
Spanning Trees in Graphs of High Minimum
Degree with a Universal Vertex I:

An Approximate Asymptotic Result

Bruce Reed∗ Maya Stein†

May 23, 2019

Abstract

In this paper and a companion paper, we prove that, if m is suffi-
ciently large, every graph on m+1 vertices that has a universal vertex
and minimum degree at least b2m

3 c contains each tree T with m edges
as a subgraph. The present paper already contains an approximate
asymptotic version of the result.

Our result confirms, for large m, an important special case of a
recent conjecture by Havet, Reed, Stein, and Wood.

1 Introduction

A recurring topic in extremal graph theory is the use of degree conditions
(such as minimum/average degree bounds) on a graph to prove that it con-
tains certain subgraphs. One of the easiest classes of subgraphs for which
this question is not yet properly understood are trees. This is the focus of
the present paper.

Clearly, any graph of minimum degree exceeding m − 1 contains a copy
of each tree with m edges: Just embed the root of the tree anywhere in the

∗School of Computer Science McGill University. Research supported by NSERC.
†Department of Mathematical Engineering and Centro de Modelamiento Matemático,

Universidad de Chile, UMI 2807 CNRS. Research supported by CONICYT + PIA/Apoyo
a centros cient́ıficos y tecnológicos de excelencia con financiamiento Basal, Código
AFB170001, and by Fondecyt Regular Grant 1183080.

1

host graph, and greedily continue, always embedding vertices whose parents
have already been embedded. The bound on the minimum degree is sharp
(see below).

Our paper is one of a large number which discuss possible strengthenings
of the above observation by replacing the minimum degree condition with
a different condition on the degrees of the host graph. One of these is the
Loebl-Komlós-Sós conjecture from 1995 (see [EFLS95]), which replaces the
minimum degree with the median degree. This conjecture has attracted a
fair amount of attention over the last decades, and has been settled asymp-
totically [HKP+a, HKP+b, HKP+c, HKP+d]. More famously, Erdős and Sós
conjectured in 1963 that every graph of average degree exceeding m− 1 con-
tains each tree with m edges as a subgraph. This conjecture would be best
possible, since no (m−1)-regular graph contains the star K1,m as a subgraph.
Alternatively, consider a graph that consists of several disjoint copies of the
complete graph Km; this graph has no connected (m+1)-vertex subgraph at
all. Note that for these examples it does not matter whether we considered
the average degree (as in the Erdős–Sós conjecture) or the minimum degree
(as in the observation above).

The Erdős–Sós conjecture poses an extremely interesting question. It
is trivial for stars, and it holds for paths by an old theorem of Erdős and
Gallai [EG59]. It also holds when some additional assumptions on the host
graph are made, see for instance [BD96, Hax01, SW97]. In the early 1990’s,
Ajtai, Komlós, Simonovits and Szemerédi announced a proof of the Erdős–
Sós conjecture for sufficiently large m.

It is well-known that every graph of average degree > m has a subgraph
of minimum degree > m

2
. So, if it were true that every graph of minimum

degree exceeding m
2

contained each tree on m edges, then the Erdős–Sós con-
jecture would immediately follow. Of course, the statement from the previous
sentence is not true: It suffices to consider the examples given above. Still,
for bounded degree spanning trees an approximate version of the statement
does hold. Komlós, Sarközy and Szemerédi show in [KSS01] that every large
enough (m + 1)-vertex graph of minimum degree at least (1 + δ)m

2
contains

each tree with m edges whose maximum degree is bounded by cn
logn

, where the
constant c depends on δ. Variations of the bounds and the size of the tree are
given in [BPS18, CLNS10]. However, the result is essentially best possible
in the sense that (even if the minimum degree of the host graph is raised) it
does not hold for trees of significantly larger maximum degree [KSS01].

So, if we wish to find a condition that guarantees we can find all trees of

2

a given size as subgraphs, only bounding the minimum degree is not enough.
Nevertheless, there can be at most one vertex of degree at least m

2
in any tree

on m + 1 vertices, and so, we might not need many vertices of large degree
in the host graph. Therefore, it seems natural to try to pose a condition on
both the minimum and the maximum degree of the host graph.

The first conjecture of this type has been put forward recently by Havet,
Reed, Stein, and Wood [HRSW16]. They believe that a maximum degree of
at least m and a minimum degree of at least b2m

3
c is enough to embed all

m-edge trees.

Conjecture 1.1 (Havet, Reed, Stein, and Wood [HRSW16]). Let m ∈ N. If
a graph has maximum degree at least m and minimum degree at least b2m

3
c

then it contains every tree with m edges as a subgraph.

The conjecture holds if the minimum degree condition is replaced by
(1 − γ)m, for a tiny but explicit1 constant γ, and it also holds if the maxi-
mum degree condition is replaced by a large function2 in m [HRSW16]. An
approximate version of the conjecture holds for bounded degree trees and
dense host graphs [BPS18].

As further evidence we shall prove, in this paper and its companion pa-
per [RS19b], that Conjecture 1.1 holds for sufficiently large m, under the
additional assumption that the graph has m + 1 vertices, i.e., when we are
looking for a spanning tree. That is, building on the results from the present
paper, we will show the following theorem in [RS19b].

Theorem 1.2. [RS19b] There is an m0 ∈ N such that for every m ≥ m0

every graph on m + 1 vertices which has minimum degree at least b2m
3
c and

a universal vertex contains every tree T with m edges as a subgraph.

Observe that Theorem 1.2 is easy if T has a vertex t that is adjacent to
a set L of at least dm

3
e leaves. We root T at v, embed t in the universal

vertex v∗ of G, greedily embed T −L, and then embed L in neighbours of v∗.
This is possible since v∗ is universal.

It turns out that this approach can be extended if, for a small posi-
tive number δ, the tree T contains a vertex adjacent to at least δn leaves.
Although the greedy argument no longer works, we will be able to prove a
result, namely Lemma 1.3 below, which achieves the embedding of any tree T

1Namely, γ = 200−30.
2Namely, f(m) = (m+ 1)2m+6 + 1.

3

as above. This lemma will be crucial for the proof of Theorem 1.2 in our
companion paper [RS19b].

Lemma 1.3. For every δ > 0, there is an mδ such that for any m ≥ mδ

the following holds for every graph G on m+ 1 vertices which has minimum
degree at least b2m

3
c and a universal vertex.

If T is a tree with m edges, and some vertex of T is adjacent to at least δm
leaves, then G contains T .

Also, the results from the present paper alone imply an approximate
asymptotic version of this theorem.

Theorem 1.4. For every δ > 0, there is an mδ such that the following holds
for every m ≥ mδ and every graph G on m+ 1 vertices which has minimum
degree at least b2m

3
c and a universal vertex.

If T is a tree with at most (1− δ)m edges, then G contains T .

Both Theorem 1.4 and Lemma 1.3 follow from Lemma 2.1, which is stated
in Section 2, and whose proof occupies almost all the remainder of this paper.
In the companion paper [RS19b], we will prove the full Theorem 1.2, building
on Lemma 1.3 and another auxiliary result, namely Lemma 7.3, which is to
be stated and proved in the last section of the present paper (Section 7).

Let us end the introduction with a very short overview of our methods of
proof. A more detailed overview can be found in Section 3.

Given a tree T we wish to embed in the host graph G, we first cut T into
a constant number of connecting vertices, and a large number of very small
subtrees. Applying regularity to G, we can ensure that all those small trees
that are not just leaves can be embedded into matching structures we find
in the reduced graph of the regularised graph G. This is more complicated
than in earlier work on tree embeddings using the regularity approach, as
our assumptions are too weak to force one matching structure we can work
with throughout the whole embedding. Instead, we have to employ ad-hoc
matchings, plus some auxiliary structures, one for each of the connecting
vertices. Finally, we have to deal with the leaves adjacent to connecting ver-
tices. These are more difficult to embed than the other small trees, because
an embedded vertex might only see two thirds of the graph, and there is no
way to reach the remaining third of the graph in only one step. For this
reason, we have to come up with a delicate strategy on where we place the
connecting vertices, in order to ensure that at the very end of the embedding

4

process we will be in a position to embed all these leaves at once with a
Hall-type argument.

2 The Proof of Theorem 1.4

The lemma behind the two results we stated in the introduction (Lemma 1.3
and Theorem 1.4) is the following.

Lemma 2.1. For every δ > 0, there is an mδ such that for any m ≥ mδ

and α with δ ≤ α ≤ 1 the following holds.
Let G be an (m + 1)-vertex graph of minimum degree at least b2m

3
c, with

w ∈ V (G). Let T be a tree with at most (1 − α)m edges, with t ∈ V (T). If
no vertex of T is adjacent to more than αm leaves, then one can embed T in
G, mapping t to w.

Let us now show how Lemma 2.1 implies the results from the introduc-
tion. Here is the proof of the lemma that we will need in the companion
paper [RS19b].

Proof of Lemma 1.3. Let mδ be given by Lemma 2.1 for input δ. Given G
and T as in Lemma 1.3, we let t be a vertex of T having the maximum
number of leaf neighbours. We let L be the set of its leaf neighbours and set
α := |L|

m
. By assumption, δ ≤ α ≤ 1, so we may apply Lemma 2.1 to obtain

an embedding of T − L in G with t embedded in the universal vertex of G.
We can then arbitrarily embed the vertices of L into the remaining vertices
of G.

Now comes the proof of the approximate result.

Proof of Theorem 1.4. Let mδ be the maximum of the numbers mδ given by
Lemma 2.1 and by Lemma 1.3 for input δ. Given G and T as in the theorem,
consider a vertex of T with the maximum number of leaf neighbours, say these
are βm leaf neighbours. If β ≤ δ, we are done by Lemma 2.1. If β > δ, we
are done by Lemma 1.3.

3 A Sketch of the Proof of Lemma 2.1

The purpose of this section is to give some more detailed insight into the proof
of Lemma 2.1, going a little more below the surface than in the Introduction.

5

We remark that for the understanding of the rest of the paper, it is not
necessary to read this section (but we hope it will be helpful).

The number mδ will be chosen in dependence of the output of the regular-
ity lemma for some constant depending on δ. Given now the approximation
constant α, the tree T and the host graph G, we prepare each of T and G
separately for the embedding.

Similar as in earlier tree embedding proofs [AKS95, HKP+d, PS12], we
cut T into a set W of seeds (connecting vertices), such that W has constant
size, and a large set T of very small subtrees. The trees in T are only
connected through W , and they each have size < βm, where β is a small
constant (smaller than all other constants in this paper).

Differently from earlier approaches to tree embeddings, we now categorise
the small trees contained in T : They fall into three categories: trees consist-
ing of a leaf of T , trees that are smaller than a (huge) constant, and trees that
are larger than this constant. We name the categories L, F1 and F2. The
last category is further subdivided into two sets, F ′2 and F2 \F ′2, according to
whether the small tree is adjacent to one or more of the connecting vertices.
Each seed from W may have trees of any (or possibly all) of these categories
hanging from it (and there may also be seeds hanging from it). The details
of this cut-up of T is explained in Section 5.1.

Next, in Section 5.2, we order and group the seeds obtained from this
decomposition. Our strategy of ordering the seeds takes into account their
position in a natural embedding order, but also the number of leaves hanging
from them. We will come back to this point at a later stage during this
outline, and will then explain the why and how of the ordering.

