Automorphisms of symbolic dynamical systems

Tom Meyerovitch

Ben Gurion University of the Negev www.math.bgu.ac.il/~mtom

December, 2014

Tom Meyerovitch (BGU) Automorphisms of symbolic dynamical system December, 2014

• Throughout, \mathbb{G},\mathbb{H} will (mostly) be infinite countable groups.

- Throughout, \mathbb{G},\mathbb{H} will (mostly) be infinite countable groups.
- Homomorphisms:

$$\mathsf{Hom}(\mathbb{G},\mathbb{H})=\Big\{lpha\in\mathbb{H}^{\mathbb{G}}\ :\ lpha(g_1)lpha(g_2)=lpha(g_1g_2)\Big\}$$

- Throughout, \mathbb{G}, \mathbb{H} will (mostly) be infinite countable groups.
- Homomorphisms:

$$\mathsf{Hom}(\mathbb{G},\mathbb{H})=\Big\{lpha\in\mathbb{H}^{\mathbb{G}}\ :\ lpha(g_1)lpha(g_2)=lpha(g_1g_2)\Big\}$$

• X will be a compact (Hausdorff) topological space (usually metrizable). *Homeo*(X) - The group of self homeomorphisms of X.

- Throughout, \mathbb{G}, \mathbb{H} will (mostly) be infinite countable groups.
- Homomorphisms:

$$\mathsf{Hom}(\mathbb{G},\mathbb{H})=\Big\{\alpha\in\mathbb{H}^{\mathbb{G}}\ :\ \alpha(g_1)\alpha(g_2)=\alpha(g_1g_2)\Big\}$$

- X will be a compact (Hausdorff) topological space (usually metrizable). *Homeo*(X) The group of self homeomorphisms of X.
- A G-topological dynamical system (TDS) or G-flow is a pair (X, T) where X is a compact (Hausdorff) topological space and T ∈ Hom(G, Homeo(X)) is homomorphism of the group G into the group of homeomorphisms.

- Throughout, \mathbb{G}, \mathbb{H} will (mostly) be infinite countable groups.
- Homomorphisms:

$$\mathsf{Hom}(\mathbb{G},\mathbb{H}) = \Big\{ \alpha \in \mathbb{H}^{\mathbb{G}} \ : \ \alpha(g_1)\alpha(g_2) = \alpha(g_1g_2) \Big\}$$

- X will be a compact (Hausdorff) topological space (usually metrizable). *Homeo*(X) The group of self homeomorphisms of X.
- A G-topological dynamical system (TDS) or G-flow is a pair (X, T) where X is a compact (Hausdorff) topological space and T ∈ Hom(G, Homeo(X)) is homomorphism of the group G into the group of homeomorphisms. We write T_g(x) instead of T(g)(x).

- Throughout, \mathbb{G}, \mathbb{H} will (mostly) be infinite countable groups.
- Homomorphisms:

$$\mathsf{Hom}(\mathbb{G},\mathbb{H})=\Big\{\alpha\in\mathbb{H}^{\mathbb{G}}\ :\ \alpha(g_1)\alpha(g_2)=\alpha(g_1g_2)\Big\}$$

- X will be a compact (Hausdorff) topological space (usually metrizable). *Homeo*(X) The group of self homeomorphisms of X.
- A G-topological dynamical system (TDS) or G-flow is a pair (X, T)where X is a compact (Hausdorff) topological space and $T \in Hom(\mathbb{G}, Homeo(X))$ is homomorphism of the group \mathbb{G} into the group of homeomorphisms. We write $T_g(x)$ instead of T(g)(x). We have: $T_g(T_h(x)) = T_{gh}(x)$.

- Throughout, \mathbb{G}, \mathbb{H} will (mostly) be infinite countable groups.
- Homomorphisms:

$$\mathsf{Hom}(\mathbb{G},\mathbb{H})=\Big\{\alpha\in\mathbb{H}^{\mathbb{G}}\ :\ \alpha(g_1)\alpha(g_2)=\alpha(g_1g_2)\Big\}$$

- X will be a compact (Hausdorff) topological space (usually metrizable). *Homeo*(X) The group of self homeomorphisms of X.
- A G-topological dynamical system (TDS) or G-flow is a pair (X, T)where X is a compact (Hausdorff) topological space and $T \in Hom(\mathbb{G}, Homeo(X))$ is homomorphism of the group \mathbb{G} into the group of homeomorphisms. We write $T_g(x)$ instead of T(g)(x). We have: $T_g(T_h(x)) = T_{gh}(x)$.

• (X, T) is topologically isomorphic or topologically conjugate to (Y, S) (denoted $(X, T) \cong (Y, S)$) if there exists a homeomorphism $\Phi: X \to Y$ so that $\Phi \circ T_g = S_g \circ \Phi$ for all $g \in \mathbb{G}$.

- (X, T) is topologically isomorphic or topologically conjugate to (Y, S) (denoted $(X, T) \cong (Y, S)$) if there exists a homeomorphism $\Phi: X \to Y$ so that $\Phi \circ T_g = S_g \circ \Phi$ for all $g \in \mathbb{G}$.
- (Y, S) is a topological factor of (X, T) if there exists a continuous surjective Φ : X → Y so that Φ ∘ T_g = S_g ∘ Φ for all g ∈ G.

- (X, T) is topologically isomorphic or topologically conjugate to (Y, S) (denoted $(X, T) \cong (Y, S)$) if there exists a homeomorphism $\Phi: X \to Y$ so that $\Phi \circ T_g = S_g \circ \Phi$ for all $g \in \mathbb{G}$.
- (Y, S) is a topological factor of (X, T) if there exists a continuous surjective Φ : X → Y so that Φ ∘ T_g = S_g ∘ Φ for all g ∈ G.
- A subsystem of (X, T) is a G-flow (Y, T) where Y ⊂ X is closed (topologically) and T-invariant (T_g(Y) = Y for all g ∈ G).

