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Topological dynamical system, G-flows

Throughout, G,H will (mostly) be infinite countable groups.

Homomorphisms:

Hom(G,H) =
{
α ∈ HG : α(g1)α(g2) = α(g1g2)

}

X will be a compact (Hausdorff) topological space (usually
metrizable). Homeo(X ) - The group of self homeomorphisms of X .

A G-topological dynamical system (TDS) or G-flow is a pair (X ,T )
where X is a compact (Hausdorff) topological space and
T ∈ Hom(G,Homeo(X )) is homomorphism of the group G into the
group of homeomorphisms. We write Tg (x) instead of T (g)(x). We
have: Tg (Th(x)) = Tgh(x).
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Isomorphism, factor maps, subsystems, subactions

(X ,T ) is topologically isomorphic or topologically conjugate to
(Y ,S) (denoted (X ,T ) ∼= (Y ,S)) if there exists a homeomorphism
Φ : X → Y so that Φ ◦ Tg = Sg ◦ Φ for all g ∈ G.

(Y ,S) is a topological factor of (X ,T ) if there exists a continuous
surjective Φ : X → Y so that Φ ◦ Tg = Sg ◦ Φ for all g ∈ G.

A subsystem of (X ,T ) is a G-flow (Y ,T ) where Y ⊂ X is closed
(topologically) and T -invariant (Tg (Y ) = Y for all g ∈ G).

If α ∈ Hom(H,G) is a group homomorphism and (X ,T ) is a G-flow,

we can get an H-flow (X ,T (α)) by T
(α)
h := Tα(h). When α is

injective, we say (X ,T (α)) is a subaction of (X ,T ).
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Expansivity

Recall that a G-action (X ,T ) is expansive if there exists ε > 0 so that for
any distinct x , y ∈ X there exists g ∈ G so that d(Tgx ,Tgy) > ε.

An example for an expansive Z-action: A hyperbolic automorphism of
the torus R2/Z2, T (x , y) = (y , x + y) is an expansive Z-action.

Obviously, if a G-flow (X ,T ) has an expansive subaction, then
(X ,T ) is itself expansive.

Mañé’s theorem [Man]: If Z acts on compact metric X via an
expansive T , then X has finite topological dimension. Furthermore, if
(X ,T ) is also minimal (has no proper subsystems) then X has zero
topological dimension.
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G-subshifts and shifts of finite type (SFTs)

The G-full shift over alphabet Σ: ΣG where Σ is a finite set, and the
topology on ΣG is the product topology.

The open sets are unions of
cylinders:

[a]F := {y ∈ X : y |F = a} , a ∈ ΣF ,F ⊂⊂ G.

The shift σ is given by:(σg (x))h := xg−1h (check that this is indeed a
G-flow!)

A G-subshift (X , σ) is a subsystem of some G-full-shift. X ⊂ ΣG is
closed and shift invariant.

Exercise: A G-flow (X ,T ) is isomorphic to a G-subshift if and only if
T is expansive and X is a totally disconnected metrizable space.
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Subshifts of finite type (SFTs)

Exercise: Any subsystem of (ΣG, σ) is of the form

X =
{
x ∈ ΣG : σg (x)|F 6∈ F ∀g ∈ G, F ⊂ G

}
,

F ⊂
⋃

F⊂⊂G
ΣF

,

A subshift is of finite type (SFT) if it can be given by a finite list F of
forbidden patterns.

A Z-subshift is of finite type iff it has local product structure: There
exists ε > 0 such that for all x , y ∈ X with d(x , y) < ε there is a
unique z ∈ X , (denoted by [x , y ] ) such that d(σn(x), σn(z)) < ε and
d(σ−n(y), σ−n(z)) < ε for all n ∈ Z+.

Exercise: A G-subshift (X , σ) is an SFT iff it is not a countable
intersection of strictly decreasing sequence of subshifts: Whenever
X =

⋂∞
n=1 Xn, Xn+1 ⊂ Xn and (Xn, σ) are subshifts then Xn+1 = Xn

for all sufficiently large n’s.
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F ⊂
⋃

F⊂⊂G
ΣF
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Some examples for G-SFTs

Take a finite symmetric S ⊂ G \ {1}, and consider the Cayley graph
GS whose vertex set is G.

