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Abstract

The double star S(mq,ms2) is obtained from joining the centres of a star
with my leaves and a star with mo leaves. We give a short proof of a new upper
bound on the two-colour Ramsey number of S(m;j, ma) which holds for all
m1, meo with @mg < mq < 3me. Our result implies that for all positive m,
the Ramsey number of the double star S(2m,m) is at most [4.275m] + 1.

1 Introduction

The much studied Ramsey number R(H) of a graph H is defined as the smallest
integer n such that every 2-colouring of the edges of K, contains a monochromatic
copy of H. The case when H is a complete graph is the subject of Ramsey’s famous
theorem from the 1930’s, and determining Ramsey numbers of complete graphs is
notoriously difficult. For a recent breakthrough, see [3].

Among the earliest non-complete graphs H to be studied were different kinds of
trees. In 1967, Gerencsér and Gyérfds [4] showed that R(Py) = k + |51, where P,
is the k-edge path. For k-edge stars K, the Ramsey number is larger: Harary [6]
observed in 1972 that R(K; y, K1) = 2k if k is odd, and R(K; 4, K1) =2k —11if k
is even.

Burr and Erdés [2] conjectured in 1976 that R(7})) < R(Kk, K1), for any tree T},
with k edges. For large k, it is known that R(7},) < 2k, by the results of [9]. However,
this bound far from best possible for paths, which motivated the search for a more
fine-tuned conjecture. Note that paths are (almost) completely balanced trees, while
stars are the most unbalanced trees. So, it seems natural to suspect that the Ramsey
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number of a tree might be related to its unbalancedness, i.e. the difference in size
between the two bipartition classes.
It is easy to see that

RB(T) = maX{Qtl,tl + th} —1

is a lower bound for the Ramsey number of any tree 7" with bipartition classes of
sizes t; > to > 2. This can be seen by considering the canonical colourings, which
are defined as follows. Take a complete graph G on Rp(T') — 1 vertices. If t; > 2ts,
partition V(G) into two sets of equal size, colour all edges inside each set red and
colour all remaining edges blue. If t; < 2t5, take a set of t; +t5 — 1 vertices, colour all
edges inside this set red, and colour all remaining edges blue. It is straightforward
to see that no monochromatic copy of T is present in this colouring.

Note that if 7" is a path then Rg(T) = R(T'), and the same holds if T" is a star
with an even number of edges. In [1], Burr discusses the canonical colourings and
expresses his belief that R(7") may be equal to Rp(7T") unless T"is an odd star. In 2002,
Haxell, Luczak, and Tingley [7] confirmed this suspicion asymptotically for all trees
with linearly bounded maximum degree. Namely, they proved that for every n > 0,
there exist ¢y and 6 such that R(T") < (14n)Rp(T) for each tree T with A(T") < oty
and t; > tg, where t; > t, are, as before, the sizes of the bipartition classes of the
tree T'.

But already in 1979, Grossman, Harary and Klawe [5] found that, contrary to
Burr’s suspicion, there are values of my, mgy such that R(S(my, ms)) > Rp(S(mq, ms))
(where S(my,m2) is the double star with m; leaves in partition class 7). However,
the examples from [5] still allowed for the possibility that for every tree T' we would
have that R(T) < Rg(T) + 1. The authors of [5] conjectured this to be the truth
for all double stars, which they confirmed for a range of values of my, ms. Currently,
it is known that this holds if m; > 3my [5] or if m; < 1.699(ms + 1) [8]. In other
words, for mq, my € NT it holds that

R(S(mq,ms)) < max{2mq, mi + 2ma} + 2 = Rp(S(m1,ma)) + 1 (1)
unless
1699(7712 + 1) <mq < 3mas. (2)

But in general, inequality (1) is not true. Norin, Sun and Zhao [8] showed that
R(S(my,msa)) > 5my/3 4+ 5ma/6 + o(my) for all my > mg > 0 and R(S(mq, ms)) >
189my /115 4 21ms /23 + o(my) for all my > 2my > 0. In particular, their results
imply that R(S(my, ms)) > Rp(S(my, ms)) + 1 if my, my fulfill

—mo + O(mg) <mp < Emg + 0(7TL2>.
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This range covers the special case that m; = 2my. For this case, the results from [§]
yield that R(S(2m,m)) > 4.2m+o(m) while Rg(S(2m,m)) = 4m+2. This discovery
lead the authors of [8] to pose the following question.

Question 1 (Norin, Sun and Zhao [8]). Is it true that R(S(2m,m)) = 4.2m+o(m)?

There are few results giving upper bounds on the Ramsey number of the double
star for the range of my, my where (1) does not hold. The inequality R(S(my, ms)) <
2my + mg + 2 for all my > my > 0 was established in [5], where it is described
as a ‘weak upper bound’. In the preprint [8], very good asymptotic bounds for
R(S(my,my)) are obtained from a computer-assisted proof using the flag algebra
method, but as these are not quick to state, we refer the reader to [8]. We remark
that Theorem 4.5 from [8], used with the invalid pair number 5 from Table 1 of [§],
implies that lim,, o, R(S(2m,m))/m is bounded from above by 4.21526.

