On the Ramsey number of the double star

Freddy Flores Dubó and Maya Stein*

Abstract

The double star $S\left(m_{1}, m_{2}\right)$ is obtained from joining the centres of a star with m_{1} leaves and a star with m_{2} leaves. We give a short proof of a new upper bound on the two-colour Ramsey number of $S\left(m_{1}, m_{2}\right)$ which holds for all m_{1}, m_{2} with $\frac{\sqrt{5}+1}{2} m_{2}<m_{1}<3 m_{2}$. Our result implies that for all positive m, the Ramsey number of the double star $S(2 m, m)$ is at most $\lceil 4.275 m\rceil+1$.

1 Introduction

The much studied Ramsey number $R(H)$ of a graph H is defined as the smallest integer n such that every 2-colouring of the edges of K_{n} contains a monochromatic copy of H. The case when H is a complete graph is the subject of Ramsey's famous theorem from the 1930's, and determining Ramsey numbers of complete graphs is notoriously difficult. For a recent breakthrough, see [3].

Among the earliest non-complete graphs H to be studied were different kinds of trees. In 1967, Gerencsér and Gyárfás [4] showed that $R\left(P_{k}\right)=k+\left\lfloor\frac{k+1}{2}\right\rfloor$, where P_{k} is the k-edge path. For k-edge stars $K_{1, k}$, the Ramsey number is larger: Harary [6] observed in 1972 that $R\left(K_{1, k}, K_{1, k}\right)=2 k$ if k is odd, and $R\left(K_{1, k}, K_{1, k}\right)=2 k-1$ if k is even.

Burr and Erdős [2] conjectured in 1976 that $R\left(T_{k}\right) \leq R\left(K_{1, k}, K_{1, k}\right)$, for any tree T_{k} with k edges. For large k, it is known that $R\left(T_{k}\right) \leq 2 k$, by the results of [9]. However, this bound far from best possible for paths, which motivated the search for a more fine-tuned conjecture. Note that paths are (almost) completely balanced trees, while stars are the most unbalanced trees. So, it seems natural to suspect that the Ramsey

[^0]number of a tree might be related to its unbalancedness, i.e. the difference in size between the two bipartition classes.

It is easy to see that

$$
R_{B}(T):=\max \left\{2 t_{1}, t_{1}+2 t_{2}\right\}-1
$$

is a lower bound for the Ramsey number of any tree T with bipartition classes of sizes $t_{1} \geq t_{2} \geq 2$. This can be seen by considering the canonical colourings, which are defined as follows. Take a complete graph G on $R_{B}(T)-1$ vertices. If $t_{1}>2 t_{2}$, partition $V(G)$ into two sets of equal size, colour all edges inside each set red and colour all remaining edges blue. If $t_{1} \leq 2 t_{2}$, take a set of $t_{1}+t_{2}-1$ vertices, colour all edges inside this set red, and colour all remaining edges blue. It is straightforward to see that no monochromatic copy of T is present in this colouring.

Note that if T is a path then $R_{B}(T)=R(T)$, and the same holds if T is a star with an even number of edges. In [1], Burr discusses the canonical colourings and expresses his belief that $R(T)$ may be equal to $R_{B}(T)$ unless T is an odd star. In 2002, Haxell, Łuczak, and Tingley [7] confirmed this suspicion asymptotically for all trees with linearly bounded maximum degree. Namely, they proved that for every $\eta>0$, there exist t_{0} and δ such that $R(T) \leq(1+\eta) R_{B}(T)$ for each tree T with $\Delta(T) \leq \delta t_{1}$ and $t_{1}>t_{0}$, where $t_{1} \geq t_{2}$ are, as before, the sizes of the bipartition classes of the tree T.

But already in 1979, Grossman, Harary and Klawe [5] found that, contrary to Burr's suspicion, there are values of m_{1}, m_{2} such that $R\left(S\left(m_{1}, m_{2}\right)\right)>R_{B}\left(S\left(m_{1}, m_{2}\right)\right)$ (where $S\left(m_{1}, m_{2}\right)$ is the double star with m_{i} leaves in partition class i). However, the examples from [5] still allowed for the possibility that for every tree T we would have that $R(T) \leq R_{B}(T)+1$. The authors of [5] conjectured this to be the truth for all double stars, which they confirmed for a range of values of m_{1}, m_{2}. Currently, it is known that this holds if $m_{1} \geq 3 m_{2}$ [5] or if $m_{1} \leq 1.699\left(m_{2}+1\right)$ [8]. In other words, for $m_{1}, m_{2} \in \mathbb{N}^{+}$it holds that

$$
\begin{equation*}
R\left(S\left(m_{1}, m_{2}\right)\right) \leq \max \left\{2 m_{1}, m_{1}+2 m_{2}\right\}+2=R_{B}\left(S\left(m_{1}, m_{2}\right)\right)+1 \tag{1}
\end{equation*}
$$

unless

$$
\begin{equation*}
1.699\left(m_{2}+1\right)<m_{1}<3 m_{2} \tag{2}
\end{equation*}
$$

