)
over all accepting classes c. If one of those is larger than the weightX(vr), vertex vr rejects.

Soundness and completeness. We already know that the protocol correctly encodes the tree
decomposition, the homomorphism classes of P(G,X) on partial graphs Gi and Gi(v), and that
the weight of set X is encoded in weightX(vr) for some vertex vr belonging to the root bag. It
remains to deal with quantities MaxWeight(i, c) and MaxWeight(i, c; v).

For the completeness part, the prover simply needs to correctly compute the intersection of
X with the bags, and values MaxWeight(i, c) and MaxWeight(i, c; v) for each homomorphism
class c, each node i of the decomposition tree and each vertex v ∈ Fi. The proof that vertex v
accepts when certifying messagesMaxWeight(i, c) andMaxWeight(i, c; v) assigned to it follows
the same steps as the completeness part for the decision problem, certifying that homomorphism
classes of Gi and Gi[v] are correct. We need to use Lemma 7, allowing to obtain the optimal
weight of a homomorphism class after glueing, instead of simply using Definition 2. Therefore,
we prove by bottom-up induction on nodes i that all vertices v ∈ Fi accept, if i is not the root.
When i is the root r, vertex vr ∈ Fr also check that the homomorphism class of P(Gr, X) is an
accepting one, and that the weight of X corresponds to the maximum weight of an accepting
class, and both conditions hold for a yes-instance.
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For the soundness condition, assume that all vertices accept. We prove as before, by bottom-
up induction (from leaves to the root) on nodes i, that homomorphism classes as well as quanti-
ties MaxWeight(i, c) and MaxWeight(i, c; v) are correct, in the sense that they correspond to
graphs Gi and Gi[v]. Again, for values MaxWeight(i, c) and MaxWeight(i, c; v), the glueing is
performed using Lemma 7.

At the root, since vertex vr ∈ Fr accepts, it means that P(Gr, X) is true and moreover the
weight of X (which is equal to weightX(vr)) is the maximum possible weight over all vertex
subsets Y such that P(G, Y ) accepts (by the last item of the verification protocol). Therefore
X is the optimal set for property P.
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