- (X, T) is topologically isomorphic or topologically conjugate to (Y, S) (denoted $(X, T) \cong (Y, S)$) if there exists a homeomorphism $\Phi: X \to Y$ so that $\Phi \circ T_g = S_g \circ \Phi$ for all $g \in \mathbb{G}$.
- (Y, S) is a topological factor of (X, T) if there exists a continuous surjective Φ : X → Y so that Φ ∘ T_g = S_g ∘ Φ for all g ∈ G.
- A subsystem of (X, T) is a G-flow (Y, T) where Y ⊂ X is closed (topologically) and T-invariant (T_g(Y) = Y for all g ∈ G).
- If α ∈ Hom(ℍ, G) is a group homomorphism and (X, T) is a G-flow, we can get an ℍ-flow (X, T^(α)) by T^(α)_h := T_{α(h)}. When α is injective, we say (X, T^(α)) is a subaction of (X, T).

 An example for an expansive Z-action: A hyperbolic automorphism of the torus R²/Z², T(x, y) = (y, x + y) is an expansive Z-action.

- An example for an expansive Z-action: A hyperbolic automorphism of the torus ℝ²/Z², T(x,y) = (y, x + y) is an expansive Z-action.
- Obviously, if a G-flow (X, T) has an expansive subaction, then (X, T) is itself expansive.

- An example for an expansive Z-action: A hyperbolic automorphism of the torus ℝ²/Z², T(x,y) = (y, x + y) is an expansive Z-action.
- Obviously, if a G-flow (X, T) has an expansive subaction, then (X, T) is itself expansive.
- Mañé's theorem [Man]: If ℤ acts on compact metric X via an expansive T, then X has finite topological dimension.

- An example for an expansive Z-action: A hyperbolic automorphism of the torus ℝ²/Z², T(x, y) = (y, x + y) is an expansive Z-action.
- Obviously, if a G-flow (X, T) has an expansive subaction, then (X, T) is itself expansive.
- Mañé's theorem [Man]: If Z acts on compact metric X via an expansive T, then X has finite topological dimension. Furthermore, if (X, T) is also minimal (has no proper subsystems) then X has zero topological dimension.

- An example for an expansive Z-action: A hyperbolic automorphism of the torus ℝ²/Z², T(x, y) = (y, x + y) is an expansive Z-action.
- Obviously, if a G-flow (X, T) has an expansive subaction, then (X, T) is itself expansive.
- Mañé's theorem [Man]: If Z acts on compact metric X via an expansive T, then X has finite topological dimension. Furthermore, if (X, T) is also minimal (has no proper subsystems) then X has zero topological dimension.

• The G-full shift over alphabet Σ : $\Sigma^{\mathbb{G}}$ where Σ is a finite set, and the topology on $\Sigma^{\mathbb{G}}$ is the product topology.

• The G-full shift over alphabet Σ : $\Sigma^{\mathbb{G}}$ where Σ is a finite set, and the topology on $\Sigma^{\mathbb{G}}$ is the product topology. The open sets are unions of cylinders:

$$[a]_F := \{y \in X : y|_F = a\}, a \in \Sigma^F, F \subset \subset \mathbb{G}.$$

The G-full shift over alphabet Σ: Σ^G where Σ is a finite set, and the topology on Σ^G is the product topology. The open sets are unions of cylinders:

$$[a]_F := \{y \in X : y|_F = a\}, a \in \Sigma^F, F \subset \subset \mathbb{G}.$$

• The shift σ is given by:

The G-full shift over alphabet Σ: Σ^G where Σ is a finite set, and the topology on Σ^G is the product topology. The open sets are unions of cylinders:

$$[a]_F := \{y \in X : y|_F = a\}, a \in \Sigma^F, F \subset \mathbb{G}$$

• The shift σ is given by: $(\sigma_g(x))_h := x_{g^{-1}h}$

The G-full shift over alphabet Σ: Σ^G where Σ is a finite set, and the topology on Σ^G is the product topology. The open sets are unions of cylinders:

$$[a]_F := \{y \in X : y|_F = a\}, a \in \Sigma^F, F \subset \subset \mathbb{G}.$$

• The shift σ is given by: $(\sigma_g(x))_h := x_{g^{-1}h}$ (check that this is indeed a \mathbb{G} -flow!)

The G-full shift over alphabet Σ: Σ^G where Σ is a finite set, and the topology on Σ^G is the product topology. The open sets are unions of cylinders:

$$[a]_F := \{y \in X : y|_F = a\}, a \in \Sigma^F, F \subset \subset \mathbb{G}.$$

- The shift σ is given by: (σ_g(x))_h := x_{g⁻¹h} (check that this is indeed a G-flow!)
- A G-subshift (X, σ) is a subsystem of some G-full-shift. X ⊂ Σ^G is closed and shift invariant.

The G-full shift over alphabet Σ: Σ^G where Σ is a finite set, and the topology on Σ^G is the product topology. The open sets are unions of cylinders:

$$[a]_F := \{y \in X : y|_F = a\}, a \in \Sigma^F, F \subset \subset \mathbb{G}.$$

- The shift σ is given by: $(\sigma_g(x))_h := x_{g^{-1}h}$ (check that this is indeed a \mathbb{G} -flow!)
- A G-subshift (X, σ) is a subsystem of some G-full-shift. X ⊂ Σ^G is closed and shift invariant.
- Exercise: A G-flow (X, T) is isomorphic to a G-subshift if and only if T is expansive and X is a totally disconnected metrizable space.

The G-full shift over alphabet Σ: Σ^G where Σ is a finite set, and the topology on Σ^G is the product topology. The open sets are unions of cylinders:

$$[a]_F := \{y \in X : y|_F = a\}, a \in \Sigma^F, F \subset \subset \mathbb{G}.$$

- The shift σ is given by: $(\sigma_g(x))_h := x_{g^{-1}h}$ (check that this is indeed a \mathbb{G} -flow!)
- A G-subshift (X, σ) is a subsystem of some G-full-shift. X ⊂ Σ^G is closed and shift invariant.
- Exercise: A G-flow (X, T) is isomorphic to a G-subshift if and only if T is expansive and X is a totally disconnected metrizable space.