Identify each subset of G with it’s indicator function, which is a point
in {0, 1}G. The collocation of independent sets in GS is a G-SFT
(“hard core models’’).

For any n ∈ N the collection of n-colorings of GS is an SFT.

The collection of ordered perfect matchings in GS can be viewed as
an SFT (“dimer models”).
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The automorphism group of a G-flow

We denote by Aut(X ,T ) the group of automorphisms of a G-flow
(X ,T ).

φ ∈ Aut(X ,T ) if φ : X → X is a homeomorphism such that
Tg ◦ φ = φ ◦ Tg for all g ∈ G.

Exercise: For a countable group G, the automorphism group of an
expansive G-action is always finite or countable.

Recall: By Curtis Hedlund Lyndon for any subshift X ⊂ AG and any
φ ∈ Aut(X , σ) there exists a finite F ⊂ G and “sliding block code”
Ψ : AF → A so that φ(x)g = Ψ(σg (x)|F ). This is just an explicit
way of saying: φ is continuous and commutes with σg .
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(Some of the) Big questions about Aut(X , σ)

For a given subshift or class of subshifts, what can we say about
Aut(X , σ) as a group? (almost)-commutative? (almost)-nilpotent?
Amenable? Sofic? Finitely generated? What is the center? What are
the subgroups? What are the quotients? What are the irreducible
representations? What are the finite dimensional representations?...

What do properties of the group G say about properties of Aut(X , σ)
and vice versa?

What do dynamical properties of (X , σ) say about group-theoretic
properties of Aut(X , σ)?

How does Aut(X , σ) act on (X , σ)? What are the
Aut(X , σ)-invariant closed subsets? How does Aut(X , σ) act on
σ-invariant closed sets? On σ-invariant measures? What are the
Aut(X , σ)-invariant measures?

Aut({1, 2, 3}Z, σ) ∼= Aut({1, 2}Z, σ)?
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Rule of thumb

If the dynamical system (X , σ) is “sufficiently chaotic”, Aut(X , σ) is
“a big group” in an algebraic sense.

If the dynamical system (X , σ) is “sufficiently degenerate”, Aut(X , σ)
is “a small group”. (More on this expected in talks by Bryna Kra and
Samuel Petite)
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Reminder: Basic notions about groups

Let G be a group.

Conjugation: For g , h ∈ G gh := hgh−1.

A subgroup H < G is normal if gHg−1 = H for all g ∈ G, denoted
H�G. A subgroup H is normal if and only there exists a
homomorphism ϕ : G→ G0 so that H = Kerϕ.

The Centralizer of S ⊂ G: C (S) := {g ∈ G : gs = sg ∀s ∈ S}.
Exercise: Aut(X ,T ) = C (TG), inside the group Homeo(X ).

The Center of G: Z (G) := C (G).

Exercise: If (X ,T ) is a G-flow and T is a faithful action, then Z (G)
embeds in Aut(X ,T ).

If G acts on X via T , stabT (x) := {g ∈ G : Tg (x) = x}.
Exercise: stabT (Tg (x)) = g [stabT (x)] g−1.
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Exercise: Aut(X ,T ) = C (TG), inside the group Homeo(X ).

The Center of G: Z (G) := C (G).

Exercise: If (X ,T ) is a G-flow and T is a faithful action, then Z (G)
embeds in Aut(X ,T ).

If G acts on X via T , stabT (x) := {g ∈ G : Tg (x) = x}.
Exercise: stabT (Tg (x)) = g [stabT (x)] g−1.
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An example: G acting on subgroup.

Identify the subsets of G with, {0, 1}G (with the product topology)

Let X denote the subset of {0, 1}G corresponding to subgroups of
G. Explicitly, x ∈ X means that x1 = 1, xg1 = 1⇔ xg = 1 and
xg = 1 ∧ xh = 1⇒ xgh = 1.