Independently, in Section 6.1.1, we regularize the host graph G, with
parameter ε, such that β � ε � α. (For an introduction to regularity,
see Section 4.3.) Furthermore, we partition each of its clusters C arbitrarily
into subsets CW̃ , CZ , CF1 , CF2 , CṼ of appropriate sizes into which we aim to
embed the different parts of the tree, namely, W , L, F1, and F2, while the
last subset, CṼ , is reserved for neighbours of seeds in trees of F2. The set of
these neighbours will be denoted by Ṽ .

We fix a matching MF2 in the reduced graph RG. This matching will be
used when we embed the trees from F2. More precisely, we will embed each
tree T̄ ∈ F2 ∪ F ′2 into CF2 ∪ DF2 for a suitable (i.e. sufficiently unoccupied)
edge CD ∈ MF2 , except for the root rT̄ of T̄ . The root rT̄ will go to one of
the subsets C ′

Ṽ
, for a suitable cluster C ′ that connects CD with the cluster

6

containing the seed adjacent to T̄ . In case T̄ ∈ F ′2, which means that T̄
contains a second vertex ṽ from Ṽ , we embed ṽ into one of the subsets C ′′

Ṽ
,

for a suitable cluster C ′′. Throughout the embedding process, we will keep
each of the edges of MF2 as balanced a possible. That is, the sets of used
vertices in the corresponding slices CF2 or DF2 on either side of such an edge
never differ by more than βm.

Observe that since we do not have enough space in the slices CṼ for
all roots of trees in F1 (because we have no control over the number of
trees in F1), we need to proceed differently with the small trees from F1.
For embedding these trees, we use a family of matchings M , one for each
embedded seed s. Since these matchings M are possibly different for each s,
we now will have to keep the set of all slices CF1 balanced. This is not easy
but possible since the trees from F1 have constant size, and we choose M so
that it intersects the neighbourhood of s in a nice way.

There are some problems with balancing the edges of M , since clearly, s
might fail to see each side of each edge from M , which makes it difficult to
balance those edges of M that are not completely contained in the neigh-
bourhood of s in RG. To overcome this problem, we employ two auxiliary
matchings which we we combine with M to obtain a partition of almost all of
V (RG) with short paths. We call these structures good path partitions and,
together with the matchings M , they will be defined and proved to exist in
Subsection 4.2.

The actual embedding of the tree will be performed as follows. In Sec-
tions 6.2 and 6.3, we go through the seeds in a connected way, and embed
each seed s together with all the trees from F1∪F2 at s in the corresponding
slices in the way we discussed above. We leave out any leaves from L, as we
will deal with them in the final phase of the embedding.

Whenever we have embedded one seed s and its trees, we proceed to the
next seed and its trees. Because of the way we embed in the slices, and the
way we chose our matchings, all of this will go through just fine, and we
will always have enough space to embed. However, if we do not take care
where exactly we embed the seeds, we may run into problems in the final
phase when we want to embed the leaves. For instance, it might happen that
all seeds that are adjacent to vertices in L have been embedded into vertices
having the same neighbourhood in RG. As this neighbourhood might be only
two thirds of the vertices of RG, the leaves might not fit.

For this reason, we take some extra care when choosing the target clusters
and the actual images for the seeds (this happens in Section 5.2). As already

7

shortly mentioned above, we order the seeds into a system of groups according
to the number of leaves hanging from them. Then we reorder this order a
bit, according to the order the seeds appear in our planned embedding order.
Also, each seed s will be assigned a relevant set Xs of seeds that come before
it. In the actual embedding, in Subsection 6.2, we choose the image ϕ(s) of a
given seed s in a way that ϕ(s) has many neighbours outside the union of the
neighbourhoods of ϕ(Xs). (We remark that is is crucial here that no vertex
of T is adjacent to more than αm leaves.) This precaution will ensure that
for each subset of seeds, their images have enough neighbours in Z :=

⋃
CZ .

Therefore, we will be able to embed all the leaves in L at once by using Hall’s
theorem. The whole procedure will be explained in detail in Subsection 6.4.

The last section of this paper, Section 7, is devoted to the statement and
proof of an auxiliary result, Lemma 7.3, that deals with a similar situation
as the one treated by Lemma 2.1. We will need Lemma 7.3 in our companion
paper [RS19b] (in addition to Lemma 2.1). The main difference to the sit-
uation here is that there, a small part of the tree is already embedded (and
thus possibly blocking valuable neighbourhoods), but, on the positive side,
throughout [RS19b], we will be able to assume that no seed is adjacent to
many leaves, and so we can assume this as well in Lemma 7.3.

4 Preliminaries

4.1 An edge-double-counting lemma

We will need the following easy lemma.

Lemma 4.1. Let G be a graph on n vertices, let 0 < ψ < 1
3
, and let S ⊆ V (G)

be such that each vertex in S has degree at least (2
3
−ψ)n. Then there are at

least (1
3

+
√
ψ

10
)n vertices in G that each see at least (1

2
−
√
ψ)|S| vertices of S.

Proof. We let A ⊆ V (G) denote the set of all vertices that see at least
(1

2
−
√
ψ)|S| vertices of S. Writing e(S, V (G)) for the number of all edges

8

touching S, where edges inside S are counted twice, we calculate that

(
2

3
− ψ)n · |S| ≤ e(S, V (G))

≤ |V (G) \ A| · (1

2
−
√
ψ)|S| + |A| · |S|

≤ n · (1

2
−
√
ψ)|S| + |A| · (1

2
+
√
ψ)|S|,

and conclude that

|A| ≥
1
6

+
√
ψ

2
1
2

+
√
ψ
· n ≥ (

1

3
+

√
ψ

10
) · n,

as desired.

4.2 Matchings and good path partitions

The purpose of this subsection is to find some matchings in a graph H (which
will later be the reduced graph RG of our host graph G, see Section 4.3 for
a definition of the reduced graph). Actually we will combine some of the
matchings we find to specific covers of H with short paths. These structures
will be used for the embedding of T in the proof of Lemma 2.1, more specif-
ically in Subsection 6.3. The important result of this section is Lemma 4.3,
which provides us with the desired structures.

We need a quick definition before we start. For any graph H, and any
N ⊆ V (H), an N-good matching is one whose edges each have at most one
vertex outside N .

We will start by proving the following lemma.

Lemma 4.2. Let 0 < ξ < 1
20

and let H be a p-vertex graph of minimum
degree at least (2

3
−ξ)p. Let N ⊆ V (H) be such that |N | = d(2

3
−2ξ)pe. Then

H − N contains a set Y of size at most b5ξpc + 1 such that H − Y has an
N-good perfect matching.

Proof. First, note that we can greedily match all but a set X of at most
b5ξpc vertices from V (H) \ N to N , simply because of the condition on
the minimum degree. Now, take any maximal N -good matching M in the
graph H that covers all vertices of V (H) \ (N ∪ X). We would like to see
that M covers all but at most vertex of H −X, so for contradiction assume

9

that N \ V (M) contains at least two vertices. By the maximality of M , no
vertex D ∈ N \ V (M) is adjacent to any of the other uncovered vertices
in N , and no two vertices D,D′ ∈ N \ V (M) can be adjacent to different
endpoints of an edge in M . So, for each edge EF ∈M , we know that either
one of the endvertices, say E, sees no vertex in N \ V (M), or E and F each
see only one vertex in N \ V (M) (and that is the same vertex). This means
that at least one of the vertices in N \V (M) sees at most half of the vertices
in V (M), and thus less than half of the vertices in H − X, a contradiction
to our condition on the minimum degree.

Before we state the second lemma of this section, we need another defi-
nition.

An N-out-good path partition of a graph H, with N ⊆ V (H), is a set P
of disjoint paths, together covering all the vertices of H, such that for each
P ∈ P one of the following holds:

• P = AB, with A,B ∈ N ;

• P = ABCD, with B,C ∈ N ; or

• P = ABCDEF , with B,C,D,E ∈ N .

(Note that if P has four vertices, then there is no restriction on the where-
abouts of A and D, and similar for six-vertex paths P .)

An N-in-good path partition of a graph H, with N ⊆ V (H), is a set P
of disjoint paths, together covering all the vertices of H, such that for each
P ∈ P one of the following holds:

• P = AB, with A,B ∈ N ;

• P = ABCD, with A,D ∈ N ; or

• P = ABCDEF , with A,C,D, F ∈ N .

Now we are ready to state the main result of this section. Note that the
first item is a direct consequence of the previous lemma, and all structures
exist independently of each other.

Lemma 4.3. Let 0 < ξ < 1
20

, and let H be a p-vertex graph of minimum
degree at least (2

3
− ξ)p. Let N ⊆ V (H) be any set with |N | = d(2

3
− 2ξ)pe.

Then H contains a set X of at most b15ξpc+ 1 vertices, such that

10

• H −X has an (N \X)-good perfect matching;

• H −X has an (N \X)-in-good path partition; and

• H −X has an (N \X)-out-good path partition.

Proof. Lemma 4.2 provides us with a set Y and an N -good perfect match-
ing M of H − Y . Note that M would be as desired for the first item, if X
was chosen as Y . Now, set A := V (M) \ (N ∪ Y), and let B be the set of
all vertices from H that are matched by M to a vertex from A. Since M is
N -good, we know that B ⊆ N .

We take a maximal matching M̃A inside H[A]. Call Ã the set of vertices
in A not covered by M̃A. We augment M̃A to a matching MA by matching
as many vertices of Ã as possible to a set A′ of vertices in N . Because of the
minimum degree condition of the lemma, and since Ã is an independent set,
we can ensure that for the set Z ⊆ Ã of vertices not covered by MA we have
|Z| ≤ 5ξp. Moreover, we can choose A′ such that for each D ∈ A′, the other
endvertex of the edge of M containing D also lies in N . Let Z ′ denote the
set Z is matched to in M .

Now we define a second auxiliary matching MB in a very similar way.
Matching MB consists of edges with both ends in B \Z ′, and a matching of
almost all the remaining vertices of B\Z ′ to a set B′ of vertices from N , such
that for each D ∈ B′, the other endvertex of the edge of M containing D
also lies in N . We can ensure that at most b5ξpc vertices of B \ Z ′ are not
covered by MB. Let X ′ denote the union of the set of these vertices and
their partners in M , and set X := X ′ ∪ Y ∪ Z ∪ Z ′.

Then, discarding any edge that touches X from M , MA and MB, we find
that the union of M and MA gives an (N \ X)-in-good path partition of
H − X. Also, the union of M and MB gives the desired N -out-good path
partition. (Note that the four-vertex paths from these partitions have either
one or two vertices outside N \X.) Finally, M is an (N \X)-good matching
of H −X.

4.3 Regularity

We need to quickly discuss Szemerédi’s regularity lemma and a couple of
other preliminaries regarding regularity. Readers familiar with this topic are
invited to skip this subsection.

11

The density of a pair (A,B) of disjoint subsets A,B ⊆ V (G) is d(A,B) =
|E(A,B)|
|A|·|B| . A pair (A,B) of disjoint subsets A,B ⊆ V (G) is called ε-regular if

|d(A,B)− d(A′, B′)| < ε

for all A′ ⊆ A, B′ ⊆ B with |A′| ≥ ε|A|, |B′| ≥ ε|B|. It it well known that
regular pairs behave, in many ways, like random bipartite graphs with the
same edge density.

If (A,B) is an ε-regular pair, then we call a subset A′ of A ε-significant
(or simply significant, if ε is clear from the context) if |A′| ≥ ε|A|. We call a
vertex from A ε-typical (or simply typical, if ε is clear from the context) with
respect to a set B′ ⊆ B if it has degree at least (1− ε)d(A,B)|B′| to B′.

