Automorphisms of symbolic dynamical systems

Tom Meyerovitch

Ben Gurion University of the Negev
www.math.bgu.ac.il/~mtom

December, 2014
Throughout, \mathbb{G}, \mathbb{H} will (mostly) be infinite countable groups.
Throughout, G, H will (mostly) be infinite countable groups.

Homomorphisms:

$$\text{Hom}(G, H) = \left\{ \alpha \in H^G : \alpha(g_1)\alpha(g_2) = \alpha(g_1g_2) \right\}$$
Throughout, G, H will (mostly) be infinite countable groups.

Homomorphisms:

$$\text{Hom}(G, H) = \left\{ \alpha \in H^G : \alpha(g_1)\alpha(g_2) = \alpha(g_1g_2) \right\}$$

X will be a compact (Hausdorff) topological space (usually metrizable). $\text{Homeo}(X)$ - The group of self homeomorphisms of X.
Topological dynamical system, G-flows

- Throughout, G, H will (mostly) be infinite countable groups.
- Homomorphisms:

$$\text{Hom}(G, H) = \{ \alpha \in H^G : \alpha(g_1)\alpha(g_2) = \alpha(g_1g_2) \}$$

- X will be a compact (Hausdorff) topological space (usually metrizable). $\text{Homeo}(X)$ - The group of self homeomorphisms of X.
- A G-topological dynamical system (TDS) or G-flow is a pair (X, T) where X is a compact (Hausdorff) topological space and $T \in \text{Hom}(G, \text{Homeo}(X))$ is homomorphism of the group G into the group of homeomorphisms.
Throughout, \mathbb{G}, \mathbb{H} will (mostly) be infinite countable groups.

Homomorphisms:

$$\text{Hom}(\mathbb{G}, \mathbb{H}) = \left\{ \alpha \in \mathbb{H}^\mathbb{G} : \alpha(g_1)\alpha(g_2) = \alpha(g_1g_2) \right\}$$

X will be a compact (Hausdorff) topological space (usually metrizable). $\text{Homeo}(X)$ - The group of self homeomorphisms of X.

A \mathbb{G}-topological dynamical system (TDS) or \mathbb{G}-flow is a pair (X, T) where X is a compact (Hausdorff) topological space and $T \in \text{Hom}(\mathbb{G}, \text{Homeo}(X))$ is homomorphism of the group \mathbb{G} into the group of homeomorphisms. We write $T_g(x)$ instead of $T(g)(x)$.
Throughout, \mathbb{G}, \mathbb{H} will (mostly) be infinite countable groups.

Homomorphisms:

$$\text{Hom}(\mathbb{G}, \mathbb{H}) = \left\{ \alpha \in \mathbb{H}^\mathbb{G} : \alpha(g_1)\alpha(g_2) = \alpha(g_1g_2) \right\}$$

X will be a compact (Hausdorff) topological space (usually metrizable). $\text{Homeo}(X)$ - The group of self homeomorphisms of X.

A \mathbb{G}-topological dynamical system (TDS) or \mathbb{G}-flow is a pair (X, T) where X is a compact (Hausdorff) topological space and $T \in \text{Hom}(\mathbb{G}, \text{Homeo}(X))$ is homomorphism of the group \mathbb{G} into the group of homeomorphisms. We write $T_g(x)$ instead of $T(g)(x)$. We have: $T_g(T_h(x)) = T_{gh}(x)$.

Throughout, \mathbb{G}, \mathbb{H} will (mostly) be infinite countable groups.

Homomorphisms:

$$\text{Hom}(\mathbb{G}, \mathbb{H}) = \left\{ \alpha \in \mathbb{H}^\mathbb{G} : \alpha(g_1)\alpha(g_2) = \alpha(g_1g_2) \right\}$$

X will be a compact (Hausdorff) topological space (usually metrizable). $\text{Homeo}(X)$ - The group of self homeomorphisms of X.

A \mathbb{G}-topological dynamical system (TDS) or \mathbb{G}-flow is a pair (X, T) where X is a compact (Hausdorff) topological space and $T \in \text{Hom}(\mathbb{G}, \text{Homeo}(X))$ is homomorphism of the group \mathbb{G} into the group of homeomorphisms. We write $T_g(x)$ instead of $T(g)(x)$. We have: $T_g(T_h(x)) = T_{gh}(x)$.

Tom Meyerovitch (BGU)
(\(X, T\)) is topologically isomorphic or topologically conjugate to
(\(Y, S\)) (denoted \((X, T) \cong (Y, S)\)) if there exists a homeomorphism
\(\Phi : X \to Y\) so that \(\Phi \circ T_g = S_g \circ \Phi\) for all \(g \in G\).
Isomorphism, factor maps, subsystems, subactions

- \((X, T)\) is \textbf{topologically isomorphic} or \textbf{topologically conjugate} to \((Y, S)\) (denoted \((X, T) \cong (Y, S)\)) if there exists a homeomorphism \(\Phi : X \to Y\) so that \(\Phi \circ T_g = S_g \circ \Phi\) for all \(g \in G\).

- \((Y, S)\) is a \textbf{topological factor} of \((X, T)\) if there exists a continuous surjective \(\Phi : X \to Y\) so that \(\Phi \circ T_g = S_g \circ \Phi\) for all \(g \in G\).
• \((X, T)\) is **topologically isomorphic** or **topologically conjugate** to \((Y, S)\) (denoted \((X, T) \cong (Y, S)\)) if there exists a homeomorphism \(\Phi : X \to Y\) so that \(\Phi \circ T_g = S_g \circ \Phi\) for all \(g \in G\).

• \((Y, S)\) is a **topological factor** of \((X, T)\) if there exists a continuous surjective \(\Phi : X \to Y\) so that \(\Phi \circ T_g = S_g \circ \Phi\) for all \(g \in G\).

• A **subsystem** of \((X, T)\) is a \(G\)-flow \((Y, T)\) where \(Y \subset X\) is closed (topologically) and \(T\)-invariant \((T_g(Y) = Y\) for all \(g \in G\)).
(\(X, T\)) is topologically isomorphic or topologically conjugate to (\(Y, S\)) (denoted (\(X, T\)) \(\cong\) (\(Y, S\))) if there exists a homeomorphism \(\Phi : X \to Y\) so that \(\Phi \circ T_g = S_g \circ \Phi\) for all \(g \in G\).

(\(Y, S\)) is a topological factor of (\(X, T\)) if there exists a continuous surjective \(\Phi : X \to Y\) so that \(\Phi \circ T_g = S_g \circ \Phi\) for all \(g \in G\).

A subsystem of (\(X, T\)) is a \(G\)-flow (\(Y, T\)) where \(Y \subset X\) is closed (topologically) and \(T\)-invariant (\(T_g(Y) = Y\) for all \(g \in G\)).

If \(\alpha \in \text{Hom}(H, G)\) is a group homomorphism and (\(X, T\)) is a \(G\)-flow, we can get an \(H\)-flow (\(X, T^{(\alpha)}\)) by \(T^{(\alpha)}_h := T^{(\alpha(h))}.\) When \(\alpha\) is injective, we say (\(X, T^{(\alpha)}\)) is a subaction of (\(X, T\)).
Recall that a \mathbb{G}-action (X, T) is \textit{expansive} if there exists $\epsilon > 0$ so that for any distinct $x, y \in X$ there exists $g \in \mathbb{G}$ so that $d(T_g x, T_g y) > \epsilon$.

