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Abstract

The determination of the (in-)stability of the long-lived consensus problem
is a fundamental open problem in distributed systems. We concentrate on
the memoryless binary case with geodesic paths. For this case, we offer
a conjecture on the instability, measured by the parameter inst , exhibit
two classes of colourings which attain the conjectured bound, and improve
the known lower bounds for all colourings. We also introduce a related
parameter, winst , which measures the stability only for certain geodesics,
and for which we also prove lower bounds.
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1. Introduction

The consensus problem in distributed systems consists of the following:
given a set of values, each coming from a processor or sensor, decide on a
representative value, meaning the consensus of the given values. The long-
lived consensus problem consists of repeatedly solving related instances of
the consensus problem. Dolev and Rajsbaum [5] introduced the concept of
stability of long-lived consensus, where one wishes the representative values,
produced by an algorithm for a sequence of input instances, to change as few
times as possible (there might be some cost associated to a change). So the
question is how to choose the outputs in a way that they are stable in time.

IA short version [6] of the present paper has appeared in the LAGOS 2011 proceedings.
∗Corresponding author
Email addresses: cris@ime.usp.br (Cristina G. Fernandes), mstein@dim.uchile.cl

(Maya Stein)
1Partial support by CNPq 309657/2009-1 and 475064/2010-0.
2Support by Fondecyt 11090141 and Fapesp 05/54051-9.

Preprint submitted to Elsevier April 14, 2015



In the case with memory, the algorithm may use the value produced for
the previous instances in the sequence to decide on the value of the current
instance. This is not allowed in the so called memoryless case. See also [1].

We will consider binary-valued consensus, with the input sequences being
a geodesic path. The case with memory is completely solved in [5] and also,
for the memoryless case, some bounds for the minimum number of changes
are shown. Related work includes multi-valued consensus [3], binary and
ternary consensus with random walks instead of geodesic paths [2, 8], and
multi-valued consensus with oblivious paths (in which at most a certain
number of components change) [4].

We need a few definitions in order to properly state the problem. The
n-hypercube is Hn := {0, 1}n. Write 0n for (0, 0, . . . , 0), and similar. The ball
Bt(0

n) of radius t around 0n consists of all elements of Hn with at most t
entries identical to 1. In the same way, we define Bt(1

n).
A colouring of Hn is a function f : Hn → {0, 1}. We say that a colour-

ing f respectsBt(0
n) andBt(1

n) if f(x) = 0 for each x inBt(0
n) and f(x) = 1

for each x in Bt(1
n). Observe that if n < 2t + 1, the two balls Bt(0

n) and
Bt(1

n) intersect, and no colouring can respect Bt(0
n) and Bt(1

n). As we
are not interested in this case, we say t is valid (for n) if n ≥ 2t+ 1.

A geodesic P (in Hn) is a sequence (x0, x1, . . . , xn) with xi ∈ Hn for
i = 0, 1, . . . , n, so that there is a permutation (p1, . . . , pn) of (1, . . . , n) such
that the ℓth entry of xj differs from the ℓth entry of xj−1 if and only if j = pℓ.
We then say that P fixed the ℓth entry at time j.

We denote by inst(f, P ), for instability, the number of colour-jumps of P
in the colouring f , that is, the number of indices i where f(xi) ̸= f(xi−1).
Any such index i shall be called a jump of P (in f). Let inst(f) be the
maximum value of inst(f, P ) over all geodesics P .

The connection of these concepts and the memoryless consensus problem
in distributed systems is as follows. Each point of Hn represents a set of n
input values (one from each sensor). A colouring of Hn corresponds to an
assignment of a representative value for each possible set of input values.
We prefer colourings that respect the balls of a certain radius as the output
value should in some way be representative. A geodesic stands for a slowly
changing system of inputs (one sensor at a time), and its instability is the
number of changes of the representative value. We remark that, if one
considers arbitrary paths instead of geodesics, there is no bound on the
instability as the path might go back and forth between two points with a
different output value (see [5]).

Now, a colouring that respects Bt(0
n) and Bt(1

n) and has low instability
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is a good candidate for a consensus algorithm. One is therefore interested
in the lowest possible instability.

Problem 1.1 (Dolev & Rajsbaum [5]). Given n ∈ N, and t valid for n, find
the minimum value inst(n, t) for inst(f) over all colourings f of Hn that
respect Bt(0

n) and Bt(1
n).

Dolev and Rajsbaum [5] proved the following special cases: inst(n, t) ≥ 1
for n > 4t, inst(n, 0) = 1, inst(n, 1) = 3, and inst(2t + 1, t) = 2t + 1. We
establish a lower bound of ⌊ t−1

n−2t⌋+⌈ t−1
n−2t⌉+3 on inst(n, t) that holds for all

values of n and t ≥ 1 (cf. Theorem 4.1 (b)). The idea of the proof is using
a geodesic that visits the two balls alternately.

A similar lower bound holds for the related parameter winst(n, t), which
measures the maximum instability of a colouring considering only a special
class of geodesics, namely those that start or end next to one of the balls,
but in the opposite colour.

We consider the special case of n = 2t + 2, which is simpler, as every
point outside the balls is neighbouring simultaneously the two balls, and
so has neighbours in both colours. For t ≥ 2, we improve our bounds to
inst(2t + 2, t) ≥ winst(2t + 2, t) ≥ t + 3 (Theorem 4.2). The basic tool
for this result is Lemma 4.3, which serves for extending lower bounds for
winst for smaller values of t to larger values of t. This tool is generalised
for arbitrary values of n in Proposition 4.5. We apply Proposition 4.5 to
the case n = 2t+ 3 to obtain a lower bound for winst and inst which again
improves the ones given by Theorem 4.1.

As for upper bounds for inst , in [5] an example is given which shows that
inst(n, t) ≤ 2t + 1, and here, we provide more such examples (see below).
We conjecture that the bound 2t+ 1 is indeed the correct value.

Conjecture 1.2 (Main conjecture). Let n ∈ N, and t be valid for n. Then
inst(n, t) = 2t+ 1.

If one can solve Problem 1.1, it would be interesting to find all optimal
colourings, i.e., all colourings for which the bound inst(n, t) is attained. We
exhibit two new classes, maj t(k) and bkt , of colourings that have instability
exactly 2t + 1. The only earlier example (maj t(2t + 1) in our language) is
the one from [5].