,

$$\begin{aligned} X &= \left\{ x \in \Sigma^{\mathbb{G}} \ : \ \sigma_g(x)|_F \not\in \mathcal{F} \ \forall g \in \mathbb{G}, \ F \subset \mathbb{G} \right\}, \\ \mathcal{F} &\subset \bigcup_{F \subset \subset \mathbb{G}} \Sigma^F \end{aligned}$$

• Exercise: Any subsystem of $(\Sigma^{\mathbb{G}}, \sigma)$ is of the form

$$\begin{split} X &= \left\{ x \in \Sigma^{\mathbb{G}} \ : \ \sigma_g(x)|_F \not\in \mathcal{F} \ \forall g \in \mathbb{G}, \ F \subset \mathbb{G} \right\}, \\ \mathcal{F} &\subset \bigcup_{F \subset \subset \mathbb{G}} \Sigma^F \end{split}$$

• A subshift is of finite type (SFT) if it can be given by a finite list \mathcal{F} of forbidden patterns.

$$\begin{aligned} X &= \left\{ x \in \Sigma^{\mathbb{G}} \ : \ \sigma_g(x)|_F \not\in \mathcal{F} \ \forall g \in \mathbb{G}, \ F \subset \mathbb{G} \right\}, \\ \mathcal{F} &\subset \bigcup_{F \subset \subset \mathbb{G}} \Sigma^F \end{aligned}$$

- A subshift is of finite type (SFT) if it can be given by a finite list \mathcal{F} of forbidden patterns.
- A \mathbb{Z} -subshift is of finite type iff it has local product structure:

$$\begin{split} X &= \left\{ x \in \Sigma^{\mathbb{G}} \ : \ \sigma_g(x)|_F \not\in \mathcal{F} \ \forall g \in \mathbb{G}, \ F \subset \mathbb{G} \right\}, \\ \mathcal{F} &\subset \bigcup_{F \subset \subset \mathbb{G}} \Sigma^F \end{split}$$

- A subshift is of finite type (SFT) if it can be given by a finite list \mathcal{F} of forbidden patterns.
- A Z-subshift is of finite type iff it has local product structure: There exists ε > 0 such that for all x, y ∈ X with d(x, y) < ε there is a unique z ∈ X, (denoted by [x, y]) such that d(σⁿ(x), σⁿ(z)) < ε and d(σ⁻ⁿ(y), σ⁻ⁿ(z)) < ε for all n ∈ Z₊.

$$\begin{split} X &= \left\{ x \in \Sigma^{\mathbb{G}} \ : \ \sigma_g(x)|_F \not\in \mathcal{F} \ \forall g \in \mathbb{G}, \ F \subset \mathbb{G} \right\}, \\ \mathcal{F} &\subset \bigcup_{F \subset \subset \mathbb{G}} \Sigma^F \end{split}$$

- A subshift is of finite type (SFT) if it can be given by a finite list \mathcal{F} of forbidden patterns.
- A Z-subshift is of finite type iff it has local product structure: There exists ε > 0 such that for all x, y ∈ X with d(x, y) < ε there is a unique z ∈ X, (denoted by [x, y]) such that d(σⁿ(x), σⁿ(z)) < ε and d(σ⁻ⁿ(y), σ⁻ⁿ(z)) < ε for all n ∈ Z₊.
- Exercise: A G-subshift (X, σ) is an SFT iff it is not a countable intersection of strictly decreasing sequence of subshifts:

$$\begin{split} X &= \left\{ x \in \Sigma^{\mathbb{G}} \ : \ \sigma_g(x)|_F \not\in \mathcal{F} \ \forall g \in \mathbb{G}, \ F \subset \mathbb{G} \right\}, \\ \mathcal{F} &\subset \bigcup_{F \subset \subset \mathbb{G}} \Sigma^F \end{split}$$

- A subshift is of finite type (SFT) if it can be given by a finite list \mathcal{F} of forbidden patterns.
- A Z-subshift is of finite type iff it has local product structure: There exists ε > 0 such that for all x, y ∈ X with d(x, y) < ε there is a unique z ∈ X, (denoted by [x, y]) such that d(σⁿ(x), σⁿ(z)) < ε and d(σ⁻ⁿ(y), σ⁻ⁿ(z)) < ε for all n ∈ Z₊.
- Exercise: A G-subshift (X, σ) is an SFT iff it is not a countable intersection of strictly decreasing sequence of subshifts: Whenever X = ∩_{n=1}[∞] X_n, X_{n+1} ⊂ X_n and (X_n, σ) are subshifts then X_{n+1} = X_n for all sufficiently large n's.

$$\begin{split} X &= \left\{ x \in \Sigma^{\mathbb{G}} \ : \ \sigma_g(x)|_F \not\in \mathcal{F} \ \forall g \in \mathbb{G}, \ F \subset \mathbb{G} \right\}, \\ \mathcal{F} &\subset \bigcup_{F \subset \subset \mathbb{G}} \Sigma^F \end{split}$$

- A subshift is of finite type (SFT) if it can be given by a finite list \mathcal{F} of forbidden patterns.
- A Z-subshift is of finite type iff it has local product structure: There exists ε > 0 such that for all x, y ∈ X with d(x, y) < ε there is a unique z ∈ X, (denoted by [x, y]) such that d(σⁿ(x), σⁿ(z)) < ε and d(σ⁻ⁿ(y), σ⁻ⁿ(z)) < ε for all n ∈ Z₊.
- Exercise: A G-subshift (X, σ) is an SFT iff it is not a countable intersection of strictly decreasing sequence of subshifts: Whenever X = ∩_{n=1}[∞] X_n, X_{n+1} ⊂ X_n and (X_n, σ) are subshifts then X_{n+1} = X_n for all sufficiently large n's.