G acts on X by conjugation.

In general, this action is not expansive.

The fixed points of the action correspond to normal subgroups of G.
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Semi-direct products and wreath-products

For a group H we denote by Aut(H) the automorphisms of the group
H (bijective self-homomorphisms of H)

If G acts on H by α ∈ Hom(G,Aut(H)) then the semi-direct product
G×α H is the group whose elements are G×H with multiplication
rule:

(g1, h1) · (g2, h2) = (g1 · g2, h1 · αg1(h2)).

The wreath product H oG of H and G: This is the semi-direct
product of H and GH with respect to the shift-action.

(h1, x) · (h2, y) = (h1 · h2, x · σh1(y)).

If H acts on a set A via ψ the permutational wreath product H oψ G
of H and G: This is the semi-direct product of H and GA with
respect to the action on GA induced by ψ.

(h1, x) · (h2, y) = (h1 · h2, x · ψh1(y)).
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Automorphism groups of SFTs over finite groups

Let’s consider the simple case where G is a finite group, and X is a
G-subshift.

Note: any subshift over a finite group is a subshift of finite type.

Assume for simplicity that the G-action of σ is free (the stabilizer of
every point is trivial).

Let O denote the (finite) set of G-orbits in X , and S(O) denote the
group of permutations of O.

In the above situation, Aut(X , σ) is isomorphic as a group to the
permutational wreath product S(O) oψ Z (G), where ψ : S(O)→ O is
the obvious action.
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Automorphisms of subshifts over locally finite groups

A group G is called locally finite if any finitely generated subgroup H
of G is finite.

For example, S∞ the group of finite permutations of
the integers, is locally finite.

Observation: If G is locally finite and (X , σ) is a G-subshift then,
Aut(X , σ) is locally finite.

Proof: If ψ1, . . . , ψn ∈ Aut(X , σ) and ψi is given by the sliding block
code Ψi : AFi → A then for any φ ∈ 〈ψ1, . . . , ψn〉, φ(x)0 is determined
by the restriction of x to the subgroup generated by

⋃n
i=1 Fi .
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Residually finite groups and finite orbits

A group G is residually finite if for each 1 6= g ∈ G, there is a normal
subgroup H�G of finite index with g 6∈ H.

Theorem (Ceccherini-Silberstein and Coornaert [CSC]): If G is
residually finite and (X , σ) is a strongly irreducible G-SFT which
contains a point x with a finite orbit, then the points with finite orbits
are dense in X ((X , σ) has dense periodic points (DPP) ) .

Theorem: (see [BLR],[CSC]): If G is residually finite and (X , σ) is a
G-SFT with DPP then Aut(X , σ) is residually finite.

Corollary: In the above situation, Aut(X , σ) does not contains a
divisible subgroup: For any φ ∈ Aut(X , σ) \ {id} there exists n ∈ N
such that the equation ψn = φ has no solution ψ ∈ Aut(X , σ).
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On the automorphism group of Z-SFTs

[BLR], extending [H] Let (X , σ) be an uncountable Z-SFT. Then
Aut(X , σ):

Embeds any finite group.

Embeds the direct sum of every countable collection of finite groups.

Embeds a free product of any number of 2-element groups, hence a
free group on a countable number of generators.

Embeds Aut({1, . . . , n}Z, σ) for all n [KR].

If (X , σ) is irreducible then the center or Aut(X , σ) generated by σ
[R].
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Embedding free products:

Let’s prove that Aut(X , σ) embeds the free product of cyclic groups:

For simplicity, let X = {∗, 0, 1, 2, 3}Z.

For j ∈ {1, 2, 3} define φj ∈ Aut(X , σ) to be the automorphism which
“swaps sj with s0” for s 6∈ {0, j}.
By inspecting the action of 〈φ1, φ2, φ3〉 on the point . . . 000 ∗ 000 . . .
we see that it generates a group isomorphic to the free product
C2 ∗ C2 ∗ C2.
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Coming up next...

Topological Markov Fields.

Amenability and topological entropy.

The Marker method for Zd -SFTs and for G-SFTs.
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