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The question

G: a finitely generated group, Q a G-SFT.
Recall from earlier lectures (N. Auburn) the following definitions:

Definition
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The question

G: a finitely generated group, Q a G-SFT.
Recall from earlier lectures (N. Auburn) the following definitions:

Definition
Q is a weakly aperiodic SFT if for all w € Q, [G : Stab(w)] = c0. Q is a
strongly aperiodic SFT if for all w € Q, Stab(w) = {e}.

Questions
o Which groups G admit weakly aperiodic SFT?

o Which groups G admit strongly aperiodic SFT?
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Previous results:

e 72: recall N. Auburn mini-course overview on Wang's conjecture,
Berger, Robinson, Kari-Culik.
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Previous results:

e 72: recall N. Auburn mini-course overview on Wang's conjecture,
Berger, Robinson, Kari-Culik.

@ Also N. Auburn mini course: hyperbolic plane: Goodman-Strauss.

@ Block and Weinberger, Mozes (certain classes of Lie groups -
semisimple, simple..)

@ Weakly aperiodic SFT for Heisenberg and sol: Nowak and
Weinberger, using cohomological techniques.
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Ascending HNN Extensions of Z*

A group G is called an ascending HNN extension of Z? if there exists a
matrix

a11  a12
A= , ajj € 7
a1 ax

with det A # 0 and

G = (x,y,2|ly,z] = 1,x Tyx = y™1 2% xax = y27%2)
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Ascending HNN Extensions of Z*

Examples of these groups:
0 73, A= 1.
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Ascending HNN Extensions of Z*

Examples of these groups:
0 73, A= 1.
@ The discrete Heisenberg group:

1
G= 0 X, ¥, Z€7
0

O = X
=< N
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Ascending HNN Extensions of z°

Equivalently the discrete Heisenberg group is a semi-direct product

72 x4 7 with matrix A = G 2):

(xy,2) (<, y,2) = (x+ Xy +y, 2+ 2+ %)
=(x+xX,(y+y,z+ 72 +x/))

= (D) () ron)

In particular: If |det A| = 1 then the semi-direct product Z? x 4 Z (using
notation (x, (v, z))) is an ascending HNN extension of Z? with matrix A
and the identification

x=(1,0,0) y =(0,1,0) z=(0,0,1).
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So we have in particular:
o 73 for A= Id.

@ The discrete Heisenberg group, for A = (1 (1)>

@ The group sol, for A = G i)
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So we have in particular:
o 73 for A= Id.

@ The discrete Heisenberg group, for A = (1 (1)>

@ The group sol, for A = G i)
Results:

Theorem

(S, Schraudner, Ugarcovici) Every ascending HNN extension of 7.2 admits
a weakly aperiodic SFT.
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So we have in particular:
o 73 for A= Id.

@ The discrete Heisenberg group, for A = (1 (1)>

@ The group sol, for A = G i)

Results:
Theorem

(S, Schraudner, Ugarcovici) Every ascending HNN extension of 7.2 admits
a weakly aperiodic SFT.

Theorem

(S, Schraudner, Ugarcovici) The discrete Heisenberg group admits a
strongly aperiodic SFT.
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Both results use the same framework: construct G SFT with well chosen
(in particular strongly aperiodic SFT) projective dynamics on the <y,z >
subgroup.
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Both results use the same framework: construct G SFT with well chosen
(in particular strongly aperiodic SFT) projective dynamics on the <y,z >
subgroup.

The first result is almost for free using this framework. Second
construction is very particular to the Heisenberg group.
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Both results use the same framework: construct G SFT with well chosen
(in particular strongly aperiodic SFT) projective dynamics on the <y,z >
subgroup.

The first result is almost for free using this framework. Second
construction is very particular to the Heisenberg group.

Projective subdynamics: Johson and Madden, Schraudner, Schraudner and
Pavlov.
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Cayley graphs

Recall that to define a G SFT we can define nearest neighbor rules by
choosing a symmetric set S of generators and constructing a Wang tiling

of the S Cayley graph, Gs, of G.
For any matrix A with det A # 0 we consider the generator set
S = {x*1,y*1 21}, The unit cube for Gs is the following:

Red edges correspond to the generators y and z. Blue edges correspond to
the generator x, the stable element.
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Proof of first result:

Let Q2 be a Z? SFT, and let W2 be a Wang tiling of the
“standard” Cayley graph of Z2.
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First theorem: trivial extensions

Proof of first result:

Let Q2 be a Z? SFT, and let W2 be a Wang tiling of the
“standard” Cayley graph of Z2.

Define W, a collection of Wang tiles for Gg, by taking the trivial extension
of the wang tiles in Wy2:
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First theorem: trivial extensions

Proof of first result:

Let Q2 be a Z? SFT, and let W2 be a Wang tiling of the
“standard” Cayley graph of Z2.

Define W, a collection of Wang tiles for Gg, by taking the trivial extension
of the wang tiles in Wy2:

0 r
ra r3
r &
0

The r; are the labels for a Wang tile from W2, 0 is a symbol that does
not appear in the alphabet of >.
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First theorem: trivial extensions

Let Q be the G-SFT obtained by the Wang tilings with W. If Q2 is
non-empty, then so is Q.
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Let Q be the G-SFT obtained by the Wang tilings with W. If Q2 is

non-empty, then so is Q.

Now suppose that €252 is a strongly aperiodic SFT.
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First theorem: trivial extensions

Let Q be the G-SFT obtained by the Wang tilings with W. If Q2 is
non-empty, then so is Q.

Now suppose that €252 is a strongly aperiodic SFT.