• Take a finite symmetric $S \subset \mathbb{G} \setminus \{1\}$, and consider the Cayley graph \mathcal{G}_S whose vertex set is \mathbb{G} .

- Take a finite symmetric $S \subset \mathbb{G} \setminus \{1\}$, and consider the Cayley graph \mathcal{G}_S whose vertex set is \mathbb{G} .
- Identify each subset of $\mathbb G$ with it's indicator function, which is a point in $\{0,1\}^{\mathbb G}.$

- Take a finite symmetric $S \subset \mathbb{G} \setminus \{1\}$, and consider the Cayley graph \mathcal{G}_S whose vertex set is \mathbb{G} .
- Identify each subset of G with it's indicator function, which is a point in {0,1}^G. The collocation of independent sets in G_S is a G-SFT ("hard core models").
- Take a finite symmetric $S \subset \mathbb{G} \setminus \{1\}$, and consider the Cayley graph \mathcal{G}_S whose vertex set is \mathbb{G} .
- Identify each subset of G with it's indicator function, which is a point in {0,1}^G. The collocation of independent sets in G_S is a G-SFT ("hard core models").
- For any $n \in \mathbb{N}$ the collection of *n*-colorings of \mathcal{G}_S is an SFT.

- Take a finite symmetric $S \subset \mathbb{G} \setminus \{1\}$, and consider the Cayley graph \mathcal{G}_S whose vertex set is \mathbb{G} .
- Identify each subset of G with it's indicator function, which is a point in {0,1}^G. The collocation of independent sets in G_S is a G-SFT ("hard core models").
- For any $n \in \mathbb{N}$ the collection of *n*-colorings of \mathcal{G}_S is an SFT.
- The collection of ordered perfect matchings in \mathcal{G}_S can be viewed as an SFT ("dimer models").

• We denote by Aut(X, T) the group of automorphisms of a \mathbb{G} -flow (X, T).

- We denote by Aut(X, T) the group of automorphisms of a \mathbb{G} -flow (X, T).
- $\phi \in Aut(X, T)$ if $\phi : X \to X$ is a homeomorphism such that $T_g \circ \phi = \phi \circ T_g$ for all $g \in \mathbb{G}$.

- We denote by Aut(X, T) the group of automorphisms of a \mathbb{G} -flow (X, T).
- $\phi \in Aut(X, T)$ if $\phi : X \to X$ is a homeomorphism such that $T_g \circ \phi = \phi \circ T_g$ for all $g \in \mathbb{G}$.
- Exercise: For a countable group \mathbb{G} , the automorphism group of an expansive \mathbb{G} -action is always finite or countable.

- We denote by Aut(X, T) the group of automorphisms of a \mathbb{G} -flow (X, T).
- $\phi \in Aut(X, T)$ if $\phi : X \to X$ is a homeomorphism such that $T_g \circ \phi = \phi \circ T_g$ for all $g \in \mathbb{G}$.
- Exercise: For a countable group \mathbb{G} , the automorphism group of an expansive \mathbb{G} -action is always finite or countable.
- Recall: By Curtis Hedlund Lyndon for any subshift $X \subset A^{\mathbb{G}}$ and any $\phi \in Aut(X, \sigma)$ there exists a finite $F \subset \mathbb{G}$ and "sliding block code" $\Psi : A^F \to A$ so that $\phi(x)_g = \Psi(\sigma_g(x)|_F)$.

- We denote by Aut(X, T) the group of automorphisms of a \mathbb{G} -flow (X, T).
- $\phi \in Aut(X, T)$ if $\phi : X \to X$ is a homeomorphism such that $T_g \circ \phi = \phi \circ T_g$ for all $g \in \mathbb{G}$.
- Exercise: For a countable group \mathbb{G} , the automorphism group of an expansive \mathbb{G} -action is always finite or countable.
- Recall: By Curtis Hedlund Lyndon for any subshift X ⊂ A^G and any φ ∈ Aut(X, σ) there exists a finite F ⊂ G and "sliding block code" Ψ : A^F → A so that φ(x)_g = Ψ(σ_g(x)|_F). This is just an explicit way of saying: φ is continuous and commutes with σ_g.

< 4 → <

 For a given subshift or class of subshifts, what can we say about Aut(X, σ) as a group?

 For a given subshift or class of subshifts, what can we say about Aut(X, σ) as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...

- For a given subshift or class of subshifts, what can we say about Aut(X, σ) as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...
- What do properties of the group G say about properties of Aut(X, σ) and vice versa?

- For a given subshift or class of subshifts, what can we say about Aut(X, σ) as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...
- What do properties of the group G say about properties of Aut(X, σ) and vice versa?
- What do dynamical properties of (X, σ) say about group-theoretic properties of Aut(X, σ)?

- For a given subshift or class of subshifts, what can we say about Aut(X, σ) as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...
- What do properties of the group G say about properties of Aut(X, σ) and vice versa?
- What do dynamical properties of (X, σ) say about group-theoretic properties of Aut(X, σ)?
- How does $Aut(X, \sigma)$ act on (X, σ) ?

- For a given subshift or class of subshifts, what can we say about Aut(X, σ) as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...
- What do properties of the group G say about properties of Aut(X, σ) and vice versa?
- What do dynamical properties of (X, σ) say about group-theoretic properties of Aut(X, σ)?
- How does Aut(X, σ) act on (X, σ)? What are the Aut(X, σ)-invariant closed subsets?

- For a given subshift or class of subshifts, what can we say about Aut(X, σ) as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...
- What do properties of the group G say about properties of Aut(X, σ) and vice versa?
- What do dynamical properties of (X, σ) say about group-theoretic properties of Aut(X, σ)?
- How does Aut(X, σ) act on (X, σ)? What are the Aut(X, σ)-invariant closed subsets? How does Aut(X, σ) act on σ-invariant closed sets?