But in general, inequality (1) is not true. Norin, Sun and Zhao [8] showed that $R\left(S\left(m_{1}, m_{2}\right)\right) \geq 5 m_{1} / 3+5 m_{2} / 6+o\left(m_{2}\right)$ for all $m_{1} \geq m_{2} \geq 0$ and $R\left(S\left(m_{1}, m_{2}\right)\right) \geq$ $189 m_{1} / 115+21 m_{2} / 23+o\left(m_{2}\right)$ for all $m_{1} \geq 2 m_{2} \geq 0$. In particular, their results imply that $R\left(S\left(m_{1}, m_{2}\right)\right)>R_{B}\left(S\left(m_{1}, m_{2}\right)\right)+1$ if m_{1}, m_{2} fulfill

$$
\frac{7}{4} m_{2}+o\left(m_{2}\right) \leq m_{1} \leq \frac{105}{41} m_{2}+o\left(m_{2}\right)
$$

This range covers the special case that $m_{1}=2 m_{2}$. For this case, the results from [8] yield that $R(S(2 m, m)) \geq 4.2 m+o(m)$ while $R_{B}(S(2 m, m))=4 m+2$. This discovery lead the authors of [8] to pose the following question.
Question 1 (Norin, Sun and Zhao [8]). Is it true that $R(S(2 m, m))=4.2 m+o(m)$?
There are few results giving upper bounds on the Ramsey number of the double star for the range of m_{1}, m_{2} where (1) does not hold. The inequality $R\left(S\left(m_{1}, m_{2}\right)\right) \leq$ $2 m_{1}+m_{2}+2$ for all $m_{1} \geq m_{2} \geq 0$ was established in [5], where it is described as a 'weak upper bound'. In the preprint [8], very good asymptotic bounds for $R\left(S\left(m_{1}, m_{2}\right)\right)$ are obtained from a computer-assisted proof using the flag algebra method, but as these are not quick to state, we refer the reader to [8]. We remark that Theorem 4.5 from [8], used with the invalid pair number 5 from Table 1 of [8], implies that $\lim _{m \rightarrow \infty} R(S(2 m, m)) / m$ is bounded from above by 4.21526 .

Our main result is a short elementary proof of a new upper bound on $R\left(S\left(m_{1}, m_{2}\right)\right)$ which holds for all values of $m_{1}, m_{2} \in \mathbb{N}^{+}$fulfilling $\frac{\sqrt{5}+1}{2} m_{2}<m_{1}<3 m_{2}$. Observe that $\frac{\sqrt{5}+1}{2}>1.618$, and thus our result covers the whole range of values of m_{1}, m_{2} from (2).

Theorem 2. Let $m_{1}, m_{2} \in \mathbb{N}^{+}$, with $\frac{\sqrt{5}+1}{2} m_{2}<m_{1}<3 m_{2}$. Then

$$
R\left(S\left(m_{1}, m_{2}\right)\right) \leq\left\lceil\sqrt{2 m_{1}^{2}+\left(m_{1}+\frac{m_{2}}{2}\right)^{2}}+\frac{m_{2}}{2}\right\rceil+1 .
$$

As an immediate corollary of our theorem, we obtain for the double star $S(2 m, m)$ the following bound.

Corollary 3. $R(S(2 m, m)) \leq\lceil 4.27492 m\rceil+1$ for all $m \in \mathbb{N}^{+}$.

2 Preliminaries

In this section we prepare the proof of the main result, Theorem 2, by proving some auxiliary results. We start with a very simple lemma for recurrent later use. A similar lemma appears in [8].

Lemma 4. Let $m_{1}, m_{2} \in \mathbb{N}$, let G be a graph and let $v w \in E(G)$ such that $d(v)>m_{1}$, $d(w)>m_{2}$, and $|N(v) \cup N(w)| \geq m_{1}+m_{2}+2$. Then $S\left(m_{1}, m_{2}\right) \subseteq G$.

Proof. To form the double star with central edge $v w$, first choose m_{1} neighbours of v, as many as possible outside $N(w) \cup\{w\}$, the others in $N(w)$. Then, choose m_{2} neighbours of w in $N(w)$, different from v and from the previously chosen neighbours of v. This concludes the proof.

Next we show a useful statement about vertex degrees when no double star is present.