The following well known and easy-to-prove facts (see for instance [KSS02])
state that in a regular pair almost every vertex is typical to any given signif-
icant set, and also that regularity is inherited by subpairs. More precisely, if
(A,B) is an ε-regular pair with density d, then

• for any ε-significant B′ ⊂ B, all but at most ε|A| vertices from A are
ε-typical to B′; and

• for each δ ≥ 0, and for any subsets A′ ⊆ A, B′ ⊆ B, with |A′| ≥ δ|A|
and |B′| ≥ δ|B|, the pair (A′, B′) is 2ε

δ
-regular with density between

d− ε and d+ ε.

Szemerédi’s regularity lemma states that every large enough graph has a
partition of its vertex set into a bounded number of parts, of almost equal
sizes, such that almost all pairs of partition sets are ε-regular.

Lemma 4.4 (Szemerédi’s regularity lemma). For every ε > 0 and M0 ∈ N
there are M1, n0 ∈ N such that for all n ≥ n0 the following holds.
Every n-vertex graph G has a partition V0 ∪ V1 ∪ . . . ∪ Vp of V into p + 1
partition classes (or clusters) such that

(a) M0 ≤ p ≤M1;

(b) |V1| = |V2| = . . . = |Vp| and |V0| < εn;

(c) apart from at most ε
(
p
2

)
exceptional pairs, the pairs (Vi, Vj) are ε-regular,

for i, j > 0 with i 6= j.

12

As usual, we define the reduced graph RG corresponding to this decom-
position of G as follows. The vertices of RG are all clusters Vi (i = 1, . . . , p),
and RG has a edge between Vi and Vj if the pair (Vi, Vj) is ε-regular, and has
density at least 10

√
ε.

By standard calculations (see for instance [KSS02]), and assuming we
take M0 ≥ d1

ε
e, it follows that

δw(RG) ≥ (1− 12
√
ε) · p

|V (G)|
· δ(G), (1)

where δw(RG) is the weighted minimum degree. (That is, the densities of the
pairs of clusters provide weights on the edges of RG, and the weighted degree
of a vertex is the sum of the corresponding edge-weights. The weighted
minimum degree is the minimum of these degrees. Observe that δw(RG) ≤
δ(RG) since weights do not exceed 1.)

Almost all vertices of any cluster C ∈ V (RG) are typical to almost all
significant sets, in the following sense. If Y is a set of significant subsets of
clusters in V (RG), then

all but at most
√
εs vertices v ∈ C are typical with respect to

all but at most
√
ε|Y| clusters in Y . (2)

To see this well-known observation, assume that the set C ′ ⊆ C of vertices
not satisfying (2) is larger than

√
εs. Then∑

Y ∈Y

|{v ∈ C : v is not typical to Y }| ≥
∑
v∈C′
|{Y ∈ Y : v is not typical to Y }|

≥ |C ′|
√
ε|Y|

> ε
|V (G)|
p
|Y|.

Thus there is a Y ∈ Y such that more than ε|C| vertices in C are not typical
to Y , a contradiction.

Regularity will help us when embedding small trees into a pair of adjacent
clusters of RG.

Lemma 4.5. Let CD be an edge of RG, and let U ⊆ G with |C\U |, |D\U | ≥√
ε|C|. Let T̄ be a tree of size ≤ ε|C| with root rT̄ .

Then T̄ can be embedded into G, with T̄ − rT̄ going to (C ∪D) \U , and with

13

rT̄ going to any prescribed set of ≥ 2ε|C| vertices of C, or to any prescribed
set of ≥ 2ε|C| vertices of C ′, where C ′ is any other cluster of RG that is
adjacent to D.

Proof. We construct the embedding T̄ levelwise, starting with the root, which
is embedded into a typical vertex of (C ∪D) \ U . At each step i we ensure
that all vertices of level i are embedded into vertices of C \U (or D \U) that
are typical with respect to the unoccupied vertices of D \U (or C \U). This
is possible, because at each step i, and for each vertex v of level i, the degree
of a typical vertex into the unoccupied vertices on the other side is at least
4ε|C|, and there are at most ε|C| nontypical vertices and at most |T̄ | ≤ β|C|
already occupied vertices.

5 Preparing the tree

5.1 Cutting a tree

In this section, we will show how any tree T can be cut up into small subtrees
and few connecting vertices. The ideas is that later, we can use regular pairs
to embed many tiny trees.

We will make use of a procedure which in a very similar shape has already
appeared in [AKS95, HKP+d, PS12], although there, no distinctions between
the trees from L, F1, F2, were made. The resulting cut-up is given in the
following statement.

Lemma 5.1. For any m ∈ N, for any tree T on m+ 1 vertices, and for any
β > 0, there is a set W ⊆ V (T), and a partition T = L ∪ F1 ∪ F2 of the
family T of components of T −W , distinguishing a subset F ′2 ⊆ F2, such that

(a) r ∈ W ;

(b) |W | ≤ 2
β2 ;

(c) |V (T̄)| = 1 for every tree T̄ ∈ L;

(d) 1 < |V (T̄)| ≤ 1
β

for every tree T̄ ∈ F1;

(e) 1
β
< |V (T̄)| ≤ βm for every tree T̄ ∈ F2;

(f) each T̄ ∈ L ∪ F1 ∪ (F2 \ F ′2) has exactly one neighbour in W ;

14

(g) each T̄ ∈ F ′2 has exactly two neighbours in W ; and

(h) |Ṽ | < 2βm, where Ṽ is the set of all neighbours of vertices of W in
⋃
F ′2.

The vertices in W will also be called the seeds of T .

Proof. In a sequence of at most 1
β

steps i, we define vertices wi and trees Ti
as follows. Set T0 := T . Now, for each i > 0, let wi ∈ V (Ti−1) be a vertex at
maximal distance from r (the root of T) such that the components of Ti−wi
that do not contain r each have size at most βm. Delete wi and all of these
components from Ti+1 to obtain Ti. We stop when we reach r, which will be
the last vertex wi to be defined.

Let W0 be the union of all wi, and let T0 be the family of the trees in
T −W0. These two sets already fulfill items (a) and (b). (To see (b), note
that at each step i, we cut off βm vertices. Hence we actually have that
|W0| ≤ 1

β
.)

In order to obtain sets W , T that also fulfill items (f) and (g), we add
some vertices to W0 as follows. For each T̄ ∈

⋃
T0 that has ` > 2 neighbours

v1, v2, . . . , v` in W0, we add to W0 a set of at most `−1 vertices w′j from V (T̄)
that separate all vi’s from each other. Note that these are at most 1

β
vertices

in total (counting over all affected T̄), since each of the newly added vertices
w′j can be associated to one of the ‘old’ vertices vj from W0 such that w′j lies
between vj and r.

So, letting T1 be the family of the trees in T −W1, the new sets W1, T1

still fulfill (a) and (b) (actually, we have that |W1| ≤ 2
β
). They furthermore

have the property that each of the trees in
⋃
T1 has at most two neighbours

in W1.
We modify our sets once more to ensure that only the large trees can have

two seed neighbours. We proceed as follows. For each T̄ ∈
⋃
T1 that has at

most 1
β

vertices and is adjacent to two seeds w1, w2 ∈ W1, we add to W1 all
vertices on the path that connects the two seeds w1, w2. In total, these are
at most 1

β
· |W1| ≤ 2

β2 vertices. Call the new set of seeds W .
Defining T as the family of the trees in T −W , and adequately dividing

the family T into three families L, F1, F2, and letting F ′2 be the appropriate
subset of F2, we thus obtained sets that fulfill all properties of the claim.
(Note that (h) follows directly from (e), (g) and the observation that |Ṽ | ≤
2|F ′2| <

2|T−r|
1
β

= 2βm.)

15

5.2 Ordering the seeds of a tree

In order to be able to choose well the clusters of V (RG) into which we will
embed the seeds other than r later on, let us now define a convenient ordering
of the seeds of a tree T with a cut-up as in Section 5.1. Together with this
ordering we will define a set of relevant seeds Xs for each seed s of the tree,
and ensure that the seeds in Xs come before s in the ordering.

The importance of this ordering and the sets Xs is that later, when we
embed the parts of the cut-up tree in G, it will turn out that the small trees
that are most difficult to embed are those from L, this is, the leaves of T
that hang off seeds. An embedded seed has only degree 2

3
m in G, of which

a large part might already be used, so if we do not take sufficient care, we
will get stuck when embedding the leaves. For this reason we have to choose
very well into which clusters the seeds go, and the sets Xs will help us with
this.

The reader might wish to skip the remainder of this unfortunately rather
technical section at a first reading, because everything we do here is only
necessary for the embedding of L. Even the embedding of L can be followed
with only a vague understanding of the definitions of the present section if
the reader takes the ‘Degrees of the embedded seeds into Z’ as stated in
Subsection 6.2.4 for granted.

5.2.1 Grouping and ordering

Let us start with the ordering. Assume we are given a tree T which has been
treated by Lemma 5.1 for some β > 0, let W denote the set of seeds we
obtained. Throughout the rest of this section we will assume that

|W | = 47 · 2j∗ , where j∗ = dlog
2

β2
e. (3)

(This can be assumed by adding some artificial seeds to the tree T . We will
explicitly discuss why this can be done in Subsection 6.1.2.)

We will order the seeds in two different ways, before we get to the third
and final order. The first order is determined by the number of leaves hanging
from each seed, the second order is determined by the position of the seeds in
the tree T , and the third order is a mixture of both. We explain the orderings
in detail in the following.

We start by ordering the seeds in a way that the number of leaf children
of the seeds is non-increasing, and we call this the size order σ on the seeds.

16

For each j = 0, . . . , j∗, we partition the set of all seeds into 2j
∗−j consecutive

groups of size 2j · 47, under the size order σ. We call these the large groups.
Clearly, each large group of size exceeding 47 is the union of two large groups
half its size.

We break up each group B of size 47 into twelve consecutive groups
(consecutive under σ) of the following sizes:

4,4, 4, 4, 5, 4,4, 4, 4, 5, 4, 1. (4)

We call these the small groups. (So the small subgroup of size 1 of B consists
of the very last seed of B in the size order σ.) We say the second and sixth
group of size four are of type 1 (they are marked in boldface in (4)). The
remaining groups of size four (i.e. the first, third, fourth, fifth, seventh, eighth
and ninth group of size four) will be called type 2.

It would be difficult to embed the seeds in the size order σ, as this enu-
maration might not be suitable for embedding the tree in a connected way.
For this reason, we employ a second order τ , which we call the transversal
order, obtained by performing a preorder tranversal on T , starting with the
root r, and then restricting this order to W . (The transversal order is the
actual order the seeds will be embedded in.)

The third order, which we call the rearranged order ρ, is obtained by
reordering the order σ. First, we reorder the seeds in each small group
so that each small group is ordered according to τ . Next, for every large
group B of size 47, we reorder all its subgroups so that their first seeds form
an increasing sequence in the transversal order τ . Finally, for every large
group B of size > 47 (in successive steps according to the group size), we
reorder the two subgroups within B so that the first subgroup contains the
first seed in B under the transversal order τ (i.e. we reorder them such that
the first seed of B under τ becomes the first seed of B). This finishes the
definition of the rearranged order ρ.