An example for an expansive \mathbb{Z}-action: A hyperbolic automorphism of the torus $\mathbb{R}^2/\mathbb{Z}^2$, $T(x, y) = (y, x+y)$ is an expansive \mathbb{Z}-action.

Obviously, if a \mathbb{G}-flow (X, T) has an expansive subaction, then (X, T) is itself expansive.

Mañé's theorem [Man]: If \mathbb{Z} acts on compact metric X via an expansive T, then X has finite topological dimension. Furthermore, if (X, T) is also minimal (has no proper subsystems) then X has zero topological dimension.
Recall that a G-action (X, T) is **expansive** if there exists $\epsilon > 0$ so that for any distinct $x, y \in X$ there exists $g \in G$ so that $d(T_g x, T_g y) > \epsilon$.

- **An example** for an expansive \mathbb{Z}-action: A hyperbolic automorphism of the torus $\mathbb{R}^2/\mathbb{Z}^2$, $T(x, y) = (y, x + y)$ is an expansive \mathbb{Z}-action.
Recall that a G-action (X, T) is **expansive** if there exists $\epsilon > 0$ so that for any distinct $x, y \in X$ there exists $g \in G$ so that $d(T_g x, T_g y) > \epsilon$.

- **An example** for an expansive \mathbb{Z}-action: A hyperbolic automorphism of the torus $\mathbb{R}^2/\mathbb{Z}^2$, $T(x, y) = (y, x + y)$ is an expansive \mathbb{Z}-action.

- Obviously, if a G-flow (X, T) has an expansive subaction, then (X, T) is itself expansive.
Recall that a G-action (X, T) is **expansive** if there exists $\epsilon > 0$ so that for any distinct $x, y \in X$ there exists $g \in G$ so that $d(T_g x, T_g y) > \epsilon$.

- **An example** for an expansive \mathbb{Z}-action: A hyperbolic automorphism of the torus $\mathbb{R}^2/\mathbb{Z}^2$, $T(x, y) = (y, x + y)$ is an expansive \mathbb{Z}-action.

- Obviously, if a G-flow (X, T) has an expansive subaction, then (X, T) is itself expansive.

- **Mañé’s theorem** [Man]: If \mathbb{Z} acts on compact metric X via an expansive T, then X has finite topological dimension.
Recall that a \mathbb{G}-action (X, T) is expansive if there exists $\epsilon > 0$ so that for any distinct $x, y \in X$ there exists $g \in \mathbb{G}$ so that $d(T_g x, T_g y) > \epsilon$.

- **An example** for an expansive \mathbb{Z}-action: A hyperbolic automorphism of the torus $\mathbb{R}^2/\mathbb{Z}^2$, $T(x, y) = (y, x + y)$ is an expansive \mathbb{Z}-action.

- Obviously, if a \mathbb{G}-flow (X, T) has an expansive subaction, then (X, T) is itself expansive.

- **Mañé’s theorem** [Man]: If \mathbb{Z} acts on compact metric X via an expansive T, then X has finite topological dimension. Furthermore, if (X, T) is also minimal (has no proper subsystems) then X has zero topological dimension.
Recall that a G-action (X, T) is **expansive** if there exists $\epsilon > 0$ so that for any distinct $x, y \in X$ there exists $g \in G$ so that $d(T_g x, T_g y) > \epsilon$.

- **An example** for an expansive \mathbb{Z}-action: A hyperbolic automorphism of the torus $\mathbb{R}^2/\mathbb{Z}^2$, $T(x, y) = (y, x + y)$ is an expansive \mathbb{Z}-action.

- Obviously, if a G-flow (X, T) has an expansive subaction, then (X, T) is itself expansive.

- **Mañé’s theorem** [Man]: If \mathbb{Z} acts on compact metric X via an expansive T, then X has finite topological dimension. Furthermore, if (X, T) is also **minimal** (has no proper subsystems) then X has zero topological dimension.
The \mathbb{G}-full shift over alphabet Σ: Σ^G where Σ is a finite set, and the topology on Σ^G is the product topology.
The G-full shift over alphabet Σ: Σ^G where Σ is a finite set, and the topology on Σ^G is the product topology. The open sets are unions of cylinders:

$$[a]_F := \{ y \in X : y|_F = a \}, a \in \Sigma^F, F \subset \subset G.$$
\(G\)-subshifts and shifts of finite type (SFTs)

- The \(G\)-full shift over alphabet \(\Sigma\): \(\Sigma^G\) where \(\Sigma\) is a finite set, and the topology on \(\Sigma^G\) is the product topology. The open sets are unions of cylinders:

\[[a]_F := \{ y \in X : y|_F = a \} , a \in \Sigma^F, F \subset \subset G. \]

- The shift \(\sigma\) is given by:
The \mathbb{G}-full shift over alphabet Σ: $\Sigma^\mathbb{G}$ where Σ is a finite set, and the topology on $\Sigma^\mathbb{G}$ is the product topology. The open sets are unions of cylinders:

$$[a]_F := \{ y \in X : y|_F = a \}, a \in \Sigma^F, F \subset \subset \mathbb{G}.$$

The shift σ is given by: $(\sigma_g(x))_h := x_{g^{-1}h}$
The \mathbb{G}-full shift over alphabet Σ: $\Sigma^\mathbb{G}$ where Σ is a finite set, and the topology on $\Sigma^\mathbb{G}$ is the product topology. The open sets are unions of cylinders:

$$[a]_F := \{ y \in X : y|_F = a \} , a \in \Sigma^F, F \subset\subset \mathbb{G}.$$

The shift σ is given by: $(\sigma_g(x))_h := x_{g^{-1}h}$ (check that this is indeed a \mathbb{G}-flow!)
The \mathbb{G}-full shift over alphabet Σ: $\Sigma^\mathbb{G}$ where Σ is a finite set, and the topology on $\Sigma^\mathbb{G}$ is the product topology. The open sets are unions of cylinders:

$$[a]_F := \{y \in X : y|_F = a\}, a \in \Sigma^F, F \subset \subset \mathbb{G}.$$

The shift σ is given by: $(\sigma_g(x))_h := x_{g^{-1}h}$ (check that this is indeed a \mathbb{G}-flow!)

A \mathbb{G}-subshift (X, σ) is a subsystem of some \mathbb{G}-full-shift. $X \subset \Sigma^\mathbb{G}$ is closed and shift invariant.
G-subshifts and shifts of finite type (SFTs)

- The G-full shift over alphabet Σ: Σ^G where Σ is a finite set, and the topology on Σ^G is the product topology. The open sets are unions of cylinders:

$$[a]_F := \{y \in X : y|_F = a\}, \ a \in \Sigma^F, F \subset \subset G.$$

- The shift σ is given by: $(\sigma_g(x))_h := x_{g^{-1}h}$ (check that this is indeed a G-flow!)

- A G-subshift (X, σ) is a subsystem of some G-full-shift. $X \subset \Sigma^G$ is closed and shift invariant.

- **Exercise:** A G-flow (X, T) is isomorphic to a G-subshift if and only if T is expansive and X is a totally disconnected metrizable space.
The \mathcal{G}-full shift over alphabet Σ: $\Sigma^\mathcal{G}$ where Σ is a finite set, and the topology on $\Sigma^\mathcal{G}$ is the product topology. The open sets are unions of cylinders:

\[[a]_F := \{ y \in X : y|_F = a \} , a \in \Sigma^F, F \subset \subset \mathcal{G}. \]

The shift σ is given by: $(\sigma_g(x))_h := x_{g^{-1}h}$ (check that this is indeed a \mathcal{G}-flow!)