The paper is organised as follows. In Section 2, we exhibit the two
new classes of colourings with instability 2t + 1. The parameter winst is
introduced and motivated in Section 3. In Section 4, we establish the new
lower bound on inst(n, t), and in Sections 4.2 and 4.3 we present better
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lower bounds for the cases n = 2t+2 and n = 2t+3 respectively. Section 5
contains some final remarks.

2. Candidates for optimal colourings

We present two classes of colourings that respect the balls Bt(0
n)

and Bt(1
n) and have instability 2t+ 1.

2.1. The majority colourings

For a positive odd value k, definemaj t(k) to be the colouring that assigns
to each point x ∈ Hn not in Bt(0

n)∪Bt(1
n) the colour that appears on the

majority of the first k entries of x. The balls Bt(0
n) and Bt(1

n) are coloured
canonically with 0 and 1, respectively.

For a positive even value k, define the auxiliary class maj ′t(k) as the
class of colourings f that assign to each point x outside Bt(0

n) and Bt(1
n)

(which are coloured canonically) the colour that appears on the majority of
the first k entries of x, if there is such a (strict) majority, and an arbitrary
colour if both colours appear equally often in the first k entries of x. We
say a colouring f in maj ′t(k) is symmetric if, for every x and y outside
Bt(0

n) ∪ Bt(1
n), f(x) ̸= f(y) whenever x and y, restricted to their first k

entries, are the complement of each other. Let maj t(k) be the class of all
symmetric colourings in maj ′t(k).

Note that, for even k, the class maj t(k) is non-empty. Indeed, we can
obtain a symmetric colouring f in maj ′t(k) in the following way. For all
points x ∈ Hk that have equally many 0’s and 1’s, and moreover start with
a 0, we assign any colour cx to all points outside Bt(0

n) ∪Bt(1
n) that start

with x. Then, we assign the complement colour 1− cx to all points outside
Bt(0

n) ∪ Bt(1
n) that start with the complement of x. The total number

of points of Hn coloured 0 in f equals the total number of points of Hn

coloured 1 (which is also true for maj t(k) when k is odd).
In what follows, we often abuse notation and, for a positive even value k,

write maj t(k) for an arbitrary element of maj t(k).

Proposition 2.1. Let k, t, n ∈ N, with 0 < k ≤ 2t + 1 ≤ n. Then
inst(maj t(k)) = 2t+ 1.

The proof of Proposition 2.1 splits into two parts: in Lemma 2.2 we show
that no geodesic jumps more than 2t+1 in any maj t(k), and in Lemma 2.3
we present a geodesic that jumps at least 2t+ 1 in any maj t(k).

Before we turn to these lemmas, let us remark that, for k > 2t + 1 and
odd, it is easy to find a geodesic that jumps k times in maj t(k). Indeed,
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we may start at the point (01)⌊n/2⌋0 and then at each step switch an entry,
from the first to the last. Each of the k first steps is a jump. This shows
that maj t(k), for k large and odd, has instability larger than 2t+ 1.

The remainder of this section is devoted to the proof of Proposition 2.1,
i.e., to Lemma 2.2 and Lemma 2.3. For a geodesic P = (x0, x1, . . . , xn−1, xn),
the path Q = (xn, xn−1, . . . , x1, x0) is also a geodesic, and is called the
reverse of P . Clearly, inst(f, P ) = inst(f,Q) for any colouring f .

Lemma 2.2. If 0 < k ≤ 2t+ 1 ≤ n, then inst(maj t(k)) ≤ 2t+ 1.

Proof. Suppose otherwise. Then there is a geodesic P = (x0, x1, x2, . . . , xn)
in Hn with inst(maj t(k), P ) ≥ 2t + 2. Let m be so that the mth jump
of P is the first jump that fixes one of the last n− k entries (as k < 2t+ 2,
there is such an m, 1 ≤ m ≤ n). Suppose that, among all geodesics as
above, P is chosen such that m = m(P ) is as large as possible. Our plan is
to modify P to a geodesic P ′ with at least 2t+2 jumps and m(P ′) > m(P ),
thus obtaining a contradiction.

Let i+ 1 be the first jump of P , and let ℓ be the (2t+ 2)nd jump of P .
We assume that maj t(k)(xℓ) = 1, and thus maj t(k)(xi) = 1. The other case
is analogous.

As ℓ is the (2t + 2)nd jump of P , there are t + 1 jumps j with j < ℓ
and maj t(k)(xj) = 0. Hence, P fixed (t+1) 0’s before time ℓ, and therefore
xℓ /∈ Bt(1

n). Thus, since maj t(k)(xℓ) = 1, the majority of the first k entries
of xℓ is not 0: it is 1 or k is even and xℓ has as many 0’s as 1’s in its first k
entries. We can use the same argument on the reverse of P to obtain that
xi /∈ Bt(1

n), and thus the majority of the first k entries of xi is 1 or k is even
and xi has as many 0’s as 1’s in its first k entries. Thus we showed that

the first k entries of xi contain at least as many 1’s as 0’s, (1)

and the same holds for xℓ.

Because maj t(k)(xi) = maj t(k)(xℓ) = 1, the first k entries of xi and
of xℓ are not the complement of each other. So, by (1), at least one entry
within the k first, say the first entry, is 1 in both xi and xℓ. This implies
that all xj with i ≤ j ≤ ℓ start with a 1.

Let S be the set of those of the first k entries of xi that do not change
in P between xi and xℓ. We have just seen that s := |S| ≥ 1. Let z1 be
obtained from xi by changing the first entry to 0, and for 1 < j ≤ s let zj

5



be obtained from zj−1 by changing another of the entries in S. Then

the first k entries of zs are the complement of the first k entries of xℓ.
(2)

Let h be the (2t + 1)st jump of P . Then maj t(k)(xh−1) = 1 and
maj t(k)(xh) = 0. There are t jumps j ≤ h − 1 with maj t(k)(xj) = 1,
each fixing a 1 distinct from the first entry. Thus in total xh and xℓ−1 have
at least (t + 1) 1’s, and cannot be in Bt(0

n). In the same way, we see that
xi+1 /∈ Bt(0

n).
Consider P ′ = (zs, zs−1, . . . , z1, xi, xi+1, . . . , xℓ, y0, y1, . . . , yn−s−ℓ+i−1),

where the yj ’s are arbitrarily chosen to complete P ′ to a geodesic. Note
that P ′ jumps at least 2t + 2 times, as it has the same jumps as P be-
tween xi and xℓ. We claim that

P ′ has a jump in its first s+ 1 steps. (3)

Then we are done because the first m+ 1 jumps of P ′ fix one of the first k
entries, contradicting our choice of P .