We note that ρ maintains the structure given by breaking down the set
of seeds into large and small groups. That is, if we partition the set of all
seeds into 2j

∗−j consecutive groups under ρ of sizes 2j · 47, we obtain the
same groups as above for σ. Further, each group of size 47 breaks down into
twelve small groups as above, although these are no longer ordered as in the
sequence from (4). We note that each of the small and large groups under ρ
remains a consecutive set of elements if viewed under the size order σ.

We will embed according to τ but momentarily work with ρ. We write
s <ρ s

′ to denote that s comes before s′ in order ρ (and similar for τ).

17

5.2.2 Sequences

In this subsection, we will follow the rearranged order ρ. We define for each
large group B two sequences

(xBi)i=1...,j+6 and (yBi)i=1...,j+7,

where j is such that |B| = 2j · 47, and vertices xBi , y
B
i ∈ B are as specified in

what follows.
We construct our sequences inductively. For j = 0, we have to deal with

all groups of size 47. For each such group B, we take xB1 = yB1 as the first
seed of the group. The first seed of the second, third, fourth, fifth and sixth
small subgroup of B is chosen as xB2 , x

B
3 , x

B
4 , x

B
5 , x

B
6 , respectively. The first

seed of the seventh, eigth, ninth, tenth, eleventh and twelfth small subgroup
of B is chosen as yB2 , y

B
3 , y

B
4 , y

B
5 , y

B
6 , y

B
7 , respectively. (We always work under

ρ, both when talking about the ‘first seed of a group’ and when talking about
the ‘ith subgroup’.)

For j ≥ 1, we have to deal with all large groups of size 2j · 47. For each
such group B, do the following. By construction B is made up of two large
subgroups of size 47 · 2j−1, say these are B′ and B′′ (in this order, under ρ).
We let

xBi := yB
′

i for all 1 ≤ i ≤ j + 6,

and we set

yB1 := xB1 = yB
′

1 , and yBi := yB
′′

i−1 for all 2 ≤ i ≤ j + 7.

This finishes the definition of the sequences. We remark that we will only
use the sequences (xi) in what follows (the sequences (yi) were only used to
make the definition of (xi) more convenient).

Observe that for all blocks B, and for all i < j, we have that xBi <τ x
B
j .

5.2.3 Relevant seeds

In order to be later able to choose well the clusters we embed the seeds into
(which in turn will enable us to embed the leaves at an even later stage), we
need to define, for each seed s, a set Xs of relevant seeds for s, as follows.

Definition 5.2 (Relevant seeds for s).
Let s be a seed of T , and let B be the small group s belongs to.

18

(a) If B is a group of four of type 2, and s is the last seed of B, then we set

Xs := {x : x is the third seed in B (under ρ)}.

(b) If s is not the first seed of B, and, in case B is a group of four of type 2,
s is not its last seed, then we set

Xs := {x : x ∈ B, x <ρ s}.

(c) If s is the first seed of B, then we set

Xs := {x : ∃B̃, i, i′ such that i′ < i, s = xB̃i and x = xB̃i′ }.

Observe that if s only appears as a first vertex in any of the sequences (xB̃i),
then Xs = ∅.

Let us make a quick observation which follows directly from the definition
of the order ρ, of the sequences (xi) and of the sets Xs.

Observation 5.3. Let s be a seed. Then for all x ∈ Xs it holds that x <τ s.

6 The Proof of Lemma 2.1

6.1 Preparations

6.1.1 Setting up the constants

First of all, given δ, we choose

ε ≤ δ4

1018
, (5)

and apply Lemma 4.4 with input ε2 and M0 := 1
ε2

. This yields numbers M1

and n0.
We then set

β :=
ε

100M1

.

Finally, we choose

mδ := (n0 + 1) · 400M0

β10 · ε · δ
(6)

19

for the output of Lemma 2.1. So, given the approximation constant α, sat-
isfying 1 ≥ α ≥ δ, we will have that

0 <
1

mδ

� β � ε� δ ≤ α, (7)

with the explicit dependencies given above.
Now, given m ≥ mδ, and given an (m + 1)-vertex graph G of minimum

degree at least b2m
3
c , and a tree T with at most m−αm edges, rooted at r,

we will prepare both T and G for the embedding.

6.1.2 Preparing T for the embedding

We apply Lemma 5.1 to obtain a partition of T into a set W of seeds and a
set T of small trees. The small trees divide into F1 and F2, with two-seeded
trees F ′2 ⊆ F2, and the lemma also gives us a set Ṽ .

Set
f1 :=

∑
T̄∈F1

|V (T̄)| and f2 :=
∑
T̄∈F2

|V (T̄)|.

Next, add a set W ′ of vertices to T , each adjacent to r, such that, setting
W̃ := W ∪W ′, we have

|W̃ | = 47 · 2j∗

for

j∗ := dlog
2

β2
e. (8)

The only reason for this is that we plan to apply the grouping and ordering
of seeds from Subsection 5.2, that is, we would like to see (3) fulfilled. We
are going to embed T ∪W ′ instead of T . Since the number of vertices in W ′

is a constant, space is not a problem. Indeed, clearly,

|W̃ |+ |L|+ f1 + f2 = |V (T)|+ |W̃ \W | ≤ m− αm+
200

β2
. (9)

6.1.3 Preparing G for the embedding

As a preparation of G for the embedding, we take an ε2-regular partition of G
as given by Lemma 4.4 (the regularity lemma), into p clusters, for some p
with M0 < p < M1. Consider the reduced graph RG of G with respect to
this partition, as defined below Lemma 4.4.

20

Observe that because of the minimum degree of G and by (1), we have
that

δw(RG) ≥ (
2

3
− 13ε)p. (10)

Let us now partition the clusters of RG further. We will divide each
clusters into several slices, into which we plan to embed the distinct parts of
the tree T which we identified above.

First of all, we choose a set Z of vertices into which we plan to embed L.
More precisely, we arbitrarily choose a set Z ⊆ V (G) of size

|Z| = |L|+ d(α− α4

106
)me, (11)

choosing the same number of vertices in each part of the partition (plus/minus
one vertex).

Now, we will split up the remainder C \ Z of each cluster C ∈ V (RG)
arbitrarily into four sets CṼ , CW̃ , CF1 , CF2 , and a leftover set C \ (Z ∪CṼ ∪
CW̃ ∪ CF1 ∪ CF2) which will not be used. The sets are chosen having the
following sizes:

|CṼ | = |CW̃ | = d
α4

5
m

p
e; (12)

|CF1| = d
f1 + α4

5
m

p
e; (13)

and

|CF2| = d
f2 + α4

5
m

p
e. (14)

This is possible because of (7) and (9).
As we mentioned above, the idea behind this slicing up is that we are

planning to put each part X of the tree (X ∈ {W̃ , Ṽ , F1, F2, L}) into
the parts CX of the clusters of RG, or into Z, respectively. We reserve a
bit more than is actually needed for the embedding, in order to always be
able to choose well-behaved (typical) vertices, and also in order to account
for slightly unbalanced use of the regular pairs when embedding the trees
from T . Since the sets CX are large enough, regularity properties will be
preserved between these sets (cf. Section 4.3).

Let us remark that it is not really necessary to slice the clusters C up
as much as we do: the vertices destined to go into slices CṼ and CW̃ are

21

actually so few that they could go to any other slice without a problem. But
we think the exposition might be clearer if everything is well-controlled.

Finally, we fix a perfect matching MF2 of RG which exists because of (10).
This matching will be used for embedding the larger trees from T , namely
those in F2.

6.1.4 The plan

For convenience, for each seed s ∈ W̃ , let Ts denote the set of all trees from
T \ L that are adjacent to s. We are going to traverse the seeds in the
transversal order τ , placing each seed s into a suitable cluster S(s) (we will
determine this cluster right before embedding s into it). We then embed⋃
Ts before embedding any other seed. After having embedded all seeds

s ∈ W̃ and all corresponding trees from
⋃
Ts, we embed all of L in one step

at the very end of the embedding process. So, if the seeds are ordered as
s1, s2, s3, . . . , s|W̃ | in τ , then we embed in the order

s1,
⋃
Ts1 , s2,

⋃
Ts2 , s3,

⋃
Ts3 , . . . s|W̃ |,

⋃
Ts|W̃ | , L,

and at every point in time, the embedded parts of the tree will form a con-
nected set in T .

Each of the three different embedding procedures will be described in
detail in one of the following subsections, namely, in Subsection 6.2 (embed-
ding a seed s), in Subsection 6.3 (embedding

⋃
Ts) and in Subsection 6.4

(embedding L).

6.2 Embedding the seeds

6.2.1 Preliminaries

Assume we are about to embed some seed s. Denote by U the set of vertices
that, up to this point, have been used for embedding seeds and small trees.
So U ∩ Z = ∅ (we will ensure that this will always remain so), and every
cluster C ∈ V (RG) divides into six sets: C ∩ U , C ∩ Z, CW̃ \ U , CṼ \ U ,
CF1 \ U , and CF2 \ U .

Apart from U , it will be useful to have a set U ′ ⊆
⋃
C∈V (RG)(CF1 \ U) of

vertices for which at some point we decided that they will never be used for
the embedding. The main use of this set U ′ is that after embedding certain
trees from Ts∩F1 for some seed s, we can just make all sets CF1 of clusters C

22

equally ‘occupied’ by discarding some of the vertices of the emptier sets CF1

by putting them into U ′. This will be the only time we add vertices to U ′.
We will make sure that for each seed s the number u′s of vertices we add
to U ′ while, or directly after, embedding Ts is bounded by

u′s ≤ 600εm. (15)

Since there at most 2
β

(original) seeds in the tree, this means that the set U ′

will always stay so small that we can ignore it while embedding.
Throughout the embedding, we will ensure that for each parent u of a

seed (the parent u might be a seed, or a vertex from Ṽ) the following holds.
If u was embedded in vertex ϕ(u), then we have that

ϕ(u) is typical to slice CW̃ for all but at most εp clusters C of RG. (16)

Note that by Observation 5.3, by the time we reach a seed s, the ‘relevant’
seeds in Xs have already been embedded into a set ϕ(Xs). Let NZ(Xs)
denote the set of all neighbours of vertices from Xs in Z. Let Ns be the set
of corresponding subclusters of the clusters of RG (i.e.,

⋃
Ns = NZ(Xs)).

6.2.2 Finding the target cluster S(s) for s

Before actually choosing the vertex ϕ(s) we will embed s into, we will deter-
mine the target cluster S(s) for a seed s.

Observe that by Lemma 4.1, with ψ := 13ε, we know that at least (1
3

+

ε
1
3)m of the vertices of G see a (1

2
−ε 1

3)-portion of the vertices in Z \NZ(Xs).
So, for significantly more than a third of the clusters of RG we have that a
significant portion of their vertices see at least (1

2
−ε 1

3) · |Z \NZ(Xs)| vertices
in Z \NZ(Xs). Because of regularity, and because of (2), this means that for
any such cluster C, all but at most an ε-fraction of the vertices in CW̃ has

at least (1
2
− 3ε

1
3) · |Z \NZ(Xs)| neighbours in Z \NZ(Xs).

Choose S(s) as any one of the clusters as above. That is, we choose S(s)
such that

(α) all but at most ε|S(s)W̃ | vertices of the set S(s)W̃ have degree at least

(1
2
− 3ε

1
3) · |Z \NZ(Xs)| into Z \NZ(Xs);

and such that in addition (unless s = r, in which case the following two
conditions are void),

23

(β) S(s) is adjacent to S(p(s));

(γ) ϕ(p(s)) is typical with respect to S(s)W̃ ,

where S(p(s)) denotes the cluster the parent p(s) of s was embedded into.
Such a choice of S(s) is possible since by (10), cluster S(p(s)) has degree
almost 2p

3
in RG, and because of (16).