A \mathcal{G}-subshift (X, σ) is a subsystem of some \mathcal{G}-full-shift. $X \subset \Sigma^\mathcal{G}$ is closed and shift invariant.

Exercise: A \mathcal{G}-flow (X, T) is isomorphic to a \mathcal{G}-subshift if and only if T is expansive and X is a totally disconnected metrizable space.
Subshifts of finite type (SFTs)

Exercise: Any subsystem of \((\Sigma^G, \sigma)\) is of the form

\[
X = \left\{ x \in \Sigma^G : \sigma_g(x)|_F \notin \mathcal{F} \quad \forall g \in G, \ F \subset G \right\},
\]

\[
\mathcal{F} \subset \bigcup_{F \subset \subset G} \Sigma^F
\]
Exercise: Any subsystem of \((\Sigma^G, \sigma)\) is of the form

\[X = \left\{ x \in \Sigma^G : \sigma_g(x)|_F \notin \mathcal{F} \quad \forall g \in G, \quad F \subset G \right\},\]

\[\mathcal{F} \subset \bigcup_{F \subset \subset G} \Sigma^F,\]

A subshift is of finite type (SFT) if it can be given by a finite list \(\mathcal{F}\) of forbidden patterns.
Subshifts of finite type (SFTs)

- **Exercise:** Any subsystem of \((\Sigma^G, \sigma)\) is of the form

\[
X = \left\{ x \in \Sigma^G : \sigma_g(x)|_F \notin \mathcal{F} \ \forall g \in G, \ F \subset G \right\},
\]

\[
\mathcal{F} \subset \bigcup_{F \subset \subset G} \Sigma^F
\]

- A subshift is **of finite type (SFT)** if it can be given by a finite list \(\mathcal{F}\) of forbidden patterns.
- A \(\mathbb{Z}\)-subshift is of finite type iff it has **local product structure**:
Subshifts of finite type (SFTs)

- **Exercise:** Any subsystem of \((\Sigma^G, \sigma)\) is of the form
 \[
 X = \left\{ x \in \Sigma^G : \sigma_g(x)|_F \notin \mathcal{F} \forall g \in G, \ F \subset G \right\},
 \]
 \[
 \mathcal{F} \subset \bigcup_{F \subset \subset G} \Sigma^F,
 \]
 where \(\mathcal{F}\) is a finite list of forbidden patterns.

- A subshift is of finite type (SFT) if it can be given by a finite list \(\mathcal{F}\) of forbidden patterns.

- A \(\mathbb{Z}\)-subshift is of finite type iff it has local product structure: There exists \(\epsilon > 0\) such that for all \(x, y \in X\) with \(d(x, y) < \epsilon\) there is a unique \(z \in X\), (denoted by \([x, y]\)) such that \(d(\sigma^n(x), \sigma^n(z)) < \epsilon\) and \(d(\sigma^{-n}(y), \sigma^{-n}(z)) < \epsilon\) for all \(n \in \mathbb{Z}_+\).
Subshifts of finite type (SFTs)

- **Exercise:** Any subsystem of \((\Sigma^\mathbb{G}, \sigma)\) is of the form

\[
X = \left\{ x \in \Sigma^\mathbb{G} : \sigma_g(x)|_F \notin \mathcal{F} \quad \forall g \in \mathbb{G}, \quad F \subset \mathbb{G} \right\},
\]

\[
\mathcal{F} \subset \bigcup_{F \subset \mathbb{G}} \Sigma^F
\]

- A subshift is of finite type (SFT) if it can be given by a finite list \(\mathcal{F}\) of forbidden patterns.

- A \(\mathbb{Z}\)-subshift is of finite type iff it has local product structure: There exists \(\epsilon > 0\) such that for all \(x, y \in X\) with \(d(x, y) < \epsilon\) there is a unique \(z \in X\), (denoted by \([x, y]\)) such that \(d(\sigma^n(x), \sigma^n(z)) < \epsilon\) and \(d(\sigma^{-n}(y), \sigma^{-n}(z)) < \epsilon\) for all \(n \in \mathbb{Z}_+\).

- **Exercise:** A \(\mathbb{G}\)-subshift \((X, \sigma)\) is an SFT iff it is not a countable intersection of strictly decreasing sequence of subshifts:
Subshifts of finite type (SFTs)

- **Exercise:** Any subsystem of \((\Sigma^G, \sigma)\) is of the form
 \[
 X = \left\{ x \in \Sigma^G : \sigma_g(x)|_F \notin \mathcal{F} \ \forall g \in G, \ F \subset G \right\},
 \]

 \[
 \mathcal{F} \subset \bigcup_{F \subset G} \Sigma^F
 \]

- A subshift is of finite type (SFT) if it can be given by a finite list \(\mathcal{F}\) of forbidden patterns.

- A \(\mathbb{Z}\)-subshift is of finite type iff it has local product structure: There exists \(\varepsilon > 0\) such that for all \(x, y \in X\) with \(d(x, y) < \varepsilon\) there is a unique \(z \in X\), (denoted by \([x, y]\)) such that \(d(\sigma^n(x), \sigma^n(z)) < \varepsilon\) and \(d(\sigma^{-n}(y), \sigma^{-n}(z)) < \varepsilon\) for all \(n \in \mathbb{Z}_+\).

- **Exercise:** A \(G\)-subshift \((X, \sigma)\) is an SFT iff it is not a countable intersection of strictly decreasing sequence of subshifts: Whenever \(X = \bigcap_{n=1}^{\infty} X_n, X_{n+1} \subset X_n\) and \((X_n, \sigma)\) are subshifts then \(X_{n+1} = X_n\) for all sufficiently large \(n\)'s.
Subshifts of finite type (SFTs)

- **Exercise:** Any subsystem of \((\Sigma^G, \sigma)\) is of the form
 \[X = \left\{ x \in \Sigma^G : \sigma_g(x)|_F \not\in \mathcal{F} \forall g \in G, \ F \subset G \right\}, \]
 \[\mathcal{F} \subset \bigcup_{F \subset \subset G} \Sigma^F, \]

- A subshift is **of finite type (SFT)** if it can be given by a finite list \(\mathcal{F}\) of forbidden patterns.

- A \(\mathbb{Z}\)-subshift is of finite type iff it has **local product structure:** There exists \(\epsilon > 0\) such that for all \(x, y \in X\) with \(d(x, y) < \epsilon\) there is a unique \(z \in X\), (denoted by \([x, y]\)) such that \(d(\sigma^n(x), \sigma^n(z)) < \epsilon\) and \(d(\sigma^{-n}(y), \sigma^{-n}(z)) < \epsilon\) for all \(n \in \mathbb{Z}_+\).

- **Exercise:** A \(G\)-subshift \((X, \sigma)\) is an SFT iff it is not a countable intersection of strictly decreasing sequence of subshifts: Whenever \(X = \bigcap_{n=1}^{\infty} X_n, X_{n+1} \subset X_n\) and \((X_n, \sigma)\) are subshifts then \(X_{n+1} = X_n\) for all sufficiently large \(n\)'s.
Some examples for G-SFTs

- Take a finite symmetric $S \subset G \setminus \{1\}$, and consider the Cayley graph G_S whose vertex set is G.
Some examples for G-SFTs

- Take a finite symmetric $S \subset G \setminus \{1\}$, and consider the **Cayley graph** G_S whose vertex set is G.
- Identify each subset of G with its indicator function, which is a point in $\{0, 1\}^G$.