It remains to prove (3). As xi+1 /∈ Bt(0
n) and maj t(k)(xi+1) = 0, there

are at least as many 0’s as 1’s among the first k entries of xi+1. So, since
the first entry of xi is 1, but the first entry of z1 is 0, there are also at least
as many 0’s as 1’s among the first k entries of z1.

Now, as xi /∈ Bt(1
n), also z1 /∈ Bt(1

n). Hence, if the first k en-
tries of z1 contain more 0’s than 1’s, it follows that maj t(k)(z1) = 0.
As maj t(k)(xi)=1, the geodesic P ′ has the jump xi, which is as desired
for (3). So we may assume that the first k entries of z1 contain exactly as
many 0’s as 1’s. (It is because of this possibility that we add not only z1 but
also zs, . . . , z2 to P ′.) By (1) and (2), and by the definition of zs, it follows
that zs has at least as many 0’s as 1’s in its first k entries, and so at least
as many 0’s as z1 has. So, z1 /∈ Bt(1

n) implies that zs /∈ Bt(1
n) and hence,

maj t(k)(zs) = 0. This finishes the proof of (3), and thus the proof of the
lemma.

For the proof of the second lemma, and later on, the following definition
will turn out to be useful. We call a geodesic in Hn an m-geodesic if it starts
in a point of Hn which has exactly m entries equal to 1. (It then ends in a
point which has exactly m entries that equal 0.)

For even k ≤ 2t+1, the statement of the second lemma is slightly stronger
than we first claimed. Indeed, we present a geodesic that jumps 2t + 1
times for a subclass of maj ′t(k) larger than maj t(k). We say a colouring f
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in maj ′t(k) is k-defined if f(x) = f(y) whenever x and y coincide in the
first k entries, for every x and y outside Bt(0

n) ∪ Bt(1
n). Let maj t(k)

denote the set of all k-defined colourings in maj ′t(k) for which there is a
point coloured 1 which has exactly t + 1 entries equal to 1. Let us argue
that maj t(k) ⊆ maj t(k).

First, observe that if f is symmetric then f is k-defined. Indeed, consider
a point x in Hk with the same number of 1’s and 0’s, and its complement x̄.
As f is symmetric, f(xy) ̸= f(x̄z) for every y and z in Hn−k such that xy
and x̄z are not in Bt(0

n) ∪ Bt(1
n). Further, note that for every xy outside

Bt(0
n)∪Bt(1

n) there is a point x̄z outside Bt(0
n)∪Bt(1

n), namely x̄ȳ. Thus
f(xy) = f(xy′) for every y and y′ in Hn−k such that xy and xy′ are not in
Bt(0

n) ∪Bt(1
n).

Second, for k ≤ 2t+ 1 ≤ n, let us show that, for any maj t(k), there is a
point coloured 1 with exactly t+ 1 entries equal to 1. Consider the point

x = 1⌈k/2⌉0⌊k/2⌋1t+1−⌈k/2⌉0n−t−1−⌊k/2⌋.

Note that this point is well-defined, as ⌈k/2⌉ ≤ t + 1 and n ≥ 2t + 1 ≥
t + 1 + ⌊k/2⌋. Further, x has exactly t + 1 entries equal to 1. If k is odd,
then the majority of the first k entries is 1, and so x has colour 1. If k is
even, then there is a tie on the first k entries. Consider the point

y = 0k/21k/21t+1−k/20n−t−1−k/2.

Note that also y has exactly t + 1 entries equal to 1. By symmetry, one
of x, y has colour 1, and is thus the point we were looking for.

Lemma 2.3. If 0 < k ≤ 2t + 1 ≤ n, then inst(maj t(k)) ≥ 2t + 1 and, if k
is even, inst(maj t(k)) ≥ 2t+ 1.

Proof. Let f = maj t(k) if k is odd, and let f be an arbitrary colouring in
maj t(k) if k is even. We will prove the following stronger assertion.

For 0 < k ≤ 2t+1 ≤ n, there exists a (t+1)-geodesic P such
that

inst(f, P ) ≥ 2t+ 1

and the first point of P is coloured 1.

(4)

We shall prove (4) by using induction on t, keeping k fixed, but letting n
vary. More precisely, fix k > 0, then, at each step t, the assertion is shown
to hold for t if k ≤ 2t+1, and for all choices of n which satisfy the inequality
2t+ 1 ≤ n.
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We start the induction with t = ⌊k/2⌋, that is, k = 2t or k = 2t+1. Let x
be a point coloured 1 with exactly t+1 entries equal to 1, and exactly ⌊k/2⌋
0’s within the first k entries. Say x = 1t0t10n−2t−1. Consider the (t + 1)-
geodesic

P = (1t0t10n−2t−1, [1]

1t0t0n−2t, [0]

1t+10t−10n−2t, [1]

01t0t−10n−2t, [0]

01t+10t−20n−2t, [1]

021t0t−20n−2t, [0]

021t+10t−30n−2t, [1]

031t0t−30n−2t, [0]

. . .

0t1t0n−2t, [0]

0t1t0n−2t−11, [0]

0t1t0n−2t−212, [0]

. . .

0t1t01n−2t−1), [0].

Note that, within the first 2t+2 points in P , every second point lies in Bt(0
n)

and thus has colour 0. The first point is x, and thus has colour 1. The
remaining of the first 2t + 2 points are not in Bt(0

n) and have a majority
of 1’s on their first k entries, so they are coloured 1. Hence P jumps 2t+ 1
times within its first 2t+ 2 points, and is a geodesic as desired.