- For a given subshift or class of subshifts, what can we say about Aut(X, σ) as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...
- What do properties of the group G say about properties of Aut(X, σ) and vice versa?
- What do dynamical properties of (X, σ) say about group-theoretic properties of Aut(X, σ)?
- How does $Aut(X, \sigma)$ act on (X, σ) ? What are the $Aut(X, \sigma)$ -invariant closed subsets? How does $Aut(X, \sigma)$ act on σ -invariant closed sets? On σ -invariant measures? What are the $Aut(X, \sigma)$ -invariant measures?

- For a given subshift or class of subshifts, what can we say about Aut(X, σ) as a group? (almost)-commutative? (almost)-nilpotent? Amenable? Sofic? Finitely generated? What is the center? What are the subgroups? What are the quotients? What are the irreducible representations? What are the finite dimensional representations?...
- What do properties of the group G say about properties of Aut(X, σ) and vice versa?
- What do dynamical properties of (X, σ) say about group-theoretic properties of Aut(X, σ)?
- How does Aut(X, σ) act on (X, σ)? What are the Aut(X, σ)-invariant closed subsets? How does Aut(X, σ) act on σ-invariant closed sets? On σ-invariant measures? What are the Aut(X, σ)-invariant measures?
- $Aut(\{1,2,3\}^{\mathbb{Z}},\sigma) \cong Aut(\{1,2\}^{\mathbb{Z}},\sigma)$?

æ

э.

・ロト ・回ト ・ヨト

 If the dynamical system (X, σ) is "sufficiently chaotic", Aut(X, σ) is "a big group" in an algebraic sense.

- If the dynamical system (X, σ) is "sufficiently chaotic", $Aut(X, \sigma)$ is "a big group" in an algebraic sense.
- If the dynamical system (X, σ) is "sufficiently degenerate", $Aut(X, \sigma)$ is "a small group".

- If the dynamical system (X, σ) is "sufficiently chaotic", Aut(X, σ) is "a big group" in an algebraic sense.
- If the dynamical system (X, σ) is "sufficiently degenerate", $Aut(X, \sigma)$ is "a small group". (More on this expected in talks by Bryna Kra and Samuel Petite)

- If the dynamical system (X, σ) is "sufficiently chaotic", Aut(X, σ) is "a big group" in an algebraic sense.
- If the dynamical system (X, σ) is "sufficiently degenerate", $Aut(X, \sigma)$ is "a small group". (More on this expected in talks by Bryna Kra and Samuel Petite)

Reminder: Basic notions about groups

Let $\mathbb G$ be a group.

• Conjugation: For $g, h \in \mathbb{G}$ $g^h := hgh^{-1}$.

- Conjugation: For $g, h \in \mathbb{G}$ $g^h := hgh^{-1}$.
- A subgroup $\mathbb{H} < \mathbb{G}$ is normal if $g\mathbb{H}g^{-1} = \mathbb{H}$ for all $g \in \mathbb{G}$, denoted $\mathbb{H} \lhd \mathbb{G}$.

- Conjugation: For $g, h \in \mathbb{G}$ $g^h := hgh^{-1}$.
- A subgroup ℍ < G is normal if gℍg⁻¹ = ℍ for all g ∈ G, denoted ℍ ⊲ G. A subgroup ℍ is normal if and only there exists a homomorphism φ : G → G₀ so that ℍ = Kerφ.

- Conjugation: For $g, h \in \mathbb{G}$ $g^h := hgh^{-1}$.
- A subgroup 𝔄 < 𝔅 is normal if g𝔄g⁻¹ = 𝔄 for all g ∈ 𝔅, denoted 𝔄
 𝔄 𝔅. A subgroup 𝔄 is normal if and only there exists a homomorphism φ : 𝔅 → 𝔅₀ so that 𝔄 = Kerφ.
- The Centralizer of $S \subset \mathbb{G}$: $C(S) := \{g \in \mathbb{G} : gs = sg \ \forall s \in S\}.$

- Conjugation: For $g, h \in \mathbb{G}$ $g^h := hgh^{-1}$.
- A subgroup ℍ < G is normal if gℍg⁻¹ = ℍ for all g ∈ G, denoted ℍ ⊲ G. A subgroup ℍ is normal if and only there exists a homomorphism φ : G → G₀ so that ℍ = Kerφ.
- The Centralizer of $S \subset \mathbb{G}$: $C(S) := \{g \in \mathbb{G} : gs = sg \ \forall s \in S\}.$
- Exercise: $Aut(X, T) = C(T_{\mathbb{G}})$, inside the group Homeo(X).

- Conjugation: For $g, h \in \mathbb{G}$ $g^h := hgh^{-1}$.
- A subgroup ℍ < G is normal if gℍg⁻¹ = ℍ for all g ∈ G, denoted ℍ ⊲ G. A subgroup ℍ is normal if and only there exists a homomorphism φ : G → G₀ so that ℍ = Kerφ.
- The Centralizer of $S \subset \mathbb{G}$: $C(S) := \{g \in \mathbb{G} : gs = sg \ \forall s \in S\}.$
- Exercise: $Aut(X, T) = C(T_{\mathbb{G}})$, inside the group Homeo(X).
- The Center of \mathbb{G} : $Z(\mathbb{G}) := C(\mathbb{G})$.

- Conjugation: For $g, h \in \mathbb{G}$ $g^h := hgh^{-1}$.
- A subgroup ℍ < G is normal if gℍg⁻¹ = ℍ for all g ∈ G, denoted ℍ ⊲ G. A subgroup ℍ is normal if and only there exists a homomorphism φ : G → G₀ so that ℍ = Kerφ.
- The Centralizer of $S \subset \mathbb{G}$: $C(S) := \{g \in \mathbb{G} : gs = sg \ \forall s \in S\}.$
- Exercise: $Aut(X, T) = C(T_{\mathbb{G}})$, inside the group Homeo(X).
- The Center of \mathbb{G} : $Z(\mathbb{G}) := C(\mathbb{G})$.
- Exercise: If (X, T) is a \mathbb{G} -flow and T is a faithful action, then $Z(\mathbb{G})$ embeds in Aut(X, T).