6.2.3 Embedding seed s into target cluster S(s)

We place s in a vertex ϕ(s) from S(s)W̃\U such that

(A) ϕ(s) is a neighbour of ϕ(p(s)) (where p(s) is the parent of s, and if s = r
this restriction is empty);

(B) ϕ(s) is typical to CW̃ for all but at most εp clusters C ∈ V (RG) \ S(s);

(C) ϕ(s) is typical to CṼ for all but at most εp clusters C ∈ V (RG) \ S(s);

(D) ϕ(s) is typical to CF1 \ (U ∪ U ′) for all but at most εp clusters C ∈
V (RG) \ S(s); and

(E) ϕ(s) is typical to CZ for all but at most εp clusters C ∈ V (RG) \ S(s).

Such a choice is possible since by (2), almost all vertices in any given
cluster are typical with respect to any fixed significant subsets of almost all
other clusters.

In particular, (E) implies that

degZ(ϕ(s)) ≥ (
2

3
− ε

1
3)|Z|. (17)

6.2.4 Degrees of the embedded seeds into Z

The reason for our choice of S(s) as a cluster fulfilling property (α) from
Subsection 6.2.2 is that it allows us to accumulate degree into Z. More
precisely, if we consider a seed s together with its relevant seeds Xs, then we
know that the union of their neighbourhoods in Z is significantly larger than
the neighbourhood of s alone. Better still, the more vertices Xs contains, the
larger becomes our bound on this neighbourhood.

We make this informal observation more precise in the following claim.

24

Claim 6.1. Let B be a group of seeds.

(i) If B has size five, then

|N(ϕ(B)) ∩ Z| ≥ (
47

48
− ε

1
4) · |Z|.

(ii) If B has size four and is of type 1, then

|N(ϕ(B)) ∩ Z| ≥ (
23

24
− ε

1
4) · |Z|.

(iii) If B = {b1, b2, b3, b4} (with the seeds bi appearing in this order in σ) is
of type 2, then

|N(ϕ(B)) ∩ Z| ≥ (
11

12
− ε

1
4) · |Z|,

and

min
{
|N(ϕ({b1, b2})) ∩ Z|, |N(ϕ({b3, b4})) ∩ Z|

}
≥ (

5

6
− ε

1
4) · |Z|.

(iv) If B is large, say of size 47 · 2j, then

|N(ϕ({xBi : i = 1 . . . , j + 6})) ∩ Z| ≥ (1− 1

96 · 2j
− ε

1
4) · |Z|,

where (xBi)i=1...,j+6 is the sequence defined in Subsection 5.2.2.

Proof. This follows rather directly from (α) and (E) (from Subsections 6.2.2
and 6.2.3, respectively), from (17), and from the definition of the set Xs of
relevant seeds (Definition 5.2). For instance, we can calculate the bound in
item (i) by using (17), (α), (E), and Definition 5.2 (b) to see that

|N(ϕ(B)) ∩ Z| ≥ (
2

3
+

1

6
+

1

12
+

1

24
+

1

48
− 5 · 3ε

1
3) · |Z| ≥ (

47

48
− ε

1
4) · |Z|.

For item (iv), we need to take slightly more care with the calculation.
Note that the degree in to Z of the image of the first seed is off 2

3
|Z| by

at most 3ε
1
3 |Z|. The degree of second seed’s image is only off 1

2
|Z| by less

than 3ε
1
3
|Z|
2

. For the third seed we are only off by 3ε
1
3
|Z|
4

, and so on, which
means we can actually bound the error in our estimate for the size of the
joint neighbourhod in item (iv) by 2 · 3ε 1

3 |Z| ≤ ε
1
4 · |Z|.

25

6.3 Embedding the small trees

Assume we have sucessfully embedded a seed s, and are now, before we
proceed to the next seed, about to embed all small trees from Ts (while still
leaving any leaves from L adjacent to s unembedded).

Our plan is to embed those trees of Ts that belong to F1 into
⋃
C∈V (RG) CF1 ,

and those trees of Ts that belong to F2 into
⋃
C∈V (RG) CF2 . We first explain

how we deal with the larger trees, i.e. those in F2 \F ′2, and those in F ′2. After
that we explain how we deal with the constant sized trees, i.e. those in F1.
Note that actually, it does not matter in which order we deal with the sets
F1, F2 \ F ′2, F ′2.

6.3.1 Embedding the trees from F2 \ F ′2
For each T̄ ∈ Ts ∩ (F2 \ F ′2), let rT̄ denote its root. We plan to put rT̄ into
C ′
Ṽ
\ U for some suitable cluster C ′. (We will explain below how exactly we

do that.) For the rest of V (T̄), we proceed as follows.
Recall that we defined a perfect matching of RG near the end of Sec-

tion 6.1.1. Choose an edge CD of MF2 that contains at least 3ε · m
p

unused

vertices in each of CF2 , DF2 . If |CF2 \ U | ≥ |DF2 \ U |, we will aim at putting
the larger colour class of T̄−rT̄ into CF2\U , and otherwise, we aim at putting
it into DF2 \ U . Observe that if we manage to do this for every tree T̄ we
embed, we can ensure that throughout the process (even when embeeding
trees from Ts′ , for some s′ 6= s), the edges from MF2 keep their free space in
a more or less balanced way, that is, for all edges C ′D′ in MF2 ,

|C ′F2
\ U | and |D′F2

\ U | differ by at most β
m

p
. (18)

Let us now explain how we manage to embed T̄ in this way. Assume
our aim is to embed the children of rT̄ in to CF2 \ U , the grandchildren into
DF2 \ U , the grand-grandchildren into CF2 \ U , and so on. The embedding
of T̄ − rT̄ will be easy using Lemma 4.5 once we found a vertex ϕ(rT̄) to
embed rT̄ into, that is, a vertex that is both a neighbour of ϕ(s) and typical
with respect to CF2 \ U .

So we only need to find a suitable vertex for ϕ(rT̄), the root of T̄ (which
belongs to Ṽ). In order to do so, we first determine a cluster C ′ that is
adjacent to both C and S(s), and that fulfills d(S(s), C ′) ≥ 1

4
. At least a

third of the clusters in RG qualify for this, because of (10). Now, by (C) in

26

the choice of ϕ(s) (in Subsection 6.2.3), we know that ϕ(s) has typical degree
into the set C ′

Ṽ
for all but very few clusters C ′. Typical degree means that

ϕ(s) has at least (1
4
− ε2) · |C ′

Ṽ
| neighbours in C ′

Ṽ
, and by Lemma 5.1 (h), at

most 2βm vertices have been used for earlier vertices from Ṽ . So, by (7), we
can choose a suitable C ′ such that ϕ(s) has a large enough neighbourhood
in C ′

Ṽ
to ensure it contains a vertex ϕ(rT̄) that is typical with respect to

CF2 \ U .
Finally, observe that (18) ensures that the space we had assigned to F2

is enough for embedding all of F2 \ F ′2.

6.3.2 Embedding the trees from F ′2

For each T̄ ∈ Ts ∩ F ′2, we proceed exactly as in the preceding paragraph,
except that now, we have to make a small adjustment when we are close to
embedding ṽ, the second vertex from Ṽ contained in V (T̄).

Suppose s′ is the seed which is adjacent to ṽ in T . Because we embed the
seeds following the transversal order, we know that s′ is not yet embedded
by the time we deal with T̄ . We take care to embed ṽ into a vertex that is
typical with respect to almost all the sets CW̃ . That is, the image of ṽ will
be chosen such that (16) holds.

6.3.3 Embedding the trees from F1

We now explain how we embed the trees from Ts ∩ F1. Note that because
of (13) and (15), we have enough space to embed all of Ts∩F1. Furthermore,
because the trees from F1 are small, and because of regularity, we have no
problem with the actual embedding of them into the regular pairs of G. The
only thing we need to make sure is that the roots of the trees from Ts∩F1 are
embedded into neighbours of ϕ(s), and that we maintain the unused parts
of the cluster slices CF1 balanced at all times.

Since there is no matching like MF2 that can be used throughout the
whole embedding (i.e., for all seeds), we will have to simultaneously keep
all of the clusters reasonably balanced. This will be possible because of the
rather delicate embedding strategy we employ, and which we will start to
explain now.

Preparing the slices CF1. Assume we are about to start the embedding
process of the trees from Ts ∩ F1. First of all, note that we can partition
the free space CF1 \ (U ∪ U ′) of the slices CF1 of each of the clusters C ∈

27

V (RG) \ {S(s)} into sets QC
0 , . . . , Q

C
r for some r, such that |QC

0 | < 2dεm
p
e

and |QC
i | = dεmp e for i = 1, . . . , r, and such that for each i = 1, . . . , r, either

all or none of the vertices in QC
i are adjacent to ϕ(s). The reason for doing

this is that we now have total control over where exactly the neighbours of
ϕ(s) are (since the sets QC

0 are small enough to be ignored during this step
of the embedding). Observe that the sets QC

i , for i = 1, . . . , r, are large
enough to preserve regularity properties, although now we have to replace
the regularity parameter ε2 with ε2

ε
= ε.

Consider the graph H with vertex set {QC
i }i=1,...,r,C∈V (RG) and an edge

for each ε-regular pair of sufficient density. Say H has p′ vertices. By (10),
the weighted minimum degree of RG is bounded by δw(RG) ≥ (2

3
− 13ε)p,

and therefore, the weighted minimum degree of H is bounded by δw(H) ≥
(2

3
− 17ε)p′.
So, by our choice of ϕ(s), in particular by (D) of Subsection 6.2.3, we

know that ϕ(s) has neighbours in at least (2
3
− 20ε)p′ of the sets QC

i . Let N
consist of a set of d(2

3
− 20ε)p′e sets QC

i that contain neighbours of s. We
apply Lemma 4.3 with ξ := 17ε to H to obtain a set X, of size at most
b255εp′c + 1, and an (N \ X)-good matching M , an (N \ X)-in-good path
partition PA and an (N \X)-out-good path partition PB of H −X.

Set Q :=
⋃
C∈V (RG){QC

1 , Q
C
2 , . . . , Q

C
r }\X. By (13), and by (15), we know

that
⋃
Q is large enough to host all of

⋃
Ts∩F1. In fact, if

⋃
Ts∩F1 could be

embedded absolutely balanced into the sets Q ∈ Q, then there would even
be a leftover space of more than 100εm

p
in each of the sets Q.

Recall that during the embedding of the trees from Ts ∩ F1, we will add
some vertices to a set U ′, for keeping better track of the balancing of the
edges. We will keep U ′ small, that is, we will ensure that (15) holds.

Preparing Ts ∩ F1. We now partition the set of trees from Ts ∩ F1 into
three sets3: the set TBal contains all the balanced trees, i.e. those trees whose
color classes have the same size; the set TNearBal contains all trees having the
property that their colour classes differ by exactly one, with the bigger class
containing the root; and the set TUnbal contains all the remaining trees, that
is all unbalanced trees not belonging to TNearBal.

Phase 1. In the first phase of our embedding, we embed all trees from
TBal, using the matchingM . We try to spread these trees as evenly as possible

3We remark that it is not really necessary to treat the trees from TBal separately (as
they could be treated together with the trees from TUnbal in Phase 2), but embedding⋃
TBal first (in Phase 1) is more instructive.