So, for the induction step, suppose that k ≤ 2t− 1. Then, n ≥ 2t+ 1 ≥
k + 2. Consider f on

H̃n := {x ∈ Hn : x(n− 1) = 0 and x(n) = 1},

and observe that this is equivalent to considering maj t−1(k−2) on Hn−2 for
odd k, or maj t−1(k−2) on Hn−2 for even k. Indeed, outside Bt(0

n)∪Bt(1
n),

the majority on the first k entries rules and, for even k, if there is a tie on
the first k entries, this still determines exactly one colour, and there is a
point coloured 1 with exactly t + 1 entries equal to 1, and exactly k/2 0’s
within the first k entries.
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Hence, by induction, we know that there exists a t-geodesic P̃ in Hn−2

that is as in (4) for k−2 and t−1. In particular, P̃ jumps at least 2(t−1)+1 =
2t−1 times. Abusing notation slightly, we shall consider P̃ as a path in H̃n.

Now we extend P̃ to a geodesic in Hn adding two more jumps. By (4),
we know that P̃ starts at a point y = (y(1), y(2), . . . , y(n − 2), 0, 1) with
f(y) = 1, and with exactly t + 1 entries equal to 1 (among these the
last entry). We add the points y′′ := (y(1), y(2), . . . , y(n− 2), 1, 0) and
y′ := (y(1), y(2), . . . , y(n− 2), 0, 0) to the beginning of P̃ and obtain a
geodesic P as desired. Indeed, y′ ∈ Bt(0

n) as y′ has exactly t entries equal
to 1, hence f(y′) = 0, and so we have our first extra jump. Note that y′′

has exactly as many 1’s as y (in particular, y′′ /∈ Bt(0
n)) and, moreover, y′′

has the same first k entries as y. Thus, f(y′′) = 1, and we have the second
extra jump, implying that P is as desired for (4).

2.2. The partition colourings

We present a second class of colourings, the colourings bkt , which respect
the balls Bt(0

n) and Bt(1
n) and have instability 2t + 1. Before that, we

define the auxiliary colouring aQj that will be used in the definition of bkt .
Let m, s, and t be such that m ≥ (s + 1)(t + 1). Let Q be a partition

of [m] into s+ 1 sets of size at least t+ 1 each. For j = 0, 1, let aQj be the
following colouring of Hn.

We define the colouring aQ0 by letting aQ0 (x) = 0 if and only if, in at
least one of the sets in Q, all entries are 0. As the sets in Q have size
at least t + 1, it is not difficult to see that aQ0 respects Bt(1

m) (because,
for aQ0 (x) = 0, at least t + 1 entries of x must be 0). Also, as Q has s + 1
sets, aQ0 respects Bs(0

m) (because, for aQ0 (x) = 1, point x must have at least
one entry 1 for each of the s+ 1 sets).

The second colouring, aQ1 , is defined by setting aQ1 (x) = 1 if and only if,
in at least one of the sets in Q, all entries are 1. Similarly as for aQ0 , we see
that aQ1 respects both Bs(1

m) and Bt(0
m).

Consider a geodesic P = (x0, x1, . . . , xm) in Hm. Note that, if i is a jump
of P in aQj , then for some set Q in Q we have that xℓ(q) = j for all q ∈ Q
either for ℓ = j− 1 or for ℓ = j, but not for both. We say that the jump i is
associated to this set Q. Thus there are at most two jumps in P associated
to the same set Q in Q. This implies that aQj jumps at most 2|Q| = 2(s+1)
times.

Now, let k, s, t, and n be such that k is odd, s ≥ −1, t = s+ (k + 1)/2,
and n ≥ (s+ 1)(t+ 1) + k. Note that k ≤ 2t+ 1 because s ≥ −1. Let Q be
a partition of [n − k] into s + 1 sets of size at least t + 1 each. (If s = −1,
then n = k and Q = ∅.) We shall define the colouring bkt = bkt (Q) using aQ0
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and aQ1 in Hn−k. We abuse notation and assume that aQj (y) = 1 − j if Q
or y is empty.

For each point x, if the majority of the first k entries of x is 1, then let
bkt (x) = aQ0 (x

′), where x′ is x without the first k entries. If the majority
of the first k entries of x is 0, then let bkt (x) = aQ1 (x

′). In both cases, we
sometimes abuse notation and write that bkt = aQj in x.

It is not difficult to see that bkt respects the balls Bt(0
n) and Bt(1

n).
Indeed, let us suppose the majority of the first k entries of some point x
is 1, and hence bkt = aQ0 (the other case is symmetric). If x has at most t
entries equal to 0, clearly no set inQ can only consist of 0’s, and so bkt (x) = 1.
On the other hand, if x has at most t 1’s, then x′ has at most t−(k+1)/2 = s
1’s and therefore, as |Q| = s+1, there is a set in Q that only consists of 0’s.
Thus bkt (x) = 0 in this case. Hence, in either case, bkt (x) is as desired.

Observe that, for t = 0 and k = 1, we have s = −1, and hence n = 1. In
this case, b10 = maj 0(1).

Proposition 2.4. Let k, t, n ∈ N be such that k is odd, k ≤ 2t + 1 and
n ≥ (t+ 1− k+1

2 )(t+ 1) + k = (t+1)(2t+1)−k(t−1)
2 . Then inst(bkt ) = 2t+ 1.

Proof. Let P be a geodesic in Hn. To prove that P jumps at most 2t + 1
times in btk, first note that at most k jumps of P are associated to its first k
entries. Second, note that P has at most two jumps associated to each set Q
in Q. Indeed, if P has one jump associated to Q while bkt = aQj , then P has

at most one more jump associated to Q while bkt = aQ1−j . Similarly, if P has

two jumps associated to Q while bkt = aQj , then P has no jumps associated

to Q while bkt = aQ1−j .

Also, it is not hard to find a geodesic in Hn that jumps 2t+1 times in bkt .
Consider a point x0 with (k+1)/2 1’s in the first k entries, and exactly one 1
in each of the sets in Q. Then x0 has exactly t+1 entries equal to 1. Take a
geodesic that starts in x0, and jumps k times by changing alternatively 1’s
to 0’s and 0’s to 1’s within the first k entries. After that, we have that
bkt = aQ1 . So we can jump twice per set Q in Q by changing all entries in Q
to 1 first, and then changing the unique entry in Q that started with a 1 to
a 0.