If Stab(w) has finite index for some w € Q, then Stab(w)N <y, z ># {e},
a contradiction.
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First theorem: trivial extensions

Fix a non-invertible matrix A, and let G be the associated ascending HNN
extension of Z2.
Question

Can we characterize 7.2 SFT Q2 for which there exists a non-trivial G
extension?
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extension of Z2.

Question

Can we characterize 7.2 SFT Q2 for which there exists a non-trivial G
extension?

For example: both Robinson and Kari-Culik tilings have non-trivial
Heisenberg extensions. Both constructions rely on particular lack of
directional mixing in the SFT and its relation to the matrix A.
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First theorem: trivial extensions

Fix a non-invertible matrix A, and let G be the associated ascending HNN
extension of Z2.
Question

Can we characterize 7.2 SFT Q2 for which there exists a non-trivial G
extension?

For example: both Robinson and Kari-Culik tilings have non-trivial
Heisenberg extensions. Both constructions rely on particular lack of
directional mixing in the SFT and its relation to the matrix A.

More on this later.
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Semi-direct products and the second theorem

Now consider only matrices A for which | det A| = 1, namely semi-direct
products Z? x4 Z.
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Semi-direct products and the second theorem

Now consider only matrices A for which | det A| = 1, namely semi-direct
products Z? x4 Z.

In this case we have more structure we can describe in the Cayley graph:

(17 (Oa 0)) : (07 (Y7 Z)) =

(0.(v.2))
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Semi-direct products and the second theorem

Now consider only matrices A for which | det A| = 1, namely semi-direct
products Z? x4 Z.

In this case we have more structure we can describe in the Cayley graph:
(1.0.0)-0.0:2) = (1.4 (%))

(0.(v.2))
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Semi-direct products and the second theorem

Now consider only matrices A for which | det A| = 1, namely semi-direct
products Z? x4 Z.

In this case we have more structure we can describe in the Cayley graph:

(1,(0,0))- (0,(y,2)) = (1’ A @)
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Semi-direct products and the second theorem

The S-Cayley graph of the Heisenberg group (left labeled):
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The slope of the blue arrows are a function of the y-coordinate of the
vertex:

(1,(0,0)) (x, (v, 2)) = (x + 1, (y,z + y))
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Semi-direct products and the second theorem

More importantly for us:
(2’ (07 0)) (X7 (y7 Z)) = (X + 27 (y, zZ+ 2y))

Namely: if we look at every other < y,z > coset, the blue arrow is skewed

by 2y in the z direction.
This feature allows us to construct non-trivial extensions of the Robinson

tilings that leads to a strongly aperiodic SFT.
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Semi-direct products and the second theorem

More importantly for us:
(2’ (07 0)) (X7 (y7 Z)) = (X + 27 (y, zZ+ 2y))

Namely: if we look at every other < y,z > coset, the blue arrow is skewed

by 2y in the z direction.

This feature allows us to construct non-trivial extensions of the Robinson
tilings that leads to a strongly aperiodic SFT.

This idea is present in a Z3 construction of Kari and Culik: does not work
verbatim in Heisenberg case: information transmitted by skewing can be

conflicting.
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Semi-direct products and the second theorem

Recall the Robinson tilings (N. Auburn mini-course):
Robinson’s tiles:

ot1% o|!% 0°]|d lo||% p°[|d p° % p°| %
0070 Pyio9 Podyd ¥To] Cobd] oo Podof
PO L1224 R2[]d R[]2d 2[4 (22 (2] 22
L1 Bya ol Poayd D¥% 2] 204 [242] oy o!
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Semi-direct products and the second theorem

Robinson’s tilings have a hierarchical structure:
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Semi-direct products and the second theorem

We construct two types of G-extensions of the Robinson Wang tiles:
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Semi-direct products and the second theorem

We construct two types of G-extensions of the Robinson Wang tiles:

(1,c or nc)
r
r3 ra
rn &
(0, c or nc)
(0, c or nc)
X
* *
*
(1, c or nc)
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Semi-direct products and the second theorem

Steps of the proof:

@ The associated Heisenberg SFT Q is non-empty.
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Steps of the proof:

@ The associated Heisenberg SFT Q is non-empty.

@ Any point w € €2 can be periodic only under elements of the form
(a,0,0) for some a € Z, a # 0.
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Semi-direct products and the second theorem

Steps of the proof:

@ The associated Heisenberg SFT Q is non-empty.

@ Any point w € €2 can be periodic only under elements of the form
(a,0,0) for some a € Z, a # 0.

@ Use counter techniques to kill this periodicity.
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Semi-direct products and the second theorem

Steps of the proof:

@ The associated Heisenberg SFT Q is non-empty.

@ Any point w € €2 can be periodic only under elements of the form
(a,0,0) for some a € Z, a # 0.

@ Use counter techniques to kill this periodicity.

This is the Kari-Culik Z3 construction framework.
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xtending special points
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xtending special points
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We can also define a Heisenberg Wang tile by using the fundamental
domain of the quotient space H/G where H is the real-Heisenberg group
(see for example Bertazzon) which coincides topologically with the unit
cube [0, 1]* with some identifications.

In particular, the action of I “skews” the cube as it is translated:

{a+1,b,c+b+1)
(a+1,b+1 c+b+1)

N Jab.ct)

{a,b+1,c+1)

{a+1,b,c+b) 'S

(a,b+1.c)
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Wang tiles as usual for lattice groups

and the skewing causes each translate C~ to intersect more than 6 other
translates:

(a,b+1,c-1)
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Wang tiles as usual for lattice groups

Thus Each H-Wang tile requires 8 labels:

Notice that the partitions are those induced by the action of A = (} (1)>

on the x, z-faces.
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