28

among the edges of M . It is not difficult to see that by Lemma 5.1 (d), it is
possible to make the used part of the clusters differ by at most 1

β
(but even

the more obvious weaker bound 1
β2 is sufficient for our purposes). At the end

of this phase of the embedding, we add to U ′ at most 1
β

unused vertices from

each of the clusters C ∈ V (M), and can thus make sure each of the clusters
has exactly the same number of vertices in CF1 \ (U ∪ U ′).

Phase 2. In the second phase of our embedding, we embed all trees from
TUnbal. We group the trees from TUnbal by their number of vertices, which is
some number between 3 and 1

β
. Then we subdivide these groups according

to the number of vertices belonging to the same colour class as their root.
The final groups represent the types of trees. Since all trees we consider have
order at most 1

β
, there are at most 1

β2 different types.

For each of the types T̄ , say with t vertices, and colour classes of sizes
t1 and t2, where the class of size t1 contains the root, we proceed as follows.
We go through the elements of our N -out-good path partition PB in some
fixed order, always embedding only a constant number of trees of type T̄ . In
each round, we keep the clusters of H−X perfectly balanced. Only when we
run out of trees of type T̄ , we will (necessarily) have to make a last round,
possibly not reaching all elements of PB, and thus unbalancing some of the
clusters a bit (by at most 1

β
).

To make the above description more precise, let us recall that PB consists
of

(M1) single edges AB with both ends in N ;

(M2) paths ABCD with B,C ∈ N ; and

(M3) paths ABCDEF with B,C,D,E ∈ N .

Let us now analyse how the sets Q ∈ Q lying in edges or paths from
(M1)–(M3) fill up when we embed small trees of type T̄ into them in the
following specific ways. Clearly, the sets A, B of any edge as in (M1) will
each get filled up with t vertices whenever we embed one tree of type T̄ in
one ‘direction’ and a second tree of type T̄ in the other ‘direction’.

The sets Q on paths ABCD as in (M2) will get filled as follows. If we

• perform x rounds in which we embed one tree of the current type T̄ in
the edge AB, with the root going to B;

29

• perform x rounds in which we embed a tree of type T̄ in the edge CD,
with the root going to C;

• perform y rounds of embedding a tree of type T̄ with the root going
to C, but the rest of the tree going to AB; and

• perform y rounds of embedding a tree of type T̄ with the root going
to B, but the rest of the tree going to CD,

then after these 2x+2y rounds, A and D have received xt2+y(t1−1) vertices,
while B and C have received xt1 + y(t2 + 1) vertices.

So, if t1 > t2 (observe that then actually t1 ≥ t2 + 2, since T̄ /∈ TNearBal),
we will have the four sets A,B,C,D completely balanced out if we choose
x = t1− t2−2 and y = t1− t2. If t2 ≥ t1, we can balance out the four clusters
by taking x = t2 − t1 + 2 and y = t2 − t1.

For the paths ABCDEF from (M3) we can calculate similarly: Say we
do x rounds of embedding of a tree of type T̄ in the edge AB and another x
rounds embedding it into EF . We then do y rounds of embedding the tree
into AB, but with the roots of the tree going into C, and another y rounds
putting it into EF , with the root going into D. Moreover, we perform
2z rounds where we embed the tree into CD, of which z rounds in each
‘direction’. Then after these 2x+ 2y + 2z rounds, we filled each of A and F
with xt2 + y(t1 − 1) vertices, each of B and E with xt1 + yt2 vertices, and
each of C and D with y + zt vertices.

So, if t2 ≥ t1, then with x = t · (t2 − t1 + 1), y = t · (t2 − t1), and
z = (t − 1) · (t2 − t1) + t1, we have filled all six sets A,B,C,D,E, F with
exactly the same amount of vertices. If t1 > t2, we choose x = t · (t1− t2−1),
y = t · (t1 − t2), and z = (t− 1) · (t1 − t2)− t1.

Resuming all these observations, if t1 > t2 we can embed d := 2(t1− t2−
2)(t1− t2−1)(t1− t2)t2 ·((t−1) ·(t1− t2)− t1) trees of the current type T̄ , in a
way that all sets Q ∈ Q will be used in a completely balanced way. If t2 ≥ t1,
we can embed d′ := 2(t2− t1 + 2)(t2− t1 + 1)(t2− t1)t2 · ((t−1) · (t2− t1) + t1)
trees of type T̄ , perfectly balancing all sets Q ∈ Q. Now, the number of trees
of type T̄ might fail to be a multiple of d, or of d′, but, by putting some
unused vertices into U ′, we can finish the embedding of all the trees of the
current type without any problems, perfectly balancing all Q ∈ Q.

Note that the number of vertices we add to U ′ when working on one t-
vertex tree from TUnbal is at most max{dt, d′t} ≤ 2t8 ≤ 2

β8 . So, the number

30

of vertices we add to U ′ after working on all trees from TUnbal is at most the
number of types of trees multiplied by 2

β8 , and thus at most 2
β10 .

Phase 3. In the third phase of our embedding, we embed the trees from
TNearBal. Note that each of these trees has at least one leaf in its heavier
colour class. Instead of the root, as in phase 2, we will sometimes put the
leaf into a different cluster, this time using the N -in-good path partition PA.

Easier calculations than in the previous case show that we can completely
balance all slices CF1 of clusters C ∈ V (M) if we embed six trees of type T̄ .
So, putting at most 1

β2 · 6
β
≤ 6

β3 unused vertices into U ′, we can finish the
embedding of all the trees of TNearBal balancing all slices as desired.

After finishing Phase 3, we still put some more vertices into U ′, before
declaring the embedding procedure of the trees in Ts ∩ F1 finished. Namely,
we put an appropiate number of vertices from the sets in X into U ′. That is,
the number of vertices from any of the sets of X we add to U ′ is the same as
the number of vertices from any of the sets Q ∈ Q that went to U or to U ′

during the embedding of Ts ∩ F1. This cleaning-up is only done because it
will be nicer to be able to start the embedding of the trees at the next seed
with all slices CF1 perfectly balanced.

Observe that the number of vertices we added to U ′ while dealing with
the trees from Ts ∩ F1 is at most4

u′s ≤
1

β
+

2

β10
+

6

β3
+ |X| · 2|Ts ∩ F1|

p′
≤ 3

β10
+ 599εm ≤ 600εm,

where we used (6) for the last inequality. Hence the bound (15) we had
claimed above is correct. This ensures we have enough space for all future
trees from F1.

6.4 Embedding the leaves

This section is devoted to the embedding of the leaves. That is, we are now
at a stage where we have sucessfully embedded all seeds and all small trees,
and all that is left to embed is L, the set of leaves adjacent to seeds. We will
show we can embed all of L at once.

If we cannot embed L into Z, then by Hall’s theorem, there is some subset
K ⊆ W̃ such that

|N(ϕ(K)) ∩ Z| < |LK |, (19)

4Note that we did not add
⋃

C∈V (RG)(Q
C
0 ∪QC

1) to U ′.

31

where LK is the set of leaves adjacent to elements of K, the set ϕ(K) is the
set of images of K, and N(ϕ(K)) ∩ Z is the union of the neighbours in Z of
the elements of ϕ(K).

Recall that by (E) from Subsection 6.2.3, we chose as the image of a
seed s a vertex ϕ(s) that is typical with respect to CZ for almost all clusters
C of RG. Because of (10), this means that

each element of ϕ(K) sees at least (
2

3
− 20ε)|Z| vertices of Z. (20)

In particular, by (11), each element of ϕ(K) sees more than 5
8
(|L| + 9

10
αm)

vertices of Z. Thus, it follows that

|L| > 3αm

2
, (21)

as otherwise 5
8
(|L| + 9

10
αm) ≥ |L|, which means that we could have embed-

ded L without a problem.
Our aim is to reach a contradiction to the assumption that the set K

exists. We will reach this contradiction by proving in Claims 6.2–6.6 that K
misses a vertex in each of the large groups and also in most of the small
groups of seeds we defined in Subsection 5.2.1. In some of the small groups
K actually misses more than one vertex. We will prove these claims by
repeatedly using (19).

This means that in total, K misses many vertices from W̃ , and these ver-
tices spread out among the blocks (and thus have a corresponding proportion
of the leaves hanging from them). Therefore, we can conclude that |LK | is
smaller than the bound for the neighbourhood of ϕ(K) given in (20), and
thus, LK could have been embedded without a problem, which is a contra-
diction.

Let us make this outline more precise. We start by proving that each of
the large groups has a vertex outside K.

Claim 6.2. No large group is completely contained in K.

Proof. Assume otherwise, and consider the largest j for which there is a
group of size 47 · 2j completely contained in K. Then by Claim 6.1 (iv) from
Subsection 6.2.4, we know that

|N(ϕ(K)) ∩ Z| ≥ (1− 1

95 · 2j
− ε

1
4)|Z|. (22)

32

If j ≥ j~ := dlog 1
95· 999

1000
α
e, then by (11), this number exceeds |L|, which

yields a contradiction to (19). So

j < j~. (23)

In particular, because of (7) and (8), we know that j < j∗, and hence,
there exists a large group of size 47 · 2j+1 = 94 · 2j. For any such group
B, we know that, by the choice of j, there is a vertex vB ∈ B that is not
in K. Let LB be the set of leaves adjacent to seeds in B, and let `max(B) and
`min(B) be the number of leaves adjacent to the first and the last seed in B,
respectively, under the size order σ. Thus, every seed b ∈ B is adjacent to a
number `b of leaves, with `min(B) ≤ `b ≤ `max(B).

Set
dif (B) := `max(B)− `min(B).

Then

`vB ≥ `min(B) ≥ |LB|
|B|
− dif (B) · |B| − 1

|B|

=
|LB|

94 · 2j
− dif (B) · (1− 1

94 · 2j
).

Since the groups are consecutive in the size order, and since no seed has more
than αm leaves adjacent to it, we know that∑

B: |B| = 94 · 2j
dif (B) ≤ αm.

So, the number of leaves adjacent to seeds that are not in K can be bounded
by calculating

|L| − |LK | ≥
∑

B: |B| = 94 · 2j
`vB

≥ |L|
94 · 2j

−
∑

B: |B| = 94 · 2j
dif (B) · (1− 1

94 · 2j
)

≥ |L|
94 · 2j

− αm · (1− 1

94 · 2j
).

33

Therefore,

|LK | ≤ (1− 1

94 · 2j
) · (|L|+ αm)

≤ (1− 1

94 · 2j
) · (|Z|+ α4

106
m)

≤ (1− 1

95 · 2j
− ε

1
4)|Z|

≤ |N(ϕ(K)) ∩ Z|, (24)

where the second and last inequalities follow from (11) and (22), respectively,
and the third inequality follows from the observation that

α4

106
m ≤ 2

3
· α

3

106
|Z| ≤ (

1

94 · 95 · 2j
− ε

1
4)|Z|,

where for the first inequality we used that |Z| ≥ |L| > 3αm
2

(by (21)), and

the second inequality follows from the facts that ε ≤ α4

1018
(by (5)) and j ≤ j~

(by (23)).
Now, inequality (24) gives a contradiction to (19). We have thus proved

Claim 6.2.

Next, we will show that a similar statement holds for all small groups of
size five.

Claim 6.3. No small group of size 5 is completely contained in K.