- Conjugation: For $g, h \in \mathbb{G}$ $g^h := hgh^{-1}$.
- A subgroup $\mathbb{H} < \mathbb{G}$ is normal if $g \mathbb{H} g^{-1} = \mathbb{H}$ for all $g \in \mathbb{G}$, denoted $\mathbb{H} \lhd \mathbb{G}$. A subgroup \mathbb{H} is normal if and only there exists a homomorphism $\varphi : \mathbb{G} \to \mathbb{G}_0$ so that $\mathbb{H} = Ker\varphi$.
- The Centralizer of $S \subset \mathbb{G}$: $C(S) := \{g \in \mathbb{G} : gs = sg \ \forall s \in S\}.$
- Exercise: $Aut(X, T) = C(T_{\mathbb{G}})$, inside the group Homeo(X).
- The Center of \mathbb{G} : $Z(\mathbb{G}) := C(\mathbb{G})$.
- Exercise: If (X, T) is a \mathbb{G} -flow and T is a faithful action, then $Z(\mathbb{G})$ embeds in Aut(X, T).
- If \mathbb{G} acts on X via T, $stab_T(x) := \{g \in \mathbb{G} : T_g(x) = x\}$.

< 回 ト < 三 ト < 三 ト

- Conjugation: For $g, h \in \mathbb{G}$ $g^h := hgh^{-1}$.
- A subgroup 𝔄 < 𝔅 is normal if g𝔄g⁻¹ = 𝔄 for all g ∈ 𝔅, denoted 𝔄
 𝔄 𝔅. A subgroup 𝔄 is normal if and only there exists a homomorphism φ : 𝔅 → 𝔅₀ so that 𝔄 = Kerφ.
- The Centralizer of $S \subset \mathbb{G}$: $C(S) := \{g \in \mathbb{G} : gs = sg \ \forall s \in S\}.$
- Exercise: $Aut(X, T) = C(T_{\mathbb{G}})$, inside the group Homeo(X).
- The Center of \mathbb{G} : $Z(\mathbb{G}) := C(\mathbb{G})$.
- Exercise: If (X, T) is a \mathbb{G} -flow and T is a faithful action, then $Z(\mathbb{G})$ embeds in Aut(X, T).
- If \mathbb{G} acts on X via T, $stab_T(x) := \{g \in \mathbb{G} : T_g(x) = x\}.$
- Exercise: $stab_T(T_g(x)) = g[stab_T(x)]g^{-1}$.

- 4 回 ト - 4 回 ト

 \bullet Identify the subsets of $\mathbb G$ with, $\{0,1\}^{\mathbb G}$ (with the product topology)

- \bullet Identify the subsets of $\mathbb G$ with, $\{0,1\}^{\mathbb G}$ (with the product topology)
- Let X denote the subset of $\{0,1\}^{\mathbb{G}}$ corresponding to subgroups of \mathbb{G} .

- Identify the subsets of $\mathbb G$ with, $\{0,1\}^{\mathbb G}$ (with the product topology)
- Let X denote the subset of $\{0,1\}^{\mathbb{G}}$ corresponding to subgroups of \mathbb{G} . Explicitly, $x \in X$ means that $x_1 = 1$, $x_{g^1} = 1 \Leftrightarrow x_g = 1$ and $x_g = 1 \land x_h = 1 \Rightarrow x_{gh} = 1$.

- Identify the subsets of $\mathbb G$ with, $\{0,1\}^{\mathbb G}$ (with the product topology)
- Let X denote the subset of $\{0,1\}^{\mathbb{G}}$ corresponding to subgroups of \mathbb{G} . Explicitly, $x \in X$ means that $x_1 = 1$, $x_{g^1} = 1 \Leftrightarrow x_g = 1$ and $x_g = 1 \land x_h = 1 \Rightarrow x_{gh} = 1$.
- \mathbb{G} acts on X by conjugation.

- Identify the subsets of $\mathbb G$ with, $\{0,1\}^{\mathbb G}$ (with the product topology)
- Let X denote the subset of $\{0,1\}^{\mathbb{G}}$ corresponding to subgroups of \mathbb{G} . Explicitly, $x \in X$ means that $x_1 = 1$, $x_{g^1} = 1 \Leftrightarrow x_g = 1$ and $x_g = 1 \land x_h = 1 \Rightarrow x_{gh} = 1$.
- \mathbb{G} acts on X by conjugation.
- In general, this action is not expansive.
- Identify the subsets of $\mathbb G$ with, $\{0,1\}^{\mathbb G}$ (with the product topology)
- Let X denote the subset of $\{0,1\}^{\mathbb{G}}$ corresponding to subgroups of \mathbb{G} . Explicitly, $x \in X$ means that $x_1 = 1$, $x_{g^1} = 1 \Leftrightarrow x_g = 1$ and $x_g = 1 \land x_h = 1 \Rightarrow x_{gh} = 1$.
- \mathbb{G} acts on X by conjugation.
- In general, this action is not expansive.
- The fixed points of the action correspond to normal subgroups of \mathbb{G} .