Some examples for \mathbb{G}-SFTs

- Take a finite symmetric $S \subset \mathbb{G} \setminus \{1\}$, and consider the Cayley graph \mathcal{G}_S whose vertex set is \mathbb{G}.

- Identify each subset of \mathbb{G} with its indicator function, which is a point in $\{0, 1\}^\mathbb{G}$. The collocation of independent sets in \mathcal{G}_S is a \mathbb{G}-SFT ("hard core models").
Some examples for G-SFTs

- Take a finite symmetric $S \subset G \setminus \{1\}$, and consider the Cayley graph G_S whose vertex set is G.
- Identify each subset of G with its indicator function, which is a point in $\{0,1\}^G$. The collocation of independent sets in G_S is a G-SFT ("hard core models").
- For any $n \in \mathbb{N}$ the collection of n-colorings of G_S is an SFT.
Some examples for G-SFTs

- Take a finite symmetric $S \subset G \setminus \{1\}$, and consider the Cayley graph G_S whose vertex set is G.
- Identify each subset of G with its indicator function, which is a point in $\{0, 1\}^G$. The collocation of independent sets in G_S is a G-SFT ("hard core models").
- For any $n \in \mathbb{N}$ the collection of n-colorings of G_S is an SFT.
- The collection of ordered perfect matchings in G_S can be viewed as an SFT ("dimer models").
We denote by $\text{Aut}(X, T)$ the group of automorphisms of a \mathbb{G}-flow (X, T).
The automorphism group of a G-flow

- We denote by $\text{Aut}(X, T)$ the group of automorphisms of a G-flow (X, T).
- $\phi \in \text{Aut}(X, T)$ if $\phi : X \rightarrow X$ is a homeomorphism such that $T_g \circ \phi = \phi \circ T_g$ for all $g \in G$.

Exercise: For a countable group G, the automorphism group of an expansive G-action is always finite or countable.
We denote by $\text{Aut}(X, T)$ the group of automorphisms of a \mathbb{G}-flow (X, T).

$\phi \in \text{Aut}(X, T)$ if $\phi : X \to X$ is a homeomorphism such that $T_g \circ \phi = \phi \circ T_g$ for all $g \in \mathbb{G}$.

Exercise: For a countable group \mathbb{G}, the automorphism group of an expansive \mathbb{G}-action is always finite or countable.
The automorphism group of a \mathbb{G}-flow

- We denote by $Aut(X, T)$ the group of automorphisms of a \mathbb{G}-flow (X, T).
- $\phi \in Aut(X, T)$ if $\phi : X \to X$ is a homeomorphism such that $T_g \circ \phi = \phi \circ T_g$ for all $g \in \mathbb{G}$.
- **Exercise:** For a countable group \mathbb{G}, the automorphism group of an expansive \mathbb{G}-action is always finite or countable.
- Recall: By Curtis Hedlund Lyndon for any subshift $X \subset A^\mathbb{G}$ and any $\phi \in Aut(X, \sigma)$ there exists a finite $F \subset \mathbb{G}$ and “sliding block code” $\Psi : A^F \to A$ so that $\phi(x)_g = \Psi(\sigma_g(x)|_F)$.
The automorphism group of a \mathbb{G}-flow

- We denote by $\text{Aut}(X, T)$ the group of automorphisms of a \mathbb{G}-flow (X, T).
- $\phi \in \text{Aut}(X, T)$ if $\phi : X \to X$ is a homeomorphism such that $T_g \circ \phi = \phi \circ T_g$ for all $g \in \mathbb{G}$.
- **Exercise:** For a countable group \mathbb{G}, the automorphism group of an expansive \mathbb{G}-action is always finite or countable.
- **Recall:** By Curtis Hedlund Lyndon for any subshift $X \subset A^\mathbb{G}$ and any $\phi \in \text{Aut}(X, \sigma)$ there exists a finite $F \subset \mathbb{G}$ and “sliding block code” $\Psi : A^F \to A$ so that $\phi(x)_g = \Psi(\sigma_g(x)|_F)$. This is just an explicit way of saying: ϕ is continuous and commutes with σ_g.

Tom Meyerovitch (BGU)
Automorphisms of symbolic dynamical system
December, 2014 8 / 20
(Some of the) Big questions about $Aut(X, \sigma)$

For a given subshift or class of subshifts, what can we say about $Aut(X, \sigma)$ as a group? Almost-commutative? Almost-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...

What do properties of the group G say about properties of $Aut(X, \sigma)$ and vice versa? What do dynamical properties of (X, σ) say about group-theoretic properties of $Aut(X, \sigma)$? How does $Aut(X, \sigma)$ act on (X, σ)? What are the $Aut(X, \sigma)$-invariant closed subsets? How does $Aut(X, \sigma)$ act on σ-invariant closed sets? How does $Aut(X, \sigma)$ act on σ-invariant measures? What are the $Aut(X, \sigma)$-invariant measures? $Aut(\{1, 2, 3\} \mathbb{Z}, \sigma) \sim = Aut(\{1, 2\} \mathbb{Z}, \sigma)$?
(Some of the) Big questions about $Aut(X, \sigma)$

- For a given subshift or class of subshifts, what can we say about $Aut(X, \sigma)$ as a group?
(Some of the) Big questions about $\text{Aut}(X, \sigma)$

- For a given subshift or class of subshifts, what can we say about $\text{Aut}(X, \sigma)$ as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...

- What do properties of the group G say about properties of $\text{Aut}(X, \sigma)$ and vice versa?

- What do dynamical properties of (X, σ) say about group-theoretic properties of $\text{Aut}(X, \sigma)$?

- How does $\text{Aut}(X, \sigma)$ act on (X, σ)? What are the $\text{Aut}(X, \sigma)$-invariant closed subsets? How does $\text{Aut}(X, \sigma)$ act on σ-invariant closed sets? On σ-invariant measures? What are the $\text{Aut}(X, \sigma)$-invariant measures? $\text{Aut}(\{1, 2, 3\} \mathbb{Z}, \sigma) \sim = \text{Aut}(\{1, 2\} \mathbb{Z}, \sigma)$?
(Some of the) Big questions about $Aut(X, \sigma)$

- For a given subshift or class of subshifts, what can we say about $Aut(X, \sigma)$ as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...

- What do properties of the group G say about properties of $Aut(X, \sigma)$ and vice versa?
(Some of the) Big questions about $\text{Aut}(X, \sigma)$

- For a given subshift or class of subshifts, what can we say about $\text{Aut}(X, \sigma)$ as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...

- What do properties of the group G say about properties of $\text{Aut}(X, \sigma)$ and vice versa?

- What do dynamical properties of (X, σ) say about group-theoretic properties of $\text{Aut}(X, \sigma)$?
(Some of the) Big questions about $Aut(X, \sigma)$

- For a given subshift or class of subshifts, what can we say about $Aut(X, \sigma)$ as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...

- What do properties of the group \mathbb{G} say about properties of $Aut(X, \sigma)$ and vice versa?

- What do dynamical properties of (X, σ) say about group-theoretic properties of $Aut(X, \sigma)$?