3. Well-ending geodesics and k-defined colourings

If we try to determine inst(f) for some given colouring f , in general it
is not necessary to calculate inst(f, P ) for all geodesics P . A geodesic P
that starts deep inside Bt(0

n), for instance, will jump at most as much as
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any geodesic P ′ we obtain from P by cutting off the first few steps, and
prolonging it arbitrarily at the end. So we may restrict our attention to
geodesics that start outside the ball Bt(0

n), or on its border.
In this section, we will introduce an even more restricted class of

geodesics, that are easier to handle, and might be useful for attacking Con-
jecture 1.2. We need some notation for this. Let f be some colouring of Hn.
We say f is a (t+ 1)-colouring of Hn if f respects Bt(0

n) and Bt(1
n) but f

does not respect Bt+1(0
n) and Bt+1(1

n). In particular, if f(0n) = 1 or
f(1n) = 0, then f is a 0-colouring of Hn. Note that every colouring of Hn

is a (t + 1)-colouring for a unique t. Now, let f be a (t + 1)-colouring. By
our definition of an m-geodesic above (before Lemma 2.3), a (t+1)-geodesic
starts in a point with exactly t+ 1 entries equal to 1, that is, right next to
the ball Bt(0

n).
If P is a geodesic whose first point is coloured 1 in f , or whose last

point is coloured 0 in f , we say P ends well (in f). Let winst(f) denote the
maximum value of inst(f, P ), taken over all well-ending (t+1)-geodesics P ,
where t is such that f is a (t+1)-colouring of Hn. In analogy to Problem 1.1,
we ask the following.

Problem 3.1. Given t valid for n, which is the smallest value winst(n, t)
such that winst(n, t) = winst(f) for some (t+ 1)-colouring f?

Observe that winst(f) ≤ inst(f) for every colouring f . Moreover,
maxt≤s≤(n−1)/2{winst(n, s)} ≤ inst(n, t) for all t valid for n.

Here we extend the definition of k-defined given in Subsection 2.1. Call
a colouring f k-defined3 if there are k indices such that f(x) = f(y) for
any two points x, y ∈ Hn \ (Bt(0

n) ∪ Bt(1
n)) that coincide in all entries

given by these k indices. A k-defined colouring that is not (k−1)-defined is
called strictly k-defined. For instance, maj t(k) is strictly k-defined and aQ0
is strictly n-defined.

Let t be valid for n. For the next lemma, let Fn(t) denote the set of all
strictly n-defined (t+ 1)-colourings of Hn, and let F<n−2t(t) denote the set
of all strictly k-defined (t+ 1)-colourings of Hn with 0 ≤ k < n− 2t.

Lemma 3.2. If winst(f ′) ≥ 2t′+1 for all t′ valid for n and all f ′ ∈ Fn(t′),
then winst(f) ≥ 2t+ 1 for all t valid for n and all f ∈ F<n−2t(t).

3 We remark that in [5, pg. 39], one-bit defined colourings are introduced. This defi-
nition differs from ours (for k = 1) as we canonically colour the balls Bt(0

n) and Bt(1
n).

For instance, majt(1) is 1-defined, but not one-bit defined.

11



This lemma might be used as a step towards a solution of Problem 1.1.
Indeed, if we could prove that winst(f) ≥ 2t+1 for every (t+1)-colouring f
that is strictly k-defined with k ≥ n− 2t, then Lemma 3.2 would assure this
bound holds for all colourings of Hn, and thus imply Conjecture 1.2. The
proof of a slightly more general version of Lemma 3.2 can be found in [7].

4. Lower bounds on inst(n, t) and winst(n, t)

4.1. The zig-zag bound

In this section, we prove lower bounds for inst(n, t) and winst(n, t). Re-
call that any lower bound on winst(f) also serves as a lower bound for
inst(f). We start with a bound for all values of n and valid t, which we
obtain from a zig-zag argument.

In Theorem 4.2 we will improve the bounds from Theorem 4.1 for the
special case n = 2t+ 2 and, in Corollaries 4.7 and 4.9, Theorem 4.1 will be
improved for n = 2t+ 3.

Theorem 4.1 (The zig-zag bound). Let n ∈ N and let t ≥ 0 be valid for n.
Then

(a) winst(n, t) ≥ ⌊ t
n−2t⌋+ ⌈ t

n−2t⌉+ 1,

(b) inst(n, t) ≥ ⌊ t−1
n−2t⌋+ ⌈ t−1

n−2t⌉+ 3, if t ≥ 1.

We remark that Theorem 4.1 (a) proves Conjecture 1.2 for t = 0 and
Theorem 4.1 (b) proves Conjecture 1.2 for t = 1. This has been shown
earlier in [5].

We dedicate the rest of this subsection to the proof of Theorem 4.1.

Proof of Theorem 4.1. Let f be a (t+ 1)-colouring with t ≥ 0. For (a), our
aim is to find a well-ending (t+ 1)-geodesic P that jumps at least ⌊ t

n−2t⌋+
⌈ t
n−2t⌉+ 1 times in f .
As f is a (t + 1)-colouring, there is a point x ∈ Hn that has exactly

(t + 1) 1’s or (t + 1) 0’s, and that is coloured 1 or 0, respectively. Say the
former holds for x (the other case is symmetric).

We let P start in x, then enter Bt(0
n), then go to Bt(1

n), come back to
Bt(0

n), go to Bt(1
n) again, etc., until P has used up all of its entries. For

example, if x = 1t+10n−t−1, we let P pass next through 1t0n−t and then
through 1t0t1n−2t, through 1t−(n−2t)0n−t1n−2t, through 1t−(n−2t)0t12n−4t,
and so on.
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We can do this until one of the following two things happens. Firstly,
coming from Bt(0

n), we might end in the complement of x with (t+ 1) 0’s
(just before reaching Bt(1

n)). This will happen exactly when n = ℓ(n− 2t)
for some odd value ℓ, which is the case if and only if n− 2t divides t. Then
we will have jumped at least ℓ times and

ℓ =
n

n− 2t
=

2t

n− 2t
+ 1 =

⌊
t

n− 2t

⌋
+

⌈
t

n− 2t

⌉
+ 1.