For a group 𝔄 we denote by Aut(𝔄) the automorphisms of the group 𝔄 (bijective self-homomorphisms of 𝔄)

13 / 20

- For a group 𝔄 we denote by Aut(𝔄) the automorphisms of the group 𝔄 (bijective self-homomorphisms of 𝔄)
- If G acts on H by α ∈ Hom(G, Aut(H)) then the semi-direct product G ×_α H is the group whose elements are G × H with multiplication rule:

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1 \cdot g_2, h_1 \cdot \alpha_{g_1}(h_2)).$$

- For a group 𝔄 we denote by Aut(𝔄) the automorphisms of the group 𝔄 (bijective self-homomorphisms of 𝔄)
- If G acts on H by α ∈ Hom(G, Aut(H)) then the semi-direct product G ×_α H is the group whose elements are G × H with multiplication rule:

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1 \cdot g_2, h_1 \cdot \alpha_{g_1}(h_2)).$$

• The wreath product $\mathbb{H} \wr \mathbb{G}$ of \mathbb{H} and \mathbb{G} : This is the semi-direct product of \mathbb{H} and $\mathbb{G}^{\mathbb{H}}$ with respect to the shift-action.

$$(h_1,x)\cdot(h_2,y)=(h_1\cdot h_2,x\cdot\sigma_{h_1}(y)).$$

- For a group 𝔄 we denote by Aut(𝔄) the automorphisms of the group 𝔄 (bijective self-homomorphisms of 𝔄)
- If G acts on H by α ∈ Hom(G, Aut(H)) then the semi-direct product G ×_α H is the group whose elements are G × H with multiplication rule:

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1 \cdot g_2, h_1 \cdot \alpha_{g_1}(h_2)).$$

• The wreath product $\mathbb{H} \wr \mathbb{G}$ of \mathbb{H} and \mathbb{G} : This is the semi-direct product of \mathbb{H} and $\mathbb{G}^{\mathbb{H}}$ with respect to the shift-action.

$$(h_1,x)\cdot(h_2,y)=(h_1\cdot h_2,x\cdot\sigma_{h_1}(y)).$$

If ℍ acts on a set A via ψ the permutational wreath product ℍ ≀_ψ G of ℍ and G: This is the semi-direct product of ℍ and G^A with respect to the action on G^A induced by ψ.

- For a group 𝔄 we denote by Aut(𝔄) the automorphisms of the group 𝔄 (bijective self-homomorphisms of 𝔄)
- If G acts on H by α ∈ Hom(G, Aut(H)) then the semi-direct product G ×_α H is the group whose elements are G × H with multiplication rule:

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1 \cdot g_2, h_1 \cdot \alpha_{g_1}(h_2)).$$

• The wreath product $\mathbb{H} \wr \mathbb{G}$ of \mathbb{H} and \mathbb{G} : This is the semi-direct product of \mathbb{H} and $\mathbb{G}^{\mathbb{H}}$ with respect to the shift-action.

$$(h_1,x)\cdot(h_2,y)=(h_1\cdot h_2,x\cdot\sigma_{h_1}(y)).$$

If 𝔄 acts on a set A via ψ the permutational wreath product 𝔄 ≥_ψ 𝔅 of 𝔄 and 𝔅: This is the semi-direct product of 𝔄 and 𝔅^A with respect to the action on 𝔅^A induced by ψ.

$$(h_1,x)\cdot(h_2,y)=(h_1\cdot h_2,x\cdot\psi_{h_1}(y)).$$

• Let's consider the simple case where $\mathbb G$ is a finite group, and X is a $\mathbb G\text{-subshift.}$

- Let's consider the simple case where $\mathbb G$ is a finite group, and X is a $\mathbb G\text{-subshift.}$
- Note: any subshift over a finite group is a subshift of finite type.

- Let's consider the simple case where $\mathbb G$ is a finite group, and X is a $\mathbb G\text{-subshift.}$
- Note: any subshift over a finite group is a subshift of finite type.
- \bullet Assume for simplicity that the $\mathbb G ext{-action}$ of σ is free

- Let's consider the simple case where $\mathbb G$ is a finite group, and X is a $\mathbb G\text{-subshift.}$
- Note: any subshift over a finite group is a subshift of finite type.
- Assume for simplicity that the \mathbb{G} -action of σ is free (the stabilizer of every point is trivial).

- Let's consider the simple case where $\mathbb G$ is a finite group, and X is a $\mathbb G\text{-subshift.}$
- Note: any subshift over a finite group is a subshift of finite type.
- Assume for simplicity that the \mathbb{G} -action of σ is free (the stabilizer of every point is trivial).
- Let \mathcal{O} denote the (finite) set of \mathbb{G} -orbits in X, and $S(\mathcal{O})$ denote the group of permutations of \mathcal{O} .

- Let's consider the simple case where \mathbb{G} is a finite group, and X is a \mathbb{G} -subshift.
- Note: any subshift over a finite group is a subshift of finite type.
- Assume for simplicity that the \mathbb{G} -action of σ is free (the stabilizer of every point is trivial).
- Let \mathcal{O} denote the (finite) set of \mathbb{G} -orbits in X, and $S(\mathcal{O})$ denote the group of permutations of \mathcal{O} .
- In the above situation, $Aut(X, \sigma)$ is isomorphic as a group to the permutational wreath product $S(\mathcal{O}) \wr_{\psi} Z(\mathbb{G})$, where $\psi : S(\mathcal{O}) \to \mathcal{O}$ is the obvious action.

• A group $\mathbb G$ is called locally finite if any finitely generated subgroup $\mathbb H$ of $\mathbb G$ is finite.

• A group \mathbb{G} is called locally finite if any finitely generated subgroup \mathbb{H} of \mathbb{G} is finite. For example, S_{∞} the group of finite permutations of the integers, is locally finite.

- A group \mathbb{G} is called locally finite if any finitely generated subgroup \mathbb{H} of \mathbb{G} is finite. For example, S_{∞} the group of finite permutations of the integers, is locally finite.
- Observation: If G is locally finite and (X, σ) is a G-subshift then, Aut(X, σ) is locally finite.

- A group \mathbb{G} is called locally finite if any finitely generated subgroup \mathbb{H} of \mathbb{G} is finite. For example, S_{∞} the group of finite permutations of the integers, is locally finite.
- Observation: If G is locally finite and (X, σ) is a G-subshift then, Aut(X, σ) is locally finite.
- Proof: If ψ₁,..., ψ_n ∈ Aut(X, σ) and ψ_i is given by the sliding block code Ψ_i : A^{F_i} → A then for any φ ∈ ⟨ψ₁,...,ψ_n⟩, φ(x)₀ is determined by the restriction of x to the subgroup generated by ⋃_{i=1}ⁿ F_i.