Proof. Indeed, otherwise, because of Claim 6.1 (i), we know that

|N(ϕ(K)) ∩ Z| ≥ (
47

48
− ε

1
4)|Z|. (25)

Moreover, Claim 6.2 implies that every large group B of size 47 has a ver-
tex vB which is not in K, and thus we can calculate, similar as above for
Claim 6.2, that

|L| − |LK | ≥
∑

B: |B| = 47

`vB ≥
|L|
47
− αm · (1− 1

47
),

and thus, employing (11), we find that

|LK | ≤ (1− 1

47
) · (|Z|+ α4

106
m),

which, with the help of (21) and (25), and using the fact that α� ε, yields
a contradiction to (19). This proves Claim 6.3.

34

Next, we turn to the groups of size four, separating the treatment of these
into two cases depending on their type.

Claim 6.4. No small group of size 4 and of type 1 is completely contained
in K.

Proof. Otherwise, because of Claim 6.1 (ii), we know that

|N(ϕ(K)) ∩ Z| ≥ (
23

24
− ε

1
4)|Z|. (26)

By Claim 6.3 we know that every group of size five has a vertex which is not
in K. Hence, every large group B of size 47 contains at least two vertices v1

B

and v2
B that are not in K. Moreover, by the definition of the small groups,

the first of these vertices, v1
B, is one of the first 23 vertices of B under the

size order, and the second vertex v2
B, is one of the next 23 vertices of B under

the size order.
So, we can split the group B minus its last vertex into two groups B1, B2

containing the first 23 and the next 23 consecutive elements in the size order,
respectively, with v1

B ∈ B1 and v2
B ∈ B2. Defining dif (B1), dif (B2) as in

Claim 6.2 for each of these two subgroups B1, B2 of the group B of size
47, and letting `viB denote the number of leaves at viB, for i = 1, 2, we can
calculate that

`v1B ≥
|LB1|

23
− 22

23
· dif (B1),

and

`v2B ≥
|LB2|

23
− 22

23
· dif (B2),

where LB1 and LB2 denote the sets of leaves adjacent to vertices from B1

and B2, repectively. Thus, letting LB3 denote the set of leaves adjacent to

the very last vertex of the group B (of size 47), and noticing that |LB3| ≤
|LB |
47

,
we can calculate that

|L| − |LK | ≥
∑

B: |B| = 47

(`v1B + `v2B)

≥
|L| −

∑
B: |B| = 47 |LB3|

23
− 22

23
·

∑
B: |B| = 47

(dif (B1) + dif (B2))

≥ |L|
23
− |L|

23 · 47
− 22

23
αm.

35

Therefore, using (11) and (26), we obtain that

|LK | ≤
22

23
(|L|+ αm) · (1 +

1

22 · 47
)

≤ 22

23
(|Z|+ α4

106
m) · (1 +

1

22 · 47
)

≤ (
23

24
− ε

1
4)|Z|

≤ |N(ϕ(K)) ∩ Z|,

a contradiction to (19). This proves Claim 6.4.

Claim 6.5. No small group of size 4 and of type 2 is completely contained
in K.

Proof. Otherwise, because of Claim 6.1 (iii), we know that

|N(ϕ(K)) ∩ Z| ≥ (
11

12
− ε

1
4)|Z|. (27)

However, by Claims 6.3 and 6.4, we know that every small group of size 5
and every small group of size 4 and of type 1 has a vertex which is not
in K. So, we can split every large group B of size 47 into five subgroups B1,
B2, B3, B4, B5, each consecutive in the size order, and with |Bi| = 11 for
i = 1, 2, 3, 4 and |B5| = 3, such that each of B1, B2, B3, B4 contains a vertex
v1
B, v

2
B, v

3
B, v

4
B /∈ K.

Similar as above, we can calculate that

|L| − |LK | ≥
∑

B: |B| = 47

(`v1B + `v2B + `v3B + `v4B)

≥ |L|
11
− 3|L|

11 · 47
− 10

11
αm,

where numbers `viB are defined as in the previous claim.
Now, using (11) and (27), we obtain that

|LK | ≤
10

11
(|L|+ αm) · (1 +

1

10 · 16
)

≤ (
11

12
− ε

1
4)|Z|

≤ |N(ϕ(K)) ∩ Z|,

a contradiction to (19). This proves Claim 6.5.

36

Next, we will show that we can actually get some more out of the groups
of type 2.

Claim 6.6. No small group of size 4 and of type 2 has three or more vertices
in K.

Proof. Indeed, otherwise, because of the second part of Claim 6.1 (iii), we
know that

|N(ϕ(K)) ∩ Z| ≥ (
5

6
− ε

1
4)|Z|. (28)

By Claims 6.3, 6.4 and 6.5, every small group, except possibly those of size
one, has a vertex which is not in K. So, similar as in the previous claims,
we can calculate that

|L| − |LK | ≥
|L|
5
− |L|

5 · 47
− 3

4
αm,

and then use (11) and (28), to obtain that

|LK | ≤
4

5
(|L|+ αm) · (1 +

1

5 · 47
) ≤ |N(ϕ(K)) ∩ Z|,

a contradiction to (19). This proves Claim 6.6.

Resumingly, Claims 6.3–6.6 tell us that K misses at least one vertex
of each small group of size four or five, and misses at least two vertices
from each small group of size four and type 2. Recalling our ordering
4,4, 4, 4, 5, 4,4, 4, 4, 5, 4, 1 of the small groups inside each group B of size
47 as given in (4) in Subsection 5.2 (under ordering σ), we see that we can
split B into five groups B1, B2, B3, B4, B5 such that

• for i = 1, 3, the group Bi has 8 vertices, at least 3 of which are not
in K;

• for i = 2, 4, the group Bi has 13 vertices, at least 5 of which are not
in K; and

• B5 has 5 vertices, at least two of which are not in K.

Therefore, similarly as in the calculations for earlier claims, we can deduce
that

|L| − |LK | ≥ min{3

8
,

5

13
,
2

5
} · |L| −max{5

8
,

8

13
,
3

5
} · αm

≥ 3|L|
8
− 5

8
αm,

37

and thus by (11), we get

|LK | ≤
5

8

(
|L|+ αm

)
<
(2

3
− 20ε

)
|Z|,

a contradiction to (20).
This means the Hall-obstruction K cannot exist, and we can thus finish

the embedding of T by embedding all leaves from L in one step. This finishes
the proof of Lemma 2.1.

7 Extending a given embedding

For the companion paper [RS19b], which proves the exact version of Theo-
rem 1.4, we will need a second result, namely Lemma 7.3 below, apart from
Lemma 2.1. Lemma 7.3 is actually very similar to Lemma 2.1. The differ-
ence is that in the context of [RS19b], we will be in a situation where a small
tree T ∗ is already embedded, except for a small but still considerably sized
subset Q ⊆ V (T ∗). Vertices in Q are very well chosen, and their neighbours
in T ∗ are embedded in very versatile vertices of G, which means we can leave
the embedding of Q for later. Indeed, we will be able to embed vertices
from Q into almost any leftover set of the right size.5

So, we wish to embed T − T ∗, and we can count on extra free space of
considerable size because of the not-yet-embedded set Q. This is very much
like the situation we face in Lemma 2.1 (where we have free space because
of the approximation), except that now, we have to cope with the already
embedded T ∗−Q. However, as we will outline below, it is possible to adapt
our proof of Lemma 2.1 to the new setting, with one possible exception. That
is, if the graph G has a very specific structure (given in Definition 7.1 below),
our embedding scheme will fail. The reason for it to fail is that we are not
able to find the matchings M we need for the embedding of F1. It will be
shown in [RS19b] how we can make use of the specific structure of G so that
the tree can be embedded also in that case.

Another important point is that, for all proofs in [RS19b], we will count
on a significant advantage. That is, we will be in a position to assume that
none of the seeds from the cut-up of the tree has many leaves hanging from

5This is a bit oversimplified: The truth is that we will be able to absorb Q, that is, we
will reserve a set S of vertices of G, embed T − (T ∗ −Q) into G− S, and then complete
the embedding by using the leftover plus S for the embedding of Q.

38

it. This will be crucial for our proof of Lemma 7.3, and it means that we can
forget about all the extra work in the proof of Lemma 2.1 that was necessary
for embedding the set L of leaves hanging from seeds.

In order to be able to properly state the result of this section, Lemma 7.3,
we need two definitions. The first definition describes the structure of a graph
to which the method from the present paper cannot be applied.

Definition 7.1. We say a graph G on m + 1 vertices is γ-special if V (G)
consists of three mutually disjoint sets X1, X2, X3 such that

(i) m
3
− 3γm ≤ |Xi| ≤ m

3
+ 3γm for each i = 1, 2, 3; and

(ii) there are at most γ10|X1| · |X2| edges between X1 and X2.

The next definition describes the already embedded subtree T ∗.

Definition 7.2 (γ-nice subtree). Let T be a tree with m edges. Call a sub-
tree T ∗ of T with root t∗ a γ-nice subtree if

(i) |T ∗| < γm; and

(ii) every component of T − T ∗ is adjacent to t∗.

We are now ready for the result we will need in [RS19b].

Lemma 7.3. For all γ < 1
106

there are m0 ∈ N and λ > 0 such that the
following holds for all m ≥ m0.
Let G be an (m + 1)-vertex graph of minimum degree at least b2m

3
c , which

is not γ-special. Let T be a tree with m edges such that no vertex in T is
adjacent to more than λm leaves. Let T ∗ be a γ-nice subtree of T , with root
t∗, let Q ⊆ V (T ∗) \ {t∗}, and let S ⊆ V (G) with |S| ≤ |Q| − (γ

2
)4m.

Suppose there is an embedding of T ∗ − Q into G − S. Then there is an
embedding of T −Q into G− S extending the embedding of T ∗ −Q.

Proof. This proof follows the lines of the proof of Lemma 2.1. Note that
the new difficulty is that we have to deal with the already embedded part
of the tree T , and the unusable set S, together occupying up to almost γm
vertices, which means that the usable degree of the other vertices might drop
by almost γm (as they might see all of the used part of G). However, we have
the advantage that we do not have to worry much about the leaves hanging
from seeds, as there are very few.

39

Setting the constants. We start by setting the constants. Given γ, we
note that we can count on an approximation factor of

α := (
γ

2
)4

for the embedding of T −Q. We choose a suitable ε � α, in particular, we
will need that

ε ≤ γ20. (29)

We then apply Lemma 4.4 to ε2 and M0 := 1
ε2

to obtain numbers M1 and n0.
We choose β � ε, and

λ ≤ β2 · ε
3000

.

Finally, we choose a sufficiently large m0 for the output of Lemma 7.3. Re-
sumingly, we will have that

1

m0

� λ� β � ε� α� γ. (30)

Now, assume we are given a graph G as in the lemma which is not γ-special,
a set S, a tree T and a subtree T ∗ of T , with

|V (T ∗)| < γm, (31)

a vertex t∗ ∈ V (T ∗), and a set Q ⊆ V (T ∗) \ {t∗}, such that there is an
embedding of T ∗ − Q into a set ϕ(V (T ∗) − Q) ⊆ G − S, with t∗ embedded
into ϕ(t∗).

Regularising the host graph. We regularise G′ := G\(ϕ(V (T ∗−Q)∪S),
obtaining a reduced graph RG′ on p′ vertices. Our plan is to extend the
embedding of T ∗ −Q to an embedding of all of T −Q into G− S.

Recall that our main problem is that the minimum degree in RG′ is no
longer bounded from below by (2

3
−13ε)p, as it was in the proof of Lemma 2.1.