Lemma 5. Let $m_{1}, m_{2} \in \mathbb{N}$, and let G be a graph on $n \geq m_{1}+m_{2}+2$ vertices such that $S\left(m_{1}, m_{2}\right) \nsubseteq G$. Let $v \in V(G)$, let $A \subseteq N(v)$ with $|A|>m_{1}$ and $d(u)>m_{2}$ for each $u \in A$. Let $w \in A$. Then w has at most $m_{1}+m_{2}-|A|$ neighbours in $V(G) \backslash(A \cup\{v\})$. Furthermore, there is a vertex $z \in V(G) \backslash(A \cup\{v\})$ having at most

$$
\frac{m_{1}+m_{2}-|A|}{n-|A|-1} \cdot|A|
$$

neighbours in A.
Proof. Set $D:=V(G) \backslash(A \cup\{v\})$. If w has $m_{1}+m_{2}-|A|+1$ or more neighbours in D, then $|N(v) \cup N(w)| \geq|A|+\left(m_{1}+m_{2}-|A|+1\right)+|\{v\}|=m_{1}+m_{2}+2$ (we count v as a neighbour of w), and we can apply Lemma 4 to see that $S\left(m_{1}, m_{2}\right) \subseteq G$, which is a contradiction.

So w has at most $m_{1}+m_{2}-|A|$ neighbours in D, which is as desired. Further, as this holds for every $u \in A$, the average number of neighbours in A of a vertex from D is at most

$$
\frac{\left(m_{1}+m_{2}-|A|\right) \cdot|A|}{|D|}=\frac{m_{1}+m_{2}-|A|}{n-|A|-1} \cdot|A| .
$$

So any vertex $z \in D$ having at most the average number of neighbours in A is as desired.

We will also need a lemma from [8], whose elementary proof can be found there.
Lemma 6 (Lemma 2.3 in [8]). Let $n \geq \max \left\{2 m_{1}, m_{1}+2 m_{2}\right\}+2$, and let the edges of K_{n} be coloured with red and blue such that there is no monochromatic $S\left(m_{1}, m_{2}\right)$. Then there is a colour $C \in\{r e d, b l u e\}$ such that each vertex of K_{n} has degree at most m_{1} in colour C.

3 Proof of Theorem 2.

The whole section is devoted to the proof of Theorem 2 . Let $m_{1}, m_{2} \in \mathbb{N}^{+}$be given, fulfilling

$$
\begin{equation*}
\frac{\sqrt{5}+1}{2} m_{2}<m_{1}<3 m_{2} . \tag{3}
\end{equation*}
$$

Set

$$
\begin{equation*}
m_{3}:=\left\lceil\sqrt{2 m_{1}^{2}+\left(m_{1}+\frac{m_{2}}{2}\right)^{2}}-\left(m_{1}+\frac{m_{2}}{2}\right)\right\rceil . \tag{4}
\end{equation*}
$$

Using (3) and (4), it is easy to calculate that

$$
\begin{equation*}
m_{3}>\max \left\{m_{2}, m_{1}-m_{2}\right\} \tag{5}
\end{equation*}
$$

and in particular, we have that $m_{3} \geq 1$. Set $n:=m_{1}+m_{2}+m_{3}+1$, and let a red and blue colouring of the edges of K_{n} be given. Let G_{r} be the subgraph of K_{n} induced by the red edges, and G_{b} be the subgraph of K_{n} induced by the blue edges. For any $u \in V\left(K_{n}\right)$, let $N_{r}(u)$ be the set of all neighbours of u in G_{r}, and let $N_{b}(u)$ be the set of all neighbours of u in G_{b}. Set $d_{r}(u):=\left|N_{r}(u)\right|$ and $d_{b}(u):=\left|N_{b}(u)\right|$.

For contradiction assume that there is no monochromatic $S\left(m_{1}, m_{2}\right)$. Note that $n \geq \max \left\{2 m_{1}, m_{1}+2 m_{2}\right\}+2$ because of (5) and since n is an integer. So, we can use Lemma 6 to see that there is a colour, which we may assume to be blue, such that every vertex has degree at most m_{1} in that colour. That is, $d_{b}(u) \leq m_{1}$ for all $u \in V(G)$, and thus,

$$
\begin{equation*}
\delta\left(G_{r}\right) \geq m_{2}+m_{3} \tag{6}
\end{equation*}
$$