- A group \mathbb{G} is called locally finite if any finitely generated subgroup \mathbb{H} of \mathbb{G} is finite. For example, S_{∞} the group of finite permutations of the integers, is locally finite.
- Observation: If G is locally finite and (X, σ) is a G-subshift then, Aut(X, σ) is locally finite.
- Proof: If ψ₁,..., ψ_n ∈ Aut(X, σ) and ψ_i is given by the sliding block code Ψ_i : A^{F_i} → A then for any φ ∈ ⟨ψ₁,...,ψ_n⟩, φ(x)₀ is determined by the restriction of x to the subgroup generated by ⋃_{i=1}ⁿ F_i.

___ ▶

A group G is residually finite if for each 1 ≠ g ∈ G, there is a normal subgroup H ⊲ G of finite index with g ∉ H.

- A group G is residually finite if for each 1 ≠ g ∈ G, there is a normal subgroup H ⊲ G of finite index with g ∉ H.
- Theorem (Ceccherini-Silberstein and Coornaert [CSC]): If G is residually finite and (X, σ) is a strongly irreducible G-SFT which contains a point x with a finite orbit, then the points with finite orbits are dense in X ((X, σ) has dense periodic points (DPP)).

- A group G is residually finite if for each 1 ≠ g ∈ G, there is a normal subgroup H ⊲ G of finite index with g ∉ H.
- Theorem (Ceccherini-Silberstein and Coornaert [CSC]): If G is residually finite and (X, σ) is a strongly irreducible G-SFT which contains a point x with a finite orbit, then the points with finite orbits are dense in X ((X, σ) has dense periodic points (DPP)).
- Theorem: (see [BLR],[CSC]): If \mathbb{G} is residually finite and (X, σ) is a \mathbb{G} -SFT with DPP then $Aut(X, \sigma)$ is residually finite.

- A group G is residually finite if for each 1 ≠ g ∈ G, there is a normal subgroup H ⊲ G of finite index with g ∉ H.
- Theorem (Ceccherini-Silberstein and Coornaert [CSC]): If G is residually finite and (X, σ) is a strongly irreducible G-SFT which contains a point x with a finite orbit, then the points with finite orbits are dense in X ((X, σ) has dense periodic points (DPP)).
- Theorem: (see [BLR],[CSC]): If \mathbb{G} is residually finite and (X, σ) is a \mathbb{G} -SFT with DPP then $Aut(X, \sigma)$ is residually finite.
- Corollary: In the above situation, Aut(X, σ) does not contains a divisible subgroup:

- A group G is residually finite if for each 1 ≠ g ∈ G, there is a normal subgroup H ⊲ G of finite index with g ∉ H.
- Theorem (Ceccherini-Silberstein and Coornaert [CSC]): If G is residually finite and (X, σ) is a strongly irreducible G-SFT which contains a point x with a finite orbit, then the points with finite orbits are dense in X ((X, σ) has dense periodic points (DPP)).
- Theorem: (see [BLR],[CSC]): If \mathbb{G} is residually finite and (X, σ) is a \mathbb{G} -SFT with DPP then $Aut(X, \sigma)$ is residually finite.
- Corollary: In the above situation, Aut(X, σ) does not contains a divisible subgroup: For any φ ∈ Aut(X, σ) \ {id} there exists n ∈ N such that the equation ψⁿ = φ has no solution ψ ∈ Aut(X, σ).

A (10) A (10) A (10)

17 / 20

17 / 20

• Embeds any finite group.

- Embeds any finite group.
- Embeds the direct sum of every countable collection of finite groups.

- Embeds any finite group.
- Embeds the direct sum of every countable collection of finite groups.
- Embeds a free product of any number of 2-element groups, hence a free group on a countable number of generators.

- Embeds any finite group.
- Embeds the direct sum of every countable collection of finite groups.
- Embeds a free product of any number of 2-element groups, hence a free group on a countable number of generators.
- Embeds $Aut(\{1,\ldots,n\}^{\mathbb{Z}},\sigma)$ for all n [KR].

- Embeds any finite group.
- Embeds the direct sum of every countable collection of finite groups.
- Embeds a free product of any number of 2-element groups, hence a free group on a countable number of generators.
- Embeds $Aut(\{1, \ldots, n\}^{\mathbb{Z}}, \sigma)$ for all n [KR].
- If (X, σ) is irreducible then the center or Aut(X, σ) generated by σ
 [R].

- [BLR] M. Boyle, D. Lind, and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc. 1988
- [CSC] T, Ceccherini-Silberstein and M. Coornaert, On the density of periodic configurations in strongly irreducible subshifts, Nonlinearity 2012
- [Hed] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory, 1969
- [KR] K. H. Kim and F. W. Roush, On the automorphism groups of subshifts. Pure Math. Appl. Ser. B, 1990
- [Man] Mañé, Ricardo, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc. 1979
 - [R] P. Ryan, The shift and commutativity, Math. Systems Theory, 1972

18 / 20

• For simplicity, let $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$.

- For simplicity, let $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$.
- For $j \in \{1, 2, 3\}$ define $\phi_j \in Aut(X, \sigma)$ to be the automorphism which "swaps sj with s0" for $s \notin \{0, j\}$.

- For simplicity, let $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$.
- For $j \in \{1, 2, 3\}$ define $\phi_j \in Aut(X, \sigma)$ to be the automorphism which "swaps sj with s0" for $s \notin \{0, j\}$.
- By inspecting the action of ⟨φ₁, φ₂, φ₃⟩ on the point ... 000 * 000... we see that it generates a group isomorphic to the free product C₂ * C₂ * C₂.

- Topological Markov Fields.
- Amenability and topological entropy.
- The Marker method for \mathbb{Z}^d -SFTs and for \mathbb{G} -SFTs.