Secondly, on our way from Bt(1
n) to Bt(0

n), we might reach a point
of Hn \ (Bt(0

n) ∪ Bt(1
n)) which has no more unused 1’s. This happens if

and only if n−2t does not divide t. Then we have to return in the direction
of Bt(1

n) to end in the complement of x (if we are not already there). In
this case, we have jumped at least

1 + 2 ·
⌊
n− (n− 2t)

2(n− 2t)

⌋
+1 = 2 ·

⌊
t

n− 2t

⌋
+2 =

⌊
t

n− 2t

⌋
+

⌈
t

n− 2t

⌉
+1

times, because at least one jump is achieved during the n−2t steps (the first
step is a jump), then we get at least two jumps for every 2(n − 2t) steps,
and finally we jump at least once more in the last part of P when entering
Bt(1

n). Note that, by the construction of P , we have to end up in one of
the two situations just described. This completes the proof of (a).

For (b), the proof is similar, the difference being that we let P start inside
Bt(0

n), have x as its second point, then re-enter Bt(0
n), and then go on in

a zig-zag fashion as before. We will obtain two jumps in the first two steps
of P , at least one jump during the next n − 2t steps, and then two jumps
every 2(n− 2t) steps. Finally, we might ensure another jump depending on
whether n − 2 = ℓ(n − 2t) for some odd value ℓ or not. More precisely, if
n− 2 = ℓ(n− 2t) for some odd value ℓ, that is, if n− 2t divides t− 1, then
we get

ℓ+ 2 =
n− 2

n− 2t
+ 2 =

⌊
t− 1

n− 2t

⌋
+

⌈
t− 1

n− 2t

⌉
+ 3

jumps, and otherwise we also get

2 + 1 + 2 · ⌊n− 2− (n− 2t)

2(n− 2t)
⌋+ 1 =

⌊
t− 1

n− 2t

⌋
+

⌈
t− 1

n− 2t

⌉
+ 3

jumps, which is as desired. Clearly, we need here that t ≥ 1, because
otherwise we could not enter Bt(0

n) twice in the beginning.
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4.2. Better bounds for one strip

In this subsection we will concentrate on the case in which Hn contains,
besides the balls, only one ‘strip’ of points which all have the same number
of entries equal to 0 and equal to 1. That is, we treat the case n = 2t+ 2.

From Theorem 4.1, we have that inst(2t + 2, t) ≥ t + 2 for t ≥ 1, and
winst(2t+ 2, t) ≥ t+ 1. The following result improves these bounds.

Theorem 4.2. inst(2t+ 2, t) ≥ winst(2t+ 2, t) ≥ t+ 3 for all t ≥ 2.

We will prove Theorem 4.2 by combining the next two lemmas. The first
of these is a tool for extending bounds for small values of t to larger values
of t.

Lemma 4.3. Let y0, t0 and t ∈ N with t ≥ t0. If winst(2t0 +2, t0) ≥ y0 for
some t0 ≥ 0 then winst(2t+ 2, t) ≥ y0 + t− t0.

Proof. We proceed by induction on t. The base, for t = t0, follows directly
from the hypothesis of the lemma. For t > t0, consider a (t+1)-colouring f
of the hypercube Hn of dimension n = 2t+ 2.

Define a colouring g of the hypercube Hn−2 by assigning to each x′

in Hn−2 the value g(x′) = f(01x′). Then g is a t-colouring of Hn−2. Indeed,
any point of Hn−2 \ (Bt−1(0

n−2)∪Bt−1(1
n−2)) is a witness to this. We may

thus apply the induction hypothesis to obtain a well-ending t-geodesic P̃
in Hn−2 that jumps at least y0 + t − 1 − t0 times in g. Extending each
point x̃ of P̃ to the point 01x̃ of Hn, we obtain a path P ′ in Hn that jumps
at least y0 + t− 1− t0 times in f .

Let 01a and 01z be the first and last point of P ′ respectively. We ex-
tend P ′ to P by adding to its beginning the points 00a and 10a if g(01a) = 1,
and the points 11a and 10a otherwise. As we thus pass once more through
either Bt(0

n) or Bt(1
n), our extension P of P ′ jumps at least once more

than P ′, that is, y0 + t− t0 times in total. Clearly, P is a (t+ 1)-geodesic,
and so is its reverse, because n = 2t+2. Now at least one of the two, P or its
reverse, has to be well-ending, which completes the proof of the lemma.

The next lemma takes care of the base case t = t0 for Lemma 4.3.
Together with a previous upper bound of Dolev and Rajsbaum [5], it implies
that inst(2t + 2, t) = 2t + 1 for t = 0, 1, 2. So it confirms Conjecture 1.2
for n = 2t+ 2 and small values of t.

Lemma 4.4. winst(2t+ 2, t) ≥ 2t+ 1 for t = 0, 1, 2.
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Proof. The case t = 0 is trivial. For t = 1, let f be a 2-colouring of H4.
Note that there are two points x and y in H4 with exactly t+ 1 = 2 entries
equal to 1, differing in exactly two entries (that is, such that ||x− y||2 = 2),
and such that f(x) = f(y). For example, two of the three points 1100, 1010,
1001 must have the same colour in f . Now it is easy to construct a well-
ending 2-geodesic that starts in x, goes through B1((1− f(x))4), through y,
and again through B1((1− f(x))4) and which jumps at least three times.

For t = 2, let f be a 3-colouring of H6. Observe that we only need to find
three points x, y, z, all with exactly t+ 1 = 3 entries equal to 1, such that
||x − y||2 = ||y − z||2 = 2, ||x − z||2 = 4, and f(x) = f(y) = f(z). Indeed,
if we have such points, it is easy to construct a well-ending 3-geodesic that
starts in x and jumps at least five times.

The proof of the existence of x, y and z is a case analysis. By rearranging
the order of the entries, we may assume the points x = 111000 and y =
110100 have the same colour j in f . If one among x′ = 100110, y′ = 100101,
and z′ = 010101 has colour j, then we may take it as our third point z. If
not, then x′, y′, and z′ all have colour 1 − j and form a triple of points as
desired.

Proof of Theorem 4.2. The statement is an immediate consequence of
Lemma 4.3 and Lemma 4.4 for t = 2.