- How does $Aut(X, \sigma)$ act on (X, σ)?
(Some of the) Big questions about $Aut(X, \sigma)$

- For a given subshift or class of subshifts, what can we say about $Aut(X, \sigma)$ as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...
- What do properties of the group \mathbb{G} say about properties of $Aut(X, \sigma)$ and vice versa?
- What do dynamical properties of (X, σ) say about group-theoretic properties of $Aut(X, \sigma)$?
- How does $Aut(X, \sigma)$ act on (X, σ)? What are the $Aut(X, \sigma)$-invariant closed subsets?
(Some of the) Big questions about \(\text{Aut}(X, \sigma) \)

- For a given subshift or class of subshifts, what can we say about \(\text{Aut}(X, \sigma) \) as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...
- What do properties of the group \(G \) say about properties of \(\text{Aut}(X, \sigma) \) and vice versa?
- What do dynamical properties of \((X, \sigma)\) say about group-theoretic properties of \(\text{Aut}(X, \sigma) \)?
- How does \(\text{Aut}(X, \sigma) \) act on \((X, \sigma)\)? What are the \(\text{Aut}(X, \sigma) \)-invariant closed subsets? How does \(\text{Aut}(X, \sigma) \) act on \(\sigma \)-invariant closed sets?
(Some of the) Big questions about $Aut(X, \sigma)$

- For a given subshift or class of subshifts, what can we say about $Aut(X, \sigma)$ as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...
- What do properties of the group G say about properties of $Aut(X, \sigma)$ and vice versa?
- What do dynamical properties of (X, σ) say about group-theoretic properties of $Aut(X, \sigma)$?
- How does $Aut(X, \sigma)$ act on (X, σ)? What are the $Aut(X, \sigma)$-invariant closed subsets? How does $Aut(X, \sigma)$ act on σ-invariant closed sets? On σ-invariant measures? What are the $Aut(X, \sigma)$-invariant measures?
For a given subshift or class of subshifts, what can we say about $\text{Aut}(X, \sigma)$ as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...

What do properties of the group \mathbb{G} say about properties of $\text{Aut}(X, \sigma)$ and vice versa?

What do dynamical properties of (X, σ) say about group-theoretic properties of $\text{Aut}(X, \sigma)$?

How does $\text{Aut}(X, \sigma)$ act on (X, σ)? What are the $\text{Aut}(X, \sigma)$-invariant closed subsets? How does $\text{Aut}(X, \sigma)$ act on σ-invariant closed sets? On σ-invariant measures? What are the $\text{Aut}(X, \sigma)$-invariant measures?

$\text{Aut}({1, 2, 3}^\mathbb{Z}, \sigma) \cong \text{Aut}({1, 2}^\mathbb{Z}, \sigma)$?
Rule of thumb

If the dynamical system \((X,\sigma)\) is "sufficiently chaotic", \(\text{Aut}(X,\sigma)\) is "a big group" in an algebraic sense.

If the dynamical system \((X,\sigma)\) is "sufficiently degenerate", \(\text{Aut}(X,\sigma)\) is "a small group".

(More on this expected in talks by Bryna Kra and Samuel Petite)
If the dynamical system \((X, \sigma)\) is "sufficiently chaotic", \(\text{Aut}(X, \sigma)\) is "a big group" in an algebraic sense.
If the dynamical system \((X, \sigma)\) is “sufficiently chaotic”, \(\text{Aut}(X, \sigma)\) is “a big group” in an algebraic sense.

If the dynamical system \((X, \sigma)\) is “sufficiently degenerate”, \(\text{Aut}(X, \sigma)\) is “a small group”.

(More on this expected in talks by Bryna Kra and Samuel Petite)
Rule of thumb

- If the dynamical system \((X, \sigma)\) is “sufficiently chaotic”, \(\text{Aut}(X, \sigma)\) is “a big group” in an algebraic sense.
- If the dynamical system \((X, \sigma)\) is “sufficiently degenerate”, \(\text{Aut}(X, \sigma)\) is “a small group”. (More on this expected in talks by Bryna Kra and Samuel Petite)
Rule of thumb

- If the dynamical system \((X, \sigma)\) is “sufficiently chaotic”, \(\text{Aut}(X, \sigma)\) is “a big group” in an algebraic sense.
- If the dynamical system \((X, \sigma)\) is “sufficiently degenerate”, \(\text{Aut}(X, \sigma)\) is “a small group”. (More on this expected in talks by Bryna Kra and Samuel Petite)
Let G be a group.

- **Conjugation**: For $g, h \in G$ $g^h := hgh^{-1}$.
Let G be a group.

- **Conjugation:** For $g, h \in G$ $g^h := hgh^{-1}$.

- A subgroup $H \triangleleft G$ is **normal** if $gHg^{-1} = H$ for all $g \in G$, denoted $H \triangleleft G$.

Exercise: $\text{Aut}(X, T) = C(T, G)$, inside the group $\text{Homeo}(X)$.

The Center of G: $Z(G) := C(G)$.

Exercise: If (X, T) is a G-flow and T is a faithful action, then $Z(G)$ embeds in $\text{Aut}(X, T)$.

If G acts on X via T, $\text{stab}_T(x) := \{g \in G : T^g(x) = x\}$.

Exercise: $\text{stab}_T(T^g(x)) = g[\text{stab}_T(x)]g^{-1}$.

Tom Meyerovitch (BGU)
Automorphisms of symbolic dynamical systems
December, 2014 11 / 20
Let G be a group.

- **Conjugation**: For $g, h \in G$ $g^h := hgh^{-1}$.

- A subgroup $H \triangleleft G$ is **normal** if $gHg^{-1} = H$ for all $g \in G$, denoted $H \triangleleft G$. A subgroup H is normal if and only there exists a homomorphism $\varphi : G \to G_0$ so that $H = \text{Ker} \varphi$.

Exercise: $\text{Aut}(X, T) = C(TG)$, inside the group $\text{Homeo}(X)$.

The Center of G: $Z(G) := C(G)$.

Exercise: If (X, T) is a G-flow and T is a faithful action, then $Z(G)$ embeds in $\text{Aut}(X, T)$.

If G acts on X via T, $\text{stab}_T(x) := \{g \in G : Tg(x) = x\}$.

Exercise: $\text{stab}_T(Tg(x)) = g[\text{stab}_T(x)]g^{-1}$.

Tom Meyerovitch (BGU)
Let G be a group.

- **Conjugation**: For $g, h \in G$ $g^h := hgh^{-1}$.

- A subgroup $H \subset G$ is *normal* if $gHg^{-1} = H$ for all $g \in G$, denoted $H \triangleleft G$. A subgroup H is normal if and only there exists a homomorphism $\varphi : G \rightarrow G_0$ so that $H = \text{Ker}\varphi$.

- The **Centralizer** of $S \subset G$: $C(S) := \{g \in G : gs = sg \ \forall s \in S\}$.

Let G be a group.

- **Conjugation**: For $g, h \in G$, $g^h := hgh^{-1}$.

- A subgroup $H \subset G$ is **normal** if $gHg^{-1} = H$ for all $g \in G$, denoted $H \triangleleft G$. A subgroup H is normal if and only if there exists a homomorphism $\varphi : G \to G_0$ so that $H = \text{Ker} \varphi$.

- The **Centralizer** of $S \subset G$: $C(S) := \{g \in G : gs = sg \ \forall s \in S\}$.

- **Exercise**: $\text{Aut}(X, T) = C(T_G)$, inside the group $\text{Homeo}(X)$.

Let G be a group.

- **Conjugation**: For $g, h \in G$ $g^h := hgh^{-1}$.
- A subgroup $H \triangleleft G$ is normal if $gHg^{-1} = H$ for all $g \in G$, denoted $H \triangleleft G$. A subgroup H is normal if and only if there exists a homomorphism $\varphi : G \to G_0$ so that $H = \text{Ker} \varphi$.
- The Centralizer of $S \subset G$: $C(S) := \{g \in G : gs = sg \ \forall s \in S\}$.
- Exercise: $\text{Aut}(X, T) = C(T_G)$, inside the group $\text{Homeo}(X)$.
- The Center of G: $Z(G) := C(G)$.
Let \mathbb{G} be a group.