Our main result is a short elementary proof of a new upper bound on R(S(my, ms))
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that @ > 1.618, and thus our result covers the whole range of values of my, ms
from (2).

which holds for all values of m, my € NT fulfilling me < my < 3mg. Observe

Theorem 2. Let mq, my € N*, with @mg < my < 3my. Then

m m
R(S(my,ms)) < (\/ng + (my + 72)2 + 72] +1.
As an immediate corollary of our theorem, we obtain for the double star S(2m, m)
the following bound.

Corollary 3. R(S(2m,m)) < [4.27492m] + 1 for all m € N*.

2 Preliminaries

In this section we prepare the proof of the main result, Theorem 2, by proving some
auxiliary results. We start with a very simple lemma for recurrent later use. A
similar lemma appears in [8].

Lemma 4. Let my, my € N, let G be a graph and let vw € E(G) such that d(v) > my,
d(w) > ms, and |[N(v) U N(w)| > mq + mg + 2. Then S(my,ms) C G.

Proof. To form the double star with central edge vw, first choose m; neighbours
of v, as many as possible outside N(w)U {w}, the others in N(w). Then, choose my
neighbours of w in N (w), different from v and from the previously chosen neighbours
of v. This concludes the proof. [



Next we show a useful statement about vertex degrees when no double star is
present.

Lemma 5. Let mi,ms € N, and let G be a graph on n > my + mo + 2 vertices such
that S(my,mo) € G. Let v € V(G), let A C N(v) with |A] > my and d(u) > mo
for each uw € A. Let w € A. Then w has at most my + mg — |A| neighbours in
V(G)\ (AU {v}). Furthermore, there is a vertex z € V(G) \ (AU {v}) having at
most
ma —|— mo — |A|
n—|Al—-1

A
neighbours in A.

Proof. Set D :=V(G) \ (AU {v}). If w has m; + my — |A| + 1 or more neighbours
in D, then |N(v) UN(w)| > |A] + (my +mg — |A| + 1) + [{v}| = m1 + ma + 2 (we
count v as a neighbour of w), and we can apply Lemma 4 to see that S(my,ms) C G,
which is a contradiction.

So w has at most m; + my — |A| neighbours in D, which is as desired. Further,
as this holds for every u € A, the average number of neighbours in A of a vertex
from D is at most

(m1 +my — |A]) - [A] _ mq +ms — |A]
D] n— A =1

A

So any vertex z € D having at most the average number of neighbours in A is as

desired. ]
We will also need a lemma from [8], whose elementary proof can be found there.

Lemma 6 (Lemma 2.3 in [8]). Let n > max{2my, my + 2ma} + 2, and let the edges
of K, be coloured with red and blue such that there is no monochromatic S(my, ms).
Then there is a colour C' € {red,blue} such that each vertex of K, has degree at
most my in colour C.

3 Proof of Theorem 2.

The whole section is devoted to the proof of Theorem 2. Let m;, ms € NT be given,

fulfilling
541
\/_;— my < mp < 3ms. (3)




Set

mg = {\/Qmi + (my + %)2 ~ (ma + %)} (4)

Using (3) and (4), it is easy to calculate that
ms > max{ma, my — ma}, (5)

and in particular, we have that m3z > 1. Set n := m; + ms + m3 + 1, and let a
red and blue colouring of the edges of K, be given. Let GG, be the subgraph of K,
induced by the red edges, and G} be the subgraph of K, induced by the blue edges.
For any u € V(K,,), let N,(u) be the set of all neighbours of u in G,, and let Ny(u)
be the set of all neighbours of u in Gy. Set d,.(u) := |N,(u)| and dp(u) := | Ny(u)].
For contradiction assume that there is no monochromatic S(my,ms). Note that
n > max{2my, m; + 2mso} + 2 because of (5) and since n is an integer. So, we can
use Lemma 6 to see that there is a colour, which we may assume to be blue, such
that every vertex has degree at most m; in that colour. That is, dy(u) < m, for all
u € V(G), and thus,
d(Gy) > mg + ms. (6)

Now choose any vertex v and a subset A of N,.(v) with
|A‘ = Mo + Mms. (7)

By (6), and since mg +ms3 > my by (5), we know that |A| > m; and 6(G,) > ma.
So, we can use Lemma 5 in GG, to see that for any w € A, we have

[Ne(w) \ (AUA{v})| < my +mg — (m2 + mg) = my —ms.
and therefore,

[N (w) N (AU {v})]| = dp(w) — [N (w) \ (AU {v})]
> mgy +mg — (my — mg)

= My + 2m3 — mj. (8)
We employ Lemma 5 once more, this time to find a vertex z ¢ AU {v} such that

m1+m2—\Al“A|:m1—m3

N, (z)NA|l <

. (mg + mg),



where we use (7) for the equality. We deduce that

|N7"(Z) \ A| = dr(z) - |Nr(z) N A|

my —ms

> (mg +ms) — - (M2 + m3)

my
ms3
= —. 9
(m2 4 ms3) p— (9)
Further, note that dy(z) < my < me + ms = |A| because of (6), (5) and (7).
Therefore, we know that vertex z sends at least one red edge to A. Consider any red

edge uz with u € A. Using (8) and (9), we get
[Ni(u) U N (2)] = [Ny (u) N (AUA{0})] + [Nk (2) \ Al + [{u, 2}
Zm2+2m3—m1+(m2+m3)%+2
1
> my + may + 2,

where for the last inequality we use the fact that 2mymgs + maoms +m2 > 2m? which
can be calculated from (4). So, we can apply Lemma 4 to find a red double star with
central edge uz, and are done.
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