4.3. The extension method for more strips

We now extend the results from the previous subsection to the gen-
eral case, when we have more ‘strips’. The main result of this subsection,
Proposition 4.5, is an extension of Lemma 4.3 for this case. We also include
a version of the result for the parameter inst (Proposition 4.5 (b)).

Proposition 4.5. Let n, y0, t0 ∈ N and let t ≥ t0 be valid for n. Suppose
n− 2t divides t− t0.

(a) If winst(n, t0) ≥ y0, then winst(n, t) ≥ y0 + 2 t−t0
n−2t .

(b) If inst(n, t0) ≥ y0, then inst(n, t) ≥ y0 + 2 t−t0
n−2t .

Clearly, Proposition 4.5 can be used in the same way as Lemma 4.3 to
improve Theorem 4.1. We will do so for part (a) of Theorem 4.1, which
deals with the parameter winst . The next lemma takes care of the base
case t = t0 for Proposition 4.5 (a), for the case n = 2t+ 3. It also confirms
Conjecture 1.2 for n = 5 and t = 1. The proof of Proposition 4.5 will be
presented at the end of this subsection.
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Lemma 4.6. winst(5, 1) ≥ 3, winst(7, 2) ≥ 4, and winst(9, 3) ≥ 4.

Proof. We start by proving that winst(5, 1) ≥ 3. Let f be a 2-colouring
of H5. We say a point x in H5 is good (in f) if there is a j = j(x) ∈ {0, 1}
so that x has exactly two entries equal to j and f(x) = j. Also, we say that
two points x and y in H5 are neighbours if ||x− y||2 = 2 and they have the
same number of entries equal to 1.

First of all, we observe that, if there are two good points x and y that
are neighbours, then it is easy to construct a well-ending 2-geodesic that
jumps the required number of times (in the same way as in the proof of
Lemma 4.4). So we may assume that

if x and y are good in f , then they are not neighbours. (5)

Second, we may assume that

if x is good in f then its complement is not good in f . (6)

Indeed, if a point x and its complement are good in f , then we may obtain
a well-ending 2-geodesic as desired by starting out at x, going to B1(j(x)

5),
then going to B1((1− j(x))5), and then ending at the complement of x.

As f is a 2-colouring, there is a point w that is good in f . By symmetry,
we can assume that w = 00011. Now, because of (5), at most one of the
points 11000, 10100, and 01100 is good. So, one of them (in fact, two of
them), say 11000, has colour 0 in f . Consider the 2-geodesic

(00011[1], 00001[0], 01001[0], 11001[?], 11000[0], 11100[1]).

Its third point has colour 0 because of (5), and its last point has colour 1
because of (6). So this well-ending 2-geodesic only jumps less than three
times if f(11001) = 0.

But in this case, we use (5) to see that f(11010) = 1 and f(10010) = 0,
and consider the well-ending 2-geodesic

(00011[1], 00010[0], 10010[0], 11010[1], 11000[0], 11100[1]),

that jumps 4 > 3 times. This concludes the proof that winst(5, 1) ≥ 3.
The idea for the other cases is similar to the one used in the proof of

Lemma 4.3. We reduce the problem to 5 entries, obtaining as above a
‘partial’ geodesic that jumps at least three times, and extend it so that it
jumps at least four times, as needed.

For winst(7, 2), let f be a 3-colouring of H7. Let w be a point in H7
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with exactly 3 entries equal to j and such that f(w) = j. By symmetry, we
may assume that the first two entries of w are 01. Define a colouring g of
the hypercube H5 by assigning to each x′ in H5 the value g(x′) = f(01x′).
Then g is a 2-colouring ofH5. Indeed, the point w

′ inH5 such that w = 01w′

serves as a witness to this.
As winst(5, 1) ≥ 3, there is a well-ending 2-geodesic P̃ in H5 that jumps

at least three times in g. Extending each point x′ of P̃ to the point 01x′

of H7, we obtain a path P ′ in H7 that jumps at least three times in f . If P̃
jumps exactly three times, then it ends well in both of its ends. Thus we
can extend P ′ in one of its ends, passing by the neighbouring ball, so that it
jumps once more, and the result will be a well-ending 3-geodesic as desired.
If, on the other hand, P̃ jumps at least four times, then we just extend it in
any way so that the resulting 3-geodesic is still well-ending. This completes
the proof that winst(7, 2) ≥ 4. The proof that winst(9, 3) ≥ 4 is analogous,
so we omit it.

Corollary 4.7. Let t ≥ 1. Then winst(2t+ 3, t) ≥ 2t+(t mod 3)
3 + 2.

Proof. We obtain the bound by applying Proposition 4.5 to n = 2t+ 3 and
the base cases obtained from Lemma 4.6: t0 = 1 with y0 = 3, t0 = 2 with
y0 = 4, and t0 = 3 with y0 = 4.

This bound improves by one the bound from Theorem 4.1 (a) for
n = 2t+ 3 and t mod 3 = 0 or 1, and by two for t mod 3 = 2.

Lemma 4.8. inst(7, 2) ≥ 5 and inst(9, 3) ≥ 5.

Proof. We first show that that inst(9, 3) ≥ 5. Let f be a 4-colouring of
H9. Let w be a point in H9 with exactly 4 entries equal to j and such that
f(w) = j. By symmetry, we may assume that the first two entries of w are
01. Define a colouring g of the hypercube H7 by assigning to each x′ in H7

the value g(x′) = f(01x′). Then g is a 3-colouring of H7. Indeed, the point
w′ in H7 with w = 01w′ serves as a witness to this.

As winst(7, 2) ≥ 4 by Lemma 4.6, there is a well-ending 3-geodesic P̃
in H7 that jumps at least four times in g. Extending each point x′ of P̃ to
the point 01x′ of H9, we obtain a path P ′ in H9 that jumps at least four
times in f . As P̃ ends well in one of its ends, we can extend P̃ there, entering
and exiting the neighbouring ball, so that it jumps at least once more, and
the result is a geodesic. This completes the proof that inst(9, 3) ≥ 5.