- **Conjugation**: For $g, h \in \mathbb{G}$, $g^h := hgh^{-1}$.

- A subgroup $\mathbb{H} \triangleleft \mathbb{G}$ is normal if $g\mathbb{H}g^{-1} = \mathbb{H}$ for all $g \in \mathbb{G}$, denoted $\mathbb{H} \triangleleft \mathbb{G}$. A subgroup \mathbb{H} is normal if and only there exists a homomorphism $\varphi : \mathbb{G} \to \mathbb{G}_0$ so that $\mathbb{H} = \text{Ker} \varphi$.

- The **Centralizer** of $S \subset \mathbb{G}$: $C(S) := \{g \in \mathbb{G} : gs = sg \ \forall s \in S\}$.

- **Exercise**: $\text{Aut}(X, T) = C(T_{\mathbb{G}})$, inside the group $\text{Homeo}(X)$.

- The **Center** of \mathbb{G}: $Z(\mathbb{G}) := C(\mathbb{G})$.

- **Exercise**: If (X, T) is a \mathbb{G}-flow and T is a faithful action, then $Z(\mathbb{G})$ embeds in $\text{Aut}(X, T)$.
Let G be a group.

- **Conjugation**: For $g, h \in G$, $g^h := hgh^{-1}$.

- A subgroup $H < G$ is **normal** if $gHg^{-1} = H$ for all $g \in G$, denoted $H \triangleleft G$. A subgroup H is normal if and only if there exists a homomorphism $\varphi : G \to G_0$ so that $H = \text{Ker} \varphi$.

- The **Centralizer** of $S \subset G$: $C(S) := \{g \in G : gs = sg \ \forall s \in S\}$.

- **Exercise**: $\text{Aut}(X, T) = C(T_G)$, inside the group $\text{Homeo}(X)$.

- The **Center** of G: $Z(G) := C(G)$.

- **Exercise**: If (X, T) is a G-flow and T is a faithful action, then $Z(G)$ embeds in $\text{Aut}(X, T)$.

- If G acts on X via T, $\text{stab}_T(x) := \{g \in G : T_g(x) = x\}$.

Tom Meyerovitch (BGU)
Automorphisms of symbolic dynamical systems
December, 2014
11 / 20
Reminder: Basic notions about groups

Let G be a group.

- **Conjugation**: For $g, h \in G$ $g^h := hgh^{-1}$.

- A subgroup $H < G$ is **normal** if $gHg^{-1} = H$ for all $g \in G$, denoted $H \triangleleft G$. A subgroup H is normal if and only there exists a homomorphism $\varphi : G \to G_0$ so that $H = \text{Ker} \varphi$.

- The **Centralizer** of $S \subset G$: $C(S) := \{ g \in G : gs = sg \ \forall s \in S \}$.

- **Exercise**: $\text{Aut}(X, T) = C(T_G)$, inside the group $\text{Homeo}(X)$.

- The **Center** of G: $Z(G) := C(G)$.

- **Exercise**: If (X, T) is a G-flow and T is a **faithful** action, then $Z(G)$ embeds in $\text{Aut}(X, T)$.

- If G acts on X via T, $\text{stab}_T(x) := \{ g \in G : T_g(x) = x \}$.

- **Exercise**: $\text{stab}_T(T_g(x)) = g [\text{stab}_T(x)] g^{-1}$.
An example: G acting on subgroup.

- Identify the subsets of G with, $\{0, 1\}^G$ (with the product topology)
An example: G acting on subgroup.

- Identify the subsets of G with, $\{0, 1\}^G$ (with the product topology)
- Let X denote the subset of $\{0, 1\}^G$ corresponding to subgroups of G.

G acts on X by conjugation. In general, this action is not expansive.

The fixed points of the action correspond to normal subgroups of G.

Identify the subsets of G with, $\{0, 1\}^G$ (with the product topology)

Let X denote the subset of $\{0, 1\}^G$ corresponding to subgroups of G. Explicitly, $x \in X$ means that $x_1 = 1$, $x_{g^{-1}} = 1 \iff x_g = 1$ and $x_g = 1 \land x_h = 1 \Rightarrow x_{gh} = 1$.

G acts on X by conjugation. In general, this action is not expansive. The fixed points of the action correspond to normal subgroups of G.
An example: G acting on subgroup.

- Identify the subsets of G with, $\{0, 1\}^G$ (with the product topology).
- Let X denote the subset of $\{0, 1\}^G$ corresponding to subgroups of G. Explicitly, $x \in X$ means that $x_1 = 1$, $x_{g^{-1}} = 1 \iff x_g = 1$ and $x_g = 1 \land x_h = 1 \Rightarrow x_{gh} = 1$.
- G acts on X by conjugation.
An example: G acting on subgroup.

- Identify the subsets of G with, $\{0, 1\}^G$ (with the product topology).
- Let X denote the subset of $\{0, 1\}^G$ corresponding to subgroups of G. Explicitly, $x \in X$ means that $x_1 = 1$, $x_{g^{-1}} = 1 \iff x_g = 1$ and $x_g = 1 \land x_h = 1 \Rightarrow x_{gh} = 1$.
- G acts on X by conjugation.
- In general, this action is not expansive.
An example: \mathbb{G} acting on subgroup.

- Identify the subsets of \mathbb{G} with, $\{0, 1\}^G$ (with the product topology)
- Let X denote the subset of $\{0, 1\}^G$ corresponding to subgroups of \mathbb{G}. Explicitly, $x \in X$ means that $x_1 = 1$, $x_{g^{-1}} = 1 \iff x_g = 1$ and $x_g = 1 \land x_h = 1 \Rightarrow x_{gh} = 1$.
- \mathbb{G} acts on X by conjugation.
- In general, this action is not expansive.
- The fixed points of the action correspond to normal subgroups of \mathbb{G}.
Semi-direct products and wreath-products

For a group H we denote by $\text{Aut}(H)$ the automorphisms of the group H (bijective self-homomorphisms of H)

The wreath product $H \rtimes G$ of H and G: This is the semi-direct product of H and G with respect to the shift-action.

$(h_1, x) \cdot (h_2, y) = (h_1 \cdot h_2, x \cdot \sigma h_1(y))$.

If H acts on a set A via ψ the permutational wreath product $H \rtimes \psi G$ of H and G: This is the semi-direct product of H and G with respect to the action on G^A induced by ψ.

$(h_1, x) \cdot (h_2, y) = (h_1 \cdot h_2, x \cdot \psi h_1(y))$.
For a group H we denote by $\text{Aut}(H)$ the automorphisms of the group H (bijective self-homomorphisms of H).

If G acts on H by $\alpha \in \text{Hom}(G, \text{Aut}(H))$ then the semi-direct product $G \rtimes_\alpha H$ is the group whose elements are $G \times H$ with multiplication rule:

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1 \cdot g_2, h_1 \cdot \alpha_{g_1}(h_2)).$$
Semi-direct products and wreath-products

- For a group H we denote by $Aut(H)$ the automorphisms of the group H (bijective self-homomorphisms of H).
- If G acts on H by $\alpha \in \text{Hom}(G, Aut(H))$ then the semi-direct product $G \rtimes \alpha H$ is the group whose elements are $G \times H$ with multiplication rule:

 $$(g_1, h_1) \cdot (g_2, h_2) = (g_1 \cdot g_2, h_1 \cdot \alpha_{g_1}(h_2)).$$

- The wreath product $H \wr G$ of H and G: This is the semi-direct product of H and G^H with respect to the shift-action.

 $$(h_1, x) \cdot (h_2, y) = (h_1 \cdot h_2, x \cdot \sigma_{h_1}(y)).$$
For a group H we denote by $Aut(H)$ the automorphisms of the group H (bijective self-homomorphisms of H).