Now choose any vertex v and a subset A of $N_{r}(v)$ with

$$
\begin{equation*}
|A|=m_{2}+m_{3} \tag{7}
\end{equation*}
$$

By (6), and since $m_{2}+m_{3}>m_{1}$ by (5), we know that $|A|>m_{1}$ and $\delta\left(G_{r}\right)>m_{2}$. So, we can use Lemma 5 in G_{r} to see that for any $w \in A$, we have

$$
\left|N_{r}(w) \backslash(A \cup\{v\})\right| \leq m_{1}+m_{2}-\left(m_{2}+m_{3}\right)=m_{1}-m_{3} .
$$

and therefore,

$$
\begin{align*}
\left|N_{r}(w) \cap(A \cup\{v\})\right| & =d_{r}(w)-\left|N_{r}(w) \backslash(A \cup\{v\})\right| \\
& \geq m_{2}+m_{3}-\left(m_{1}-m_{3}\right) \\
& =m_{2}+2 m_{3}-m_{1} . \tag{8}
\end{align*}
$$

We employ Lemma 5 once more, this time to find a vertex $z \notin A \cup\{v\}$ such that

$$
\left|N_{r}(z) \cap A\right| \leq \frac{m_{1}+m_{2}-|A|}{n-|A|-1} \cdot|A|=\frac{m_{1}-m_{3}}{m_{1}} \cdot\left(m_{2}+m_{3}\right),
$$

where we use (7) for the equality. We deduce that

$$
\begin{align*}
\left|N_{r}(z) \backslash A\right| & =d_{r}(z)-\left|N_{r}(z) \cap A\right| \\
& \geq\left(m_{2}+m_{3}\right)-\frac{m_{1}-m_{3}}{m_{1}} \cdot\left(m_{2}+m_{3}\right) \\
& =\left(m_{2}+m_{3}\right) \frac{m_{3}}{m_{1}} . \tag{9}
\end{align*}
$$

Further, note that $d_{b}(z) \leq m_{1}<m_{2}+m_{3}=|A|$ because of (6), (5) and (7). Therefore, we know that vertex z sends at least one red edge to A. Consider any red edge $u z$ with $u \in A$. Using (8) and (9), we get

$$
\begin{aligned}
\left|N_{r}(u) \cup N_{r}(z)\right| & \geq\left|N_{r}(u) \cap(A \cup\{v\})\right|+\left|N_{r}(z) \backslash A\right|+|\{u, z\}| \\
& \geq m_{2}+2 m_{3}-m_{1}+\left(m_{2}+m_{3}\right) \frac{m_{3}}{m_{1}}+2 \\
& \geq m_{1}+m_{2}+2
\end{aligned}
$$

where for the last inequality we use the fact that $2 m_{1} m_{3}+m_{2} m_{3}+m_{3}^{2} \geq 2 m_{1}^{2}$ which can be calculated from (4). So, we can apply Lemma 4 to find a red double star with central edge $u z$, and are done.

Acknowledgment

The second author would like to thank C. Karamchedu, M. Karamchedu and M. Klawe for pointing out a missing ceiling in the bound of Theorem 2 in an earlier version of this paper.

References

[1] Burr, S. A. Generalized Ramsey theory for graphs-a survey. In Graphs and combinatorics (Proc. Capital Conf., George Washington Univ., Washington, D.C., 1973). Springer, Berlin, 1974, pp. 52-75. Lecture Notes in Mat., Vol. 406.
[2] Burr, S. A., and Erdős, P. Extremal Ramsey theory for graphs. Utilitas Mathematica 9 (1976), 247-258.
[3] Campos, M., Griffiths, S., Morris, R., and Sahasrabudhe, J. An exponential improvement for diagonal ramsey. Preprint 2023, arXiv:2303.09521.
[4] Gerencsér, L., and Gyárfás, A. On Ramsey-type problems. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967), 167-170.
[5] Grossman, J. W., Harary, F., and Klawe, M. Generalized Ramsey theory for graphs. X. Double stars. Discrete Math. 28, 3 (1979), 247-254.
[6] Harary, F. Recent results on generalized Ramsey theory for graphs. In Graph theory and applications (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs). Springer, Berlin, 1972, pp. 125-138. Lecture Notes in Math., Vol. 303.
[7] Haxell, P. E., Łuczak, T., and Tingley, P. W. Ramsey numbers for trees of small maximum degree. Combinatorica 22, 2 (2002), 287-320. Special issue: Paul Erdős and his mathematics.
[8] Norin, S., Sun, Y. R., and Zhao, Y. Asymptotics of Ramsey numbers of double stars. Preprint 2016, arXiv:1605.03612.
[9] Zhao, Y. Proof of the $(n / 2-n / 2-n / 2)$ conjecture for large n. Electr. J. Comb. 18 (2011).

[^0]: *Department of Mathematical Engineering, University of Chile, and Center for Mathematical Modeling. MS acknowledges support by ANID Regular Grant 1221905 and by ANID PIA CMM FB210005.