To prove that inst(7, 2) ≥ 5, we use a similar argument and the fact that
winst(5, 1) ≥ 3 by Lemma 4.6. Now, we distinguish three cases, namely
whether P̃ jumps exactly 3 times, exactly 4 times, or at least 5 times. In
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the latter case, we only need to extend P̃ to a geodesic in H7, and in the
case that P̃ jumps exactly 4 times, we extend it as above at its well-ending
end. In the first case, when P̃ jumps exactly three times, it has to end well
in both its endpoints. Thus we may extend P̃ at both ends to obtain a
geodesic in H7 that jumps five times.

Corollary 4.9. Let t ≥ 2 be such that t mod 3 ̸= 1. Then

inst(2t+ 3, t) ≥ 2t+ (t mod 3)

3
+ 3.

Proof. We obtain the bound by applying Proposition 4.5 to n = 2t+ 3 and
the base cases obtained from Lemma 4.8: t0 = 2 and 3 with y0 = 5.

This bound improves by one the bound from Theorem 4.1 (b) for
n = 2t+ 3 and t mod 3 ̸= 1.

The rest of this section is dedicated to the proof of Proposition 4.5.

Proof of Proposition 4.5. We first show (a). We proceed by induction on
i = i(n, t) := t−t0

n−2t . The base, for i = 0 (i.e., t = t0), follows directly from
the hypothesis of the lemma. For i > 0, consider a (t+1)-colouring f of the
hypercube Hn.

As f is a (t+1)-colouring, there is an x in Hn with exactly t+1 entries
equal to f(x). As t is valid for n, we know that x has at least t entries equal
to 1−f(x). So, as n−2t ≤ t−t0 ≤ t, we may assume that x = 0n−2t1n−2tx′,
where x′ ∈ Hn′ for n′ := n− 2(n− 2t).

Define a colouring g of the hypercube Hn′ by assigning to each x′′ in Hn′

the value g(x′′) = f(0n−2t1n−2tx′′). Then g is a (t′ + 1)-colouring of Hn′ ,
where t′ := t − (n − 2t). Indeed, g respects the balls Bt′(0

n′
) and Bt′(1

n′
)

because f respects the balls Bt(0
n) and Bt(1

n), and the point x′ has exactly
t− (n− 2t) + 1 = t′ + 1 entries equal to g(x′) = f(x).

Note that t′ is valid for n′ and that n′ − 2t′ = n − 2t divides t′ − t0.
Moreover,

i(n′, t′) =
t− t0 − (n− 2t)

n− 2t
= i(n, t)− 1.

So, we may apply the induction hypothesis to Hn′ and g to obtain a well-
ending (t′ + 1)-geodesic P̃ in Hn′ that jumps at least y0 + 2 t−t0

n−2t − 2 times

in g. We suppose that the first point ã of P̃ is such that g(ã) = 1. In other
words, we suppose that P̃ ends well in its first point. The other case is
analogous.
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Extending each point x′′ of P̃ to the point 0n−2t1n−2tx′′ of Hn, we
obtain a path P ′ in Hn that jumps at least y0 + 2 t−t0

n−2t − 2 times in f .

Let z = 0n−2t1n−2tz′ be the last point of P ′. If f(z) = 0, then we extend
P ′ to P by adding to its end the points

0n−2t−11n−2t+1z′,
0n−2t−1101n−2t−1z′,
0n−2t−11021n−2t−2z′,
. . .
0n−2t−110n−2tz′,
10n−2t−210n−2tz′,
120n−2t−310n−2tz′,
. . .
1n−2t0n−2tz′.

As we thus pass once through Bt(1
n), and then through Bt(0

n), our
geodesic P jumps at least two times more than P ′.

On the other hand, if f(z) = 1, then we extend P ′ to P by adding to its
end the points

0n−2t+11n−2t−1z′,
0n−2t+21n−2t−2z′,
0n−2t+31n−2t−3z′,
. . .
02n−4t−11z′,
102n−4t−21z′,
1202n−4t−31z′,
. . .
1n−2t0n−2t−11z′,
1n−2t0n−2tz′.

We passed once through Bt(0
n), and then through Bt(1

n), thus again
our geodesic P has at least two more jumps than P ′.

So, in either case, P jumps at least y0 + 2 t−t0
n−2t times in total. By con-

struction, P is a well-ending (t+ 1)-geodesic, as desired.

For (b), we proceed similarly. For the induction step, we consider the
restriction g of f in the hypercubeHn′ , with n′ := n−2(n−2t), which assigns
to each x′′ in Hn′ the value g(x′′) = f(0n−2t1n−2tx′′). Then t′ := t− (n−2t)
is valid for n′, and the induction hypothesis yields a geodesic P̃ in Hn′ that
jumps at least y0+2 t−t0

n−2t −2 times in g. As above, we turn P̃ into a path P ′
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in Hn.
Now, if P ′ ends in a point with less than t entries equal to 0 or less

than t entries equal to 1, then it is not difficult to change the beginning and
the ending of P ′ in a way that the obtained path starts and ends in points
with at least t 0’s and at least t 1’s, and still jumps at least as often in f
as P ′ does. So assume P ′ starts and ends in points with at least t 0’s and
at least t 1’s. Now, depending on the colour of the last point 0n−2t1n−2tz
on P ′, we extend P ′ to a geodesic P by first going to Bt(0

n) and then to
Bt(1

n), or first going to Bt(1
n) and then to Bt(0

n), but in either case ending
in 1n−2t0n−2tz. This gives two more jumps, as desired.

5. Final remarks

We considered the memoryless case of the binary-valued consensus prob-
lem, previously studied by Dolev and Rajsbaum [5]. A measure of the min-
imum instability of consensus functions that are representative is studied.
Namely, the value of the parameter inst(n, t) is presented and bounds for
its value are derived, in general and for specific cases. The problem of de-
termining the precise value of the parameter inst(n, t) for arbitrary values
of n and t seems quite challenging.

A conjecture that inst(n, t) = 2t+ 1 for every (valid) t is presented and
a few results that point towards the conjecture are proved. As there are
examples that show that inst(n, t) ≤ 2t+1, good lower bounds on inst(n, t)
are of interest. Some of the results we presented allow to derive better
lower bounds for arbitrary t from better lower bounds for small values of t.
Stronger versions of these results, as well as improvements on the lower
bounds for small values of t, would help to close the gap between the best
lower bound and the conjectured value.
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