If G acts on H by $\alpha \in \text{Hom}(G, Aut(H))$ then the semi-direct product $G \times_{\alpha} H$ is the group whose elements are $G \times H$ with multiplication rule:

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1 \cdot g_2, h_1 \cdot \alpha_{g_1}(h_2)).$$

The wreath product $H \wr G$ of H and G: This is the semi-direct product of H and G^H with respect to the shift-action.

$$(h_1, x) \cdot (h_2, y) = (h_1 \cdot h_2, x \cdot \sigma_{h_1}(y)).$$

If H acts on a set A via ψ the permutational wreath product $H \wr_\psi G$ of H and G: This is the semi-direct product of H and G^A with respect to the action on G^A induced by ψ.
Semi-direct products and wreath-products

- For a group H we denote by $\text{Aut}(H)$ the automorphisms of the group H (bijective self-homomorphisms of H).
- If G acts on H by $\alpha \in \text{Hom}(G, \text{Aut}(H))$ then the semi-direct product $G \ltimes_\alpha H$ is the group whose elements are $G \times H$ with multiplication rule:
 \[(g_1, h_1) \cdot (g_2, h_2) = (g_1 \cdot g_2, h_1 \cdot \alpha_{g_1}(h_2)).\]
- The wreath product $H \wr G$ of H and G: This is the semi-direct product of H and G^H with respect to the shift-action.
 \[(h_1, x) \cdot (h_2, y) = (h_1 \cdot h_2, x \cdot \sigma_{h_1}(y)).\]
- If H acts on a set A via ψ the permutational wreath product $H \wr_\psi G$ of H and G: This is the semi-direct product of H and G^A with respect to the action on G^A induced by ψ.
 \[(h_1, x) \cdot (h_2, y) = (h_1 \cdot h_2, x \cdot \psi_{h_1}(y)).\]
Let's consider the simple case where G is a finite group, and X is a G-subshift.
Let's consider the simple case where \mathbb{G} is a finite group, and X is a \mathbb{G}-subshift.

Note: any subshift over a finite group is a subshift of finite type.
Let's consider the simple case where \mathbb{G} is a finite group, and X is a \mathbb{G}-subshift.

Note: any subshift over a finite group is a subshift of finite type.

Assume for simplicity that the \mathbb{G}-action of σ is free.
Let's consider the simple case where \mathbb{G} is a finite group, and X is a \mathbb{G}-subshift.

Note: any subshift over a finite group is a subshift of finite type.

Assume for simplicity that the \mathbb{G}-action of σ is **free** (the stabilizer of every point is trivial).
Let’s consider the simple case where \mathbb{G} is a finite group, and X is a \mathbb{G}-subshift.

Note: any subshift over a finite group is a subshift of finite type.

Assume for simplicity that the \mathbb{G}-action of σ is **free** (the stabilizer of every point is trivial).

Let \mathcal{O} denote the (finite) set of \mathbb{G}-orbits in X, and $S(\mathcal{O})$ denote the group of permutations of \mathcal{O}.
Let’s consider the simple case where G is a finite group, and X is a G-subshift.

Note: any subshift over a finite group is a subshift of finite type.

Assume for simplicity that the G-action of σ is free (the stabilizer of every point is trivial).

Let O denote the (finite) set of G-orbits in X, and $S(O)$ denote the group of permutations of O.

In the above situation, $\text{Aut}(X, \sigma)$ is isomorphic as a group to the permutational wreath product $S(O) \wr \psi Z(G)$, where $\psi : S(O) \rightarrow O$ is the obvious action.
A group G is called **locally finite** if any finitely generated subgroup H of G is finite.
A group G is called \textbf{locally finite} if any finitely generated subgroup H of G is finite. For example, S_∞ the group of finite permutations of the integers, is locally finite.
A group G is called **locally finite** if any finitely generated subgroup H of G is finite. For example, S_∞ the group of finite permutations of the integers, is locally finite.

Observation: If G is locally finite and (X, σ) is a G-subshift then, $\text{Aut}(X, \sigma)$ is locally finite.
A group G is called **locally finite** if any finitely generated subgroup H of G is finite. For example, S_∞, the group of finite permutations of the integers, is locally finite.

Observation: If G is locally finite and (X, σ) is a G-subshift then, $\text{Aut}(X, \sigma)$ is locally finite.

Proof: If $\psi_1, \ldots, \psi_n \in \text{Aut}(X, \sigma)$ and ψ_i is given by the sliding block code $\Psi_i : A^{F_i} \to A$ then for any $\phi \in \langle \psi_1, \ldots, \psi_n \rangle$, $\phi(x)_0$ is determined by the restriction of x to the subgroup generated by $\bigcup_{i=1}^n F_i$.

A group G is called **locally finite** if any finitely generated subgroup H of G is finite. For example, S_∞, the group of finite permutations of the integers, is locally finite.

Observation: If G is locally finite and (X, σ) is a G-subshift then, $Aut(X, \sigma)$ is locally finite.

Proof: If $\psi_1, \ldots, \psi_n \in Aut(X, \sigma)$ and ψ_i is given by the sliding block code $\Psi_i : A^{F_i} \to A$ then for any $\phi \in \langle \psi_1, \ldots, \psi_n \rangle$, $\phi(x)_0$ is determined by the restriction of x to the subgroup generated by $\bigcup_{i=1}^n F_i$.
Residually finite groups and finite orbits

A group G is residually finite if for each $1 \neq g \in G$, there is a normal subgroup H of finite index with $g \notin H$.

Theorem (Ceccherini-Silberstein and Coornaert [CSC]): If G is residually finite and (X, σ) is a strongly irreducible G-SFT which contains a point x with a finite orbit, then the points with finite orbits are dense in X.

Theorem: (see [BLR], [CSC]): If G is residually finite and (X, σ) is a G-SFT with DPP then $\text{Aut}(X, \sigma)$ is residually finite.

Corollary: In the above situation, $\text{Aut}(X, \sigma)$ does not contain a divisible subgroup: for any $\phi \in \text{Aut}(X, \sigma) \backslash \{\text{id}\}$ there exists $n \in \mathbb{N}$ such that the equation $\psi^n = \phi$ has no solution $\psi \in \text{Aut}(X, \sigma)$.

Tom Meyerovitch (BGU)
Automorphisms of symbolic dynamical systems
December, 2014 16 / 20
A group G is **residually finite** if for each $1 \neq g \in G$, there is a normal subgroup $H \triangleleft G$ of finite index with $g \not\in H$.

Theorem (Ceccherini-Silberstein and Coornaert [CSC]): If G is residually finite and (X, σ) is a strongly irreducible G-SFT which contains a point x with a finite orbit, then the points with finite orbits are dense in X (σ has dense periodic points (DPP)).

Theorem: (see [BLR], [CSC]): If G is residually finite and (X, σ) is a G-SFT with DPP then $\text{Aut}(X, \sigma)$ is residually finite.