Because of the possible degree into the set ϕ(V (T ∗ −Q), we can only guar-
antee the following bound:

δw(RG′) ≥ (
2

3
− γ + (

γ

2
)4 − 13ε)p′ ≥ (

2

3
− γ)p′. (32)

40

Cutting the tree. We cut up the forest induced by V (T −T ∗)∪{t∗} using
Lemma 5.1, making t∗ a seed (the root seed). After this, we make aditional
seeds of all neighbours t of t∗ that belong to a tree from F2; let R denote the
set of these new seeds. (Note that by Lemma 5.1 (h), these are very few.)
Note that this transforms the partition of the tree a little, as any seed in R
cuts the tree from F2 it belonged to. We just add the newly formed small
trees to L, F1, F2 \ F ′2 or F ′2, as appropriate, and, slightly abusing notation,
continue to call these sets L, F1, F2\F ′2 or F ′2. It will not be necessary to add
more extra seeds, as we did in the proof of Lemma 2.1, so the total number
of seeds will be bounded by 3

β2 .
We now describe how we embed T − T ∗.

Embedding leaves at t∗, and reserving for R. We start by embedding
the leaves at t∗, into any cluster(s). This is possible because of the minimum
degree, and because t∗ has at most λm � εm leaves hanging from it. We
denote by L′ the set of the remaining leaves from L. Note that this will not
disturb the rest of the embedding process, as there are very few leaves at t∗,
compared to the approximation.

Next, we choose a cluster C∗ such that at least a third of its vertices
are neighbours of ϕ(t∗). We reserve a set C∗R ⊆ C∗ of size ε

1
3m consisting

of neighbours of ϕ(t∗) in C∗. These reservations will give us some control
later on, or more precisely, these reservation ensure that we will not block
the neighbourhood of ϕ(t∗) before embedding the seeds from R.

Embedding the trees from F ∗1 . Now we embed the trees from the set
F ∗1 := F1 ∩ Tt∗ . We provisionally slice up the clusters according to the
neighbourhood of ϕ(t∗), so that almost all of the new slices exclusively contain
neighbours or non-neighbours of ϕ(t∗). Say S is the set of all these slices.
Call the new reduced graph R′G′ , whose vertex set is S (we momentarily
disregard those slices that are not of use to us), say |S| = p′′.

Next, consider a subset N of size b(2
3
− 1001

1000
γ)p′′c of the neighbourhood of

the cluster that contains ϕ(t∗). We will now see that since G is not γ-special,
it is possible to find a matching M∗ and path partitions P∗A and P∗B as in the
proof of Lemma 2.1, where we employed Lemmas 4.2 and 4.3.

Indeed, the only possible reason we would not be able to find an N -good
matching M∗ of R′G′ − Y for some set Y of order around 500εp′′ in a similar
way as in Lemma 4.2 is the following: Every matching from V (R′G′)\N to N

41

leaves more than b500εp′′c vertices from V (R′G′) \ N uncovered. But then,
there is a Hall-obstruction consisting of a set X ′1 ⊆ V (R′G′) \ N having less
than |X ′1|−b500εp′′c neighbours in N . Now, because of condition (32) applied
to any vertex from X ′1, and setting X3 := NN(X ′1) and X1 := V (R′G′) \ N ,
we have

|X1 ∪X3| ≥
(

2

3
− γ
)
p′′. (33)

Therefore,(
1

3
+ γ

)
p′′ ≥ |X1| ≥ |X ′1| ≥

(
1

3
− γ

2
+ 250ε

)
p′′ ≥

(
1

3
− γ

2

)
p′′, (34)

and thus,(
1

3
+ γ

)
p′′ > |X1| > |X3| = |X1 ∪X3| − |X1| ≥

(
1

3
− 2γ

)
p′′. (35)

Letting X2 denote the non-neighbours of X ′1 in N , we obtain from (32)
in a similar way as for X1 that

|X2| ≥
(

1

3
− 2γ

)
p′′. (36)

where we also used (35). Also, by (33), we have that

|X2| ≤
(

1

3
+ γ

)
p′′. (37)

Because of (31), this means that G is γ-special. Indeed, observe that
condition (i) of Definition 7.1 holds for

⋃
X1,

⋃
X2, and

⋃
X3 ∪ ϕ(V (T ∗)−

Q)∪S ∪ (V (G′) \
⋃
S∈S V (S)), because of (34), (35), (36) and (37). Further-

more, condition (ii) of Definition 7.1 holds because of the definition of X2,
and because we know that by (29), any non-edge in R′G′ corresponds to a
very sparse pair of clusters in G. However, G being γ-special is against the
assumptions of Lemma 7.3, which means that no Hall-type obstruction can
exist, and we thus find the matching M∗ as desired.

If either of the auxiliary matchings MA and MB from Lemma 4.3 which
we need to construct the good path partitions P∗A and P∗B does not exist,
then we can conclude in a similar manner that G is γ-special. So we can
assume all these matchings and path partitions exist. We embed

⋃
F ∗1 into

M∗, P∗A and P∗B, all the time avoiding the set C∗R.
It is very important that the embedding of

⋃
F ∗1 leaves all clusters bal-

anced. For this, we will again use a small set U ′ of pseudo-used vertices.

42

Slicing up the clusters. After having embedded all trees from F ∗1 , we go
back to work in RG′ . We slice up the yet unused parts of the clusters as
before, into sets CZ , CW , CṼ , CF1\F ∗1 , and CF2 . The slices CX reflect the
sizes of the corresponding sets X, but we leave sufficient buffer space in each
(which we need for the same reasons as in the proof of Lemma 2.1, but also
in order to deal with some new problems arising from having T ∗−Q already
embedded).

We then go through the subtree induced by the seeds of (T − T ∗) ∪ {t∗}
and the non-trivial trees hanging from them in a connected way (starting
with the root t∗). We embed as usual each seed together with all small trees
from F1 ∪F2 hanging from it6, but leave out the leaves for later7. We always
avoid the set C∗R, unless we are about to embed a seed t ∈ R.

Embedding the seeds. We embed each seed s in a neighbour of the image
ϕ(p(s)) of its parent p(s), and typical with respect to the slices CZ , CW̃ , CṼ
and CF1\F ∗1 . Usually, seeds go to CW̃ , but seeds t from R go to their reserved
space C∗R. Let us remark that we do not need to group and order our seeds
as in the proof of Lemma 2.1, and we also do not need to choose the target
clusters as carefully.

Embedding the trees from F2. These trees are easy to embed, because
we can find the matching MF2 just as before, and it does not matter that the
minimum degree is only bounded by (32). In order to make the connections
through the slices CṼ , for the vertices from Ṽ , we only need to observe that
every seed adjacent to trees from F ′2 is embedded in a vertex that is typical
with respect to almost all slices CṼ .

Embedding the trees from F1 \ F ∗1 . As above, we slice up the clusters
once more, so that almost all of the obtained slices behave uniformly with
repect to being a neighbour or not of the image of the most recently embeded
seed s. Let us call R′′G′ the graph on these slices, after momentarily discarding
those slices that are not of use to us.

Since G is not γ-special, we can find the perfect matchings M and good
path partitions as in Lemmas 4.2 and 4.3 in R′′G′ , in spite of only having

6Except when we deal with t∗, which, together with F ∗1 , is already embedded.
7As L is small, we could embed the leaves together with their respective seed. However,

we prefer to follow the structure of the proof of Lemma 2.1, for the sake of conformity.

43

condition (32). This can be shown exactly as above, when we embedded the
trees from F ∗1 . So we can embed the trees from F1 \ F ∗1 exactly as in the
proof of Lemma 2.1.

Embedding the leaves from L′. In (30), we chose λ small enough so
that

|L′| ≤ 3

β2
· λm ≤ 1

1000
εm.

Since the slices CZ are much larger than εm
p

, and since the embedded seeds

(except possibly t∗) see approximately two thirds of almost all of these slices,
we have no problem to embed the leaves from L′ greedily into

⋃
C∈V (RG′)

CZ .

References

[AKS95] M. Ajtai, J. Komlós, and E. Szemerédi. On a conjecture of
Loebl. In Graph theory, combinatorics, and algorithms, Vol. 1,
2 (Kalamazoo, MI, 1992), 1135–1146. Wiley, New York, 1995.

[BPS18] G. Besomi, M. Pavez-Signé, and M. Stein. Degree conditions
for embedding trees. To appear in SIAM Journal on Discrete
Mathematics.

[BD96] S. Brandt and E. Dobson. The Erdős–Sós conjecture for graphs
of girth 5. Discr. Math., 150:411–414, 1996.

[CLNS10] B. Csaba, I. Levitt, J. Nagy-György, and E. Szemerédi. Tight
bounds for embedding bounded degree trees. In Katona G.O.H.,
Schrijver A., Szenyi T., Sági G. (eds) Fête of Combinatorics and
Computer Science (2010), vol. 20.

[EFLS95] P. Erdős, Z. Füredi, M. Loebl, and V. T. Sós. Discrepancy of
trees. Studia Sci. Math. Hungar., 30(1-2):47–57, 1995.

[EG59] P. Erdős and T. Gallai. On maximal paths and circuits of
graphs. Acta Mathematica Academiae Scientiarum Hungarica
10, 3 (1959), 337– 356.

44

[HRSW16] F. Havet, B. Reed, M. Stein, and D. Wood. A Variant of the
Erdős-Sós Conjecture. Preprint 2016 arXiv:1606.09343

[Hax01] P. E. Haxell. Tree embeddings. J. Graph Theory, 36(3):121–130,
2001.

[HKP+a] J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and
E. Szemerédi. The approximate Loebl–Komlós–Sós Conjecture
I: The sparse decomposition. SIAM Journal on Discrete Math-
ematics 31-2 (2017), 945-982.

[HKP+b] J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and
E. Szemerédi. The approximate Loebl–Komlós–Sós Conjecture
II: The rough structure of LKS graphs. SIAM Journal on Dis-
crete Mathematics 31-2 (2017), 983-1016.

[HKP+c] J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and
E. Szemerédi. The approximate Loebl–Komlós–Sós Conjecture
III: The finer structure of LKS graphs. SIAM Journal on Dis-
crete Mathematics 31-2 (2017), 1017-1071.

[HKP+d] J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and
E. Szemerédi. The approximate Loebl–Komlós–Sós Conjecture
IV: Embedding techniques and the proof of the main result.
SIAM Journal on Discrete Mathematics 31-2 (2017), 1072-1148.

[KSS01] J. Komlós, G. Sárközy, and E. Szemerédi. Spanning Trees in
Dense Graphs. Combinatorics, Probability and Computing, Vol.
5, 397–416 (2001).

[KSS95] J. Komlós, G. Sárközy, and E. Szemerédi. Combinatorics, Prob-
ability and Computing, Vol. 4 (3), Proof of a Packing Conjecture
of Bollobás. 241–255 (1995).

[KSS02] J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi.
The regularity lemma and its applications in graph theory. The-
oretical aspects of computer science, Lecture Notes in Comput.
Sci., Vol. 2292, 84–112 (2002).

45

[PS12] D. Piguet and M. J. Stein. An approximate version of the Loebl-
Komlós-Sós conjecture. J. Combin. Theory Ser. B, 102(1):102–
125, 2012.

[RS19b] B. Reed and M. Stein. Embedding Spanning Trees in Graphs
of High Minimum Degree which have a Universal Vertex II: A
Tight Result. Preprint 2019.

[SW97] J.-F. Saclé and M. Woźniak. A note on the Erdős–Sós conjecture
for graphs without C4. J. Combin. Theory (Series B), 70(2):229–
234, 1997.

46