Corollary: In the above situation, $\text{Aut}(X, \sigma)$ does not contains a divisible subgroup: For any $\phi \in \text{Aut}(X, \sigma) \setminus \{\text{id}\}$ there exists $n \in \mathbb{N}$ such that the equation $\psi^n = \phi$ has no solution $\psi \in \text{Aut}(X, \sigma)$.
Residually finite groups and finite orbits

- A group G is **residually finite** if for each $1 \neq g \in G$, there is a normal subgroup $H \triangleleft G$ of finite index with $g \notin H$.

- **Theorem (Ceccherini-Silberstein and Coornaert [CSC]):** If G is residually finite and (X, σ) is a strongly irreducible G-SFT which contains a point x with a finite orbit, then the points with finite orbits are dense in X ((X, σ) has dense periodic points (DPP)).
Residually finite groups and finite orbits

- A group \mathbb{G} is residually finite if for each $1 \neq g \in \mathbb{G}$, there is a normal subgroup $\mathbb{H} \triangleleft \mathbb{G}$ of finite index with $g \not\in \mathbb{H}$.

- Theorem (Ceccherini-Silberstein and Coornaert [CSC]): If \mathbb{G} is residually finite and (X, σ) is a strongly irreducible \mathbb{G}-SFT which contains a point x with a finite orbit, then the points with finite orbits are dense in X ((X, σ) has dense periodic points (DPP)).

- Theorem: (see [BLR],[CSC]): If \mathbb{G} is residually finite and (X, σ) is a \mathbb{G}-SFT with DPP then $\text{Aut}(X, \sigma)$ is residually finite.
A group G is residually finite if for each $1 \neq g \in G$, there is a normal subgroup $H \triangleleft G$ of finite index with $g \not\in H$.

Theorem (Ceccherini-Silberstein and Coornaert [CSC]): If G is residually finite and (X, σ) is a strongly irreducible G-SFT which contains a point x with a finite orbit, then the points with finite orbits are dense in X ((X, σ) has dense periodic points (DPP)).

Theorem: (see [BLR],[CSC]): If G is residually finite and (X, σ) is a G-SFT with DPP then $\text{Aut}(X, \sigma)$ is residually finite.

Corollary: In the above situation, $\text{Aut}(X, \sigma)$ does not contains a divisible subgroup:
A group G is residually finite if for each $1 \neq g \in G$, there is a normal subgroup $H \lhd G$ of finite index with $g \notin H$.

Theorem (Ceccherini-Silberstein and Coornaert [CSC]): If G is residually finite and (X, σ) is a strongly irreducible G-SFT which contains a point x with a finite orbit, then the points with finite orbits are dense in X ((X, σ) has dense periodic points (DPP)).

Theorem: (see [BLR],[CSC]): If G is residually finite and (X, σ) is a G-SFT with DPP then $\text{Aut}(X, \sigma)$ is residually finite.

Corollary: In the above situation, $\text{Aut}(X, \sigma)$ does not contains a divisible subgroup: For any $\phi \in \text{Aut}(X, \sigma) \setminus \{id\}$ there exists $n \in \mathbb{N}$ such that the equation $\psi^n = \phi$ has no solution $\psi \in \text{Aut}(X, \sigma)$.

Residually finite groups and finite orbits
On the automorphism group of \mathbb{Z}-SFTs

[BLR], extending [H] Let (X, σ) be an uncountable \mathbb{Z}-SFT. Then $\text{Aut}(X, \sigma)$:

- Embeds any finite group.
- Embeds the direct sum of every countable collection of finite groups.
- Embeds a free product of any number of 2-element groups, hence a free group on a countable number of generators.
- Embeds $\text{Aut}(\{1, \ldots, n\}^\mathbb{Z}, \sigma)$ for all n. [KR]
[BLR], extending [H] Let (X, σ) be an uncountable \mathbb{Z}-SFT. Then $Aut(X, \sigma)$:

- Embeds any finite group.
- Embeds the direct sum of every countable collection of finite groups.
- Embeds a free product of any number of 2-element groups, hence a free group on a countable number of generators.
- Embeds $Aut(\{1, \ldots, n\} \times \mathbb{Z}, \sigma)$ for all n. [KR]

If (X, σ) is irreducible then the center of $Aut(X, \sigma)$ generated by σ. [R]
[BLR], extending [H] Let \((X, \sigma)\) be an uncountable \(\mathbb{Z}\)-SFT. Then \(\text{Aut}(X, \sigma)\):

- Embeds any finite group.
Let (X, σ) be an uncountable \mathbb{Z}-SFT. Then $\text{Aut}(X, \sigma)$:

- Embeds any finite group.
- Embeds the direct sum of every countable collection of finite groups.
On the automorphism group of \mathbb{Z}-SFTs

[BLR], extending [H] Let (X, σ) be an uncountable \mathbb{Z}-SFT. Then $Aut(X, \sigma)$:

- Embeds any finite group.
- Embeds the direct sum of every countable collection of finite groups.
- Embeds a free product of any number of 2-element groups, hence a free group on a countable number of generators.
On the automorphism group of \mathbb{Z}-SFTs

[BLR], extending [H] Let (X, σ) be an uncountable \mathbb{Z}-SFT. Then $\text{Aut}(X, \sigma)$:

- Embeds any finite group.
- Embeds the direct sum of every countable collection of finite groups.
- Embeds a free product of any number of 2-element groups, hence a free group on a countable number of generators.
- Embeds $\text{Aut}([1, \ldots, n]^\mathbb{Z}, \sigma)$ for all n [KR].
Let \mathcal{X}, σ be an uncountable \mathbb{Z}-SFT. Then $\text{Aut}(\mathcal{X}, \sigma)$:

- Embeds any finite group.
- Embeds the direct sum of every countable collection of finite groups.
- Embeds a free product of any number of 2-element groups, hence a free group on a countable number of generators.
- Embeds $\text{Aut}(\{1, \ldots, n\}^\mathbb{Z}, \sigma)$ for all n [KR].
- If \mathcal{X}, σ is irreducible then the center or $\text{Aut}(\mathcal{X}, \sigma)$ generated by σ [R].
References

Embedding free products:

Let’s prove that $\text{Aut}(X, \sigma)$ embeds the free product of cyclic groups:
Embedding free products:

Let’s prove that $\text{Aut}(X, \sigma)$ embeds the free product of cyclic groups:

- For simplicity, let $X = \{*, 0, 1, 2, 3\}^\mathbb{Z}$.

Let’s prove that $\text{Aut}(X, \sigma)$ embeds the free product of cyclic groups:

- For simplicity, let $X = \{\ast, 0, 1, 2, 3\}^\mathbb{Z}$.
- For $j \in \{1, 2, 3\}$ define $\phi_j \in \text{Aut}(X, \sigma)$ to be the automorphism which “swaps s_j with s_0” for $s \not\in \{0, j\}$.
Let’s prove that $Aut(X, \sigma)$ embeds the free product of cyclic groups:

- For simplicity, let $X = \{\ast, 0, 1, 2, 3\}^\mathbb{Z}$.
- For $j \in \{1, 2, 3\}$ define $\phi_j \in Aut(X, \sigma)$ to be the automorphism which “swaps sj with $s0$” for $s \not\in \{0, j\}$.
- By inspecting the action of $\langle \phi_1, \phi_2, \phi_3 \rangle$ on the point $\ldots 000 \ast 000 \ldots$ we see that it generates a group isomorphic to the free product $C_2 \ast C_2 \ast C_2$.
Coming up next...

- Topological Markov Fields.
- Amenability and topological entropy.
- The Marker method for \mathbb{Z}^d-SFTs and for G-